Forensic Computer Investigations

Steve Romig
May, 2010
Definitions & Principles

• What is “Forensic Computer Investigation”?
 – Forensic means “pertaining to the law”
 – We have forensic anthropology, ballistics, genetics, chemistry, liquid splatter analysis, dentistry…

• Good general introduction: “Criminalistics”, by Richard Saferstein
Why Bother?

• Academic misconduct
• Policy/human resources issues
• Criminal incidents
• Civil incidents
• These same techniques are useful for general investigations on computers
 – The system crashed, why?
 – We were compromised, how?
Why Bother?

• Some questions to ask:
 – How did they break in?
 – What damage was done?
 – Who did it?
 – Who else did they hit?

• We do it in a “forensically sound way” to:
 – Meet legal requirements
 – Reduce liability
 – Preserve evidence
The Four Steps

• Good definition:
 – "Process of identifying, preserving, analyzing and presenting digital evidence in a manner that is legally acceptable in any legal proceedings (i.e. a court of law)."
 – Rodney McKennish: “1998 Donald Mackay Churchill Fellowship to Study Overseas Developments in Forensic Computing” (Australia)
The Four Steps

• Identify the evidence
 – Must identify the type of information that is available
 – Determine how to best retrieve it
 – Disk images, memory dumps, process listings, log files, network traffic logs, etc.
 – We might need to prioritize the evidence, based on what questions we are trying to answer or what we expect to find.
The Four Steps

• Preserve the evidence
 – With the least amount of change possible
 – You must be able to account for any changes
 – How can you show that what you have now is IDENTICAL to what you had way back then?
The Four Steps

• Analyze the evidence
 – Extract, process, interpret
 – Extract - evidence collection may produce binary 'gunk' that isn't human readable
 – Process - make it humanly readable
 – Interpret - requires a deeper understanding of how things fit together

• Your analysis should be repeatable
The Four Steps

• Present the evidence
 – To law enforcement, attorneys, in court, etc.
 – Acceptance will depend on
 • Manner of presentation (did you make it understandable, convincing?)
 • The qualifications of the presenter
 • The credibility of the processes used to preserve and analyze the evidence
 • Credibility enhanced if you can duplicate the process
 – This is especially important when presenting evidence in court
Investigation Workflow

• Collect and analyze evidence to form one or more chronological sequences of events that fit the evidence

• We can’t always be conclusive!
 – “The butler did it”
 – “Either the butler did it or he picked up the knife after the murder”

• It is a feedback loop
 – Analysis leads to more evidence which feeds analysis…
Five Points to Consider

• Admissibility
 – Conform to legal requirements ("rules of evidence")

• Authenticity
 – Relevant to the case at hand

• Completeness
 – Complete logs are better than extracts from the logs

• Reliability
 – Collected and handled appropriately

• Believability
 – Understandable and convincing
Legal Issues

• Best Evidence
• Hearsay
• The Frye and Daulbert Tests
• Chain of Custody
• Exculpatory Evidence
• Fruit of the Poisonous Tree
• Acting Under Color of Law
Document The Scene

Collect Volatiles? Yes

Record Volatiles

Being Safe? Yes

Power Off

Investigate NVs, run "last", etc.

NO

What Was The point? 😊 NO

Image Drives? YES

Make Image

NO

Back @ lab, Analyze Copies, Reconstruct Computers, Analyze "warez"
Document The Scene

Collect Volatiles?

NO

Record Volatiles

YES

Being Safe?

NO

Investigate NVs, run "last", etc.

YES

Power Off

NO

Image Drives?

YES

Make Image

Back @ lab, Analyze Copies, Reconstruct Computers, Analyze "warez"

What Was The point?

NO

Smiley face
Document the Scene

- Map the room(s)
- Take pictures
- Label everything
 - Permanent, or removable sticky notes (NOT post-it notes – they fall off)
 - Unique “tag” – 315-1-2 (room 315, computer 1, disk 2)
- Catalogue everything
Document The Scene

Collect Volatiles?

Record Volatiles

Being Safe?

