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Abstract

In this paper we present a new algorithm for curve re-
construction that has multiple applications in image
processing, geographic information systems, pattern
recognition and mathematical modeling. The algo-
rithm can deal with nonsmooth curves with multi-
ple components that cannot be handled by existing
algorithms. Experiments with several input data re-
veals the effectiveness of the algorithm in contrast
with the other competitive algorithms for the prob-
lem. An attractive feature of the algorithm is that it
is extendible to three dimensions for surface recon-
structions.

1 Introduction

Curve reconstruction is the problem of computing
a piecewise linear approximation to a curve from a
set of sample points. Applications include detecting
boundaries in image processing, computing patterns
in computer vision and intelligent systems, extract-
ing information from aerial surveys in geographic in-
formation systems, and fitting a spline through a set
of points in mathematical modeling. In the past, the
problem has been studied for its applications to pat-
tern recognition[7, 8, 12]. Recently, renewed interest
in the problem has focused on its relation to the more
demanding problem of surface reconstructionin CAD
applications [1, 4, 11]. Advances in laser technol-
ogy have made it easier to obtain samples from the
boundary of an object but these samples are useless
without effective procedures to reconstruct the ob-
ject surface from them. Curve reconstruction is the
lower dimensional version of this problem and pro-
vides useful insights and experiences for designing
these algorithms.

Obviously, unless samples from a curve are “dense
enough”, it is difficult, if not impossible, to recon-
struct a close approximation to the original curve.
Amenta, Bern and Eppstein [2] concretized the idea
of “dense” sampling using the concept of feature size.
The medial axis of a curve I is the set of points in
the plane which have more than one closest point on
T. The feature size, f(p), of a point p € T is the dis-
tance from p to the closest point on the medial axis.
This distance captures the features of the curve; f(p)
is small where T" is “narrow” and it is large where I’
is flat.

Amenta et. al. defined sampling density based on
a parameter € by requiring that each point p € I" has
a sample point within distance e¢f(p). Several other
algorithms have been developed with this assump-
tion of sampling density [5, 6, 10]. This sampling
density condition can be satisfied for smooth curves
in practice. However, nonsmooth curves with cor-
ners, i.e., points whose left and right tangents do not
match, pose an intrinsic difficulty with the approach.
The medial axis of such curves passes through the
corners, and thus one is required to sample the curve
infinitely near the corner to satisfy the sampling con-
dition. In fact, the algorithms of [2, 5, 6, 10] do not
work for curves with sharp corners. See Figure 1.

The first algorithm that successfully handled
curves with corners is by Giesen [9]. He proved that
the Traveling Salesman Tour reconstructs a curve
with corners if the sampling density is higher than
a certain threshold. This threshold depends upon
the angles between right and left tangents at the
corners. Althaus and Mehlhorn gave a polynomial
time version of Giesen’s algorithm based on linear
programming][3].

Although the Traveling Salesman Tour of a set of
sample points reconstructs curves with corners, it has
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Figure 1: Output of Amenta-Bern-Eppstein algorithm (top left), output of Dey-Kumar algorithm (top right),
output of Dey-Mehlhorn-Ramos algorithm (bottom left), output of our algorithm (bottom right). TSP tour,

in this case, will join the two components of the curve.

two drawbacks. First, it is not a good reconstruc-
tion of a curve with multiple components, since it
connects these components by a single tour. Figure
2 shows an example illustrating this shortcoming of
the Traveling Salesman Tour. Secondly, it is not clear
if the reconstruction algorithms based on the Trav-
eling Salesman Tour generalize to three dimensions.
The natural generalization of the Traveling Salesman
Tour is a minimal surface, i.e., a surface containing
the sample points with minimal area. It is not known
if such a minimal surface is a good approximation for
a surface with sharp features and, if it is, whether it
can be computed efficiently. These shortcomings of
Traveling Salesman based algorithms motivated us
to look for some other method that can handle mul-
tiple components of nonsmooth curves and could be
easily extended to three dimensions.

In practice, samples are derived from curves that
have multiple components, sharp corners and bound-
aries. A real example from GIS application in [10]
shows all these possibilities in a single sample set.
An ideal reconstruction algorithm should handle all
of these possibilities. In this paper we present such
an algorithm and show evidence of its effectiveness

Figure 2: Traveling Salesman Tour connects two
components through unwanted edges pg and rs.

on several examples. In Figure 1 we show the out-
put of the crust algorithm of [2], nearest neighbor
algorithm of [5], conservative crust algorithm of [6]
and our algorithm on a two component curve. It
illustrates that our algorithm handles curves with
sharp corners, boundary points and multiple compo-
nents quite effectively in comparison with other algo-
rithms. All other algorithms miss some of the neces-
sary edges near sharp corners and some of them put
extra edges. In particular, the points p and ¢ near a
sharp corner is joined by all algorithms except ours.
Also, see Appendix A. Our algorithm is based on
several new observations that we believe will be use-
ful for further developments in the area. We do not
provide a theoretical proof of the guarantee of the



algorithm, but experimental success leads to beliefs
that there might exist such rigorous analysis.

2 Corners

As in [9, 3], we require that the sampled curve be
planar and do not have crossings (multiple points).
Further, left tangents and right tangents are defined
everywhere, and they are same at all points except
at some isolated points called corners, where they
make an angle less than 7. The curve can be closed,
or may have endpoints. Corners are difficult to sam-
ple. They are isolated, and stipulating that a partic-
ular point be sampled is impractical. We can only
require that the neighborhood of corners are densely
sampled.

Sample points partition a curve into arcs. Each
sample point is adjacent to two such arcs. We call a
sample point regular if its two adjacent arcs do not
contain any corners or boundary point. A sample
point is corner sample if it is a corner point or at
least one of its two adjacent arcs contains a corner
point. A sample point is called boundary if it is an
endpoint or if at least one of its two adjacent