Power Off

Image Drives?

Make Image

Back @ lab, Analyze Copies, Reconstruct Computers, Analyze “warez”

Investigate NVs, run “last”, etc.

What Was The point? 😊

YES

NO

NO

YES

Saturday, May 8, 2010
Collect Volatile Evidence

• “Volatile evidence” is evidence that will disappear soon, such as information about active network connections, or the current contents of volatile memory.
• Contrast this with the contents of a disk or tape.
Collect Volatile Evidence

• From Farmer & Venema – http://www.porcupine.org
 – Registers, peripheral memory, caches...
 – Memory (virtual, physical)
 – Network state
 – Running processes/services
 – Loaded kernel modules/dlls/drivers
 – Network shares
 – Mounted file systems
Collecting Volatile Evidence

• What you do on the system will affect the remaining evidence
 – Running ‘ps’ will overwrite parts of memory
 – Your shell may overwrite the history file
 – You may affect file access times
 – There’s always the risk of trojans! (e.g. gcore)
Collecting Volatile Evidence

• Rootkits
 – Everything you know about a system is given to you through the software you use (the applications, the libraries, the operating system)
 – A rootkit is software that subverts the system to hide processes, files, network connections and so on
 – These often contain back doors, which give the intruder easy return access
Collecting Volatile Evidence

• You need to use known, safe tools to examine a system
 – Statically linked
 – Or include your own libraries
 – Mount from floppy or CD, through net, or download through net

• This won’t help with kernel rootkits
Collecting Volatile Evidence

• Your toolkit might include:
 – sysinternal’s filemon, regmon, process explorer, tcpview, autoruns, rootkit-revealer, dumpevt, dumpreg...
 – f-secure’s blacklight
 – icesword
 – microsoft’s windows defender
Collecting Volatile Evidence

• If you are collecting volatiles
 – Download/mount your tools (net, floppy, cd, flash)
 – Copy memory, swap, /tmp, pagefile.sys...
 – Get info about network state (connections, promiscuous interfaces)
 – Get info about running processes
 – Write results to flash or across the network: never to the local hard drive
Document The Scene

Collect Volatiles?

Record Volatiles

Being Safe?

Power Off

Investigate NVs, run “last”, etc.

What Was The point? 😊

Image Drives?

Make Image

Back @ lab, Analyze Copies, Reconstruct Computers, Analyze “warez”
Turning a computer off...

• When you examine a computer, should you:
 – Turn it off? Use the switch vs. battery/cord?
 – CTRL-ALT-DELETE, L1-A?
 – Reboot?
 – Unplug it from the net?
 – Filter it at the router?
 – Leave it running and examine it quickly?
Three Fingered Salute

• CTRL-ALT-Delete, L1-A (Suns), etc.
 – Can be caught, redirected to destruct routines
 – No real advantage to doing this (that I can think of; you might as well just power off).
Shutdown

• Shutdown/halt/sync would leave file systems clean
 – But these routines might be rigged for destruction

• Don’t reboot!
 – Worse than doing a shutdown!
 – Wiping /tmp on reboot (if it isn't a ram-disk)
 – Is it rigged to restart "bad stuff" (backdoors, destructive things) at reboot? Or later, through cron?
Unplug from the Network

• If you unplug from the network or filter it...
 – What about "dead man switches" that detect when they're off the net and wipe evidence?
 – Marcus Ranum wrote about this in the CSI Alert, September 1999, #198
Leave it Running

• Without unplugging from the network
 – Until you power it off

• This is probably safe in the short term
 – Risk increases with time, though
 – They might use it to do nasty business - liability?
 – They might wipe evidence, especially if they see you poking around
Power Off

• When you turn it off...
 – You lose volatile evidence: processes, network connections, mounted network file systems, contents of memory...
 – This is critical evidence in many cases: crackers increasingly store tools, logs on remotely mounted file systems
 – On the other hand, if you investigate on running system, you risk modifying the system (especially the disk)
Document The Scene

Collect Volatiles?

Record Volatiles

Being Safe?

Power Off

Image Drives?

Make Image

Investigate NVs, run “last”, etc.

Back @ lab, Analyze Copies, Reconstruct Computers, Analyze “warez”

What Was The point? 😊
Imaging Disks

- Get partition, RAID, logical volume management configuration
- Make copies of the hard drives (or RAIDs, or partitions, or...)
- Calculate and compare hashes (MD5 and/or SHA-1)
- Document and witness the copy/verification!
- Reconstruct RAIDs, carve our logical volumes, etc.
Imaging Disks

• Common tools include:
 – Helix, Knoppix live CDs
 – SMART (Linux live CD) from ASR
 – Forensic ToolKit (FTK) from Access Data
 – EnCase from Guidance Software
 – FTK Imager
 – Raid Reconstructor from Runtime Software
 – Unix dd, md5sum
The Scene

Collect Volatiles?

Record Volatiles

Being Safe?

Power Off

Image Drives?

Make Image

Investigate NVs, run “last”, etc.

Back @ lab, Analyze Copies, Reconstruct Computers, Analyze “warez”

What Was The point? 😊

Saturday, May 8, 2010
We need to know:

• Where the evidence is
• What the evidence means
• How to put it together
Where the Evidence is

- home system
- phone system
- modem pool
- networks
- victim computers
- think about the components
- ask questions, get expert advice
What the Evidence Means

• This requires a deeper understanding
 – How evidence is created
 – Where it might be missing
 – Or wrong

• Get an expert, ask questions
What the Evidence means

• A romig login entry in a UNIX wtmp file means…
 – Someone used the romig account to login
 – Or inserted a fake entry
 – NOT necessarily that Steve Romig logged in

• A DHCP lease means…
 – A computer was assigned the lease
 – NOT that that computer was the one using that IP address during the lease time
Importance of knowing

• Where the logs might be wrong
 – Syslog, NetFlow exports are sent via UDP
 – Authentication logs from parallel authentication servers
 – NetFlow logs and asymmetric routes
 – Spoofed IP addresses
 – Writable logs (wtmp, utmp on old UNIX systems)
 – Logs modified by the cracker
Correlating Logs

• You can build stronger case if you can show multiple sources that are in agreement
• Relating log entries to each other
 – Matching log entries by value - e.g. IP address
 – Matching entries by time
Time Related Issues

• We often use timestamps to correlate entries from different logs on different systems

• Problems include:
 – time synchronization
 – time zone
 – event lag
 – chronological order of events
 – event bounding
Time Synchronization

• We can sometimes infer clock offset from the logs
 – shell history on computer A shows telnet B at T1, tcp wrapper on computer B shows telnet from A at T2
 – offset is (probably T2-T1)

• We can't always do this - not enough info, event lag, etc.
Time Zone

- You can't compare apples to oranges
- Send, request time zone for all logs
- I like GMT offsets
- Make sure you do the math right
Event Lag

• Event lag is the difference in time between related events in different types of logs
 – connect from computer A to computer B using telnet and login
 – NetFlow log shows telnet starting at 13:05:12
 – TCP wrapper on computer B shows telnet at 13:05:12
 – wtmp shows actual login at 13:05:58

• Lag can be very variable
Event Lag

• We can use session start time, duration to eliminate some sessions
 – looking for dialup sessions in phone trace that "match" a login session on the modem pool that started at 2:03:22 and lasted 00:10:05
 – sessions that start wayyyyy before or after 2:03:22 probably don't match
 – sessions that are short than 00:10:05 don't match
 – sessions too much longer than 00:10:05 probably don't match
Event Lag

- Session ending time can sometimes be used to match more accurately than starting time
 - hang-up modem, terminal server terminates login session for you - short lag
 - logout of UNIX, telnet session ends - short lag
Chronological Order of Events

• Some logs are created in chronological order by the ending time of the session
 – process accounting records on Unix
 – Cisco NetFlow logs
 – TACACS+ session summary entries
Chronological Order of Events

• This can be very confusing
 – look through flow log, see traffic from computer, but not telnet traffic to computer - might not appear until 30 minutes later in the log
 – look through process accounting logs, see sub-processes, but not shell process

• We often need to reorder by the starting time of the session
Process Accounting Log

ttyp1 romig 12:32:28 00:00:07 ls

ttyp1 romig 12:33:02 00:00:05 cat

ttyp1 romig 12:33:45 00:00:03 egrep

ttyp1 romig 12:33:45 00:00:04 awk

ttyp1 romig 12:33:45 00:00:04 sh

...

ttyp1 romig 12:30:12 00:10:02 sh
Event Bounding

• We can use start, end times of one session to "bound" portions of other logs to focus our search for useful information
 – for instance, modem pool auth log shows session from T1 to T2
 – probably not going to find flow logs for the corresponding IP address of interest outside of that session
 – this is obvious
Event Bounding

• It is not so obvious that we can't always do this
 – easy to leave processes running after your login session on Unix
 – then there's at, cron, procmail and so on
 – these will leave traces long after the modem pool session
Merging Logs

• Sometimes log entries are spread all over the place
 – multiple parallel authentication servers
 – multiple SMTP front ends
 – multiple routers with asymmetric routing

• Need to merge logs from multiple sources

• Sort into chronological order
Reliability

• Logs vary in reliability
• How are the logs protected?
 – Some wtmp, utmp are world writable
 – Shell history are writable by their owners
• Depends on the integrity of software that creates log entries
 – Crackers replace these with versions that don't log, or which log false entries - rootkit
Reliability

• Is subject to the security of transmission over the network
 – syslog, NetFlow both use UDP
 – subject to data loss
 – subject to possible spoofing

• Guard against problems by correlating from as many sources as possible
Reliability

• We will need to adjust theories to account for anomalies
 – see telnet session to computer, but there's no login session
 – this might indicate rootkit installation
 – doesn't call into question validity of the theory that someone broke into the system - supports it
IP Address and Host Name Problems

• IP addresses can be spoofed
 – need to recognize cases where this is likely/unlikely
 – common in flooding
 – uncommon in telnet

• Domain stealing, cache poisoning, etc
 – IP address is "better" than the name it resolves to
 – really want to log both
 – if you have to choose one, choose the imp address
Recognize What's Missing

• Sometimes the stuff that's missing is what's interesting
 – see long telnet in NetFlow to target
 – but there's no login session
 – raises suspicion that there's a rootkit
• We found a ... directory but it doesn't contain anything
 – might be empty
 – might be a rootkit
What’s Missing

• Flow logs shows traffic to TCP/31337
 – but you can't find a process listening on that port
 – there might be a rootkit
Overview of a Recent Case

• We imaged the physical disk drives
• We “carved” the disks into logical disks used for each RAID
• We reconstructed the RAID as a disk image
• We examined these under EnCase, which allows us to see the partition/volume structure and file system contents
Overview of a Recent Case

- We extracted file system timestamps, the Internet Explorer history, the Registry contents (with modification times), the IIS logs, all other logs named *.log, and the event logs
- We converted these to a common format
- We combined and sorted these chronologically, and then started our analysis
Overview of a Recent Case

• As we identified times when “interesting” activity took place, we would go back to the system image in EnCase and extract the contents of other files, like the malware that was installed.

• We analyzed the malware to try to determine what it was and what it was capable of, how it got installed, files created/read, registry changes, etc.
 – Norman sandbox, Virustotal and Sunbelt Sandbox are useful resources
Useful Tools

• We use Guidance Software’s EnCase, a commercial product (http://guidancesoftware.com)

• Sleuthkit & Autopsy - open source alternative (http://www.sleuthkit.org)

• Volatility Framework - open source tools for memory forensics (https://www.volatile systems.com/default/volatility)
More Useful Tools

• Microsoft’s Sysinternals tools - autoruns, rootkit revealer, process monitor/explorer, tcpview, regmon, filemon and etc (http://technet.microsoft.com/en-us/sysinternals/default.aspx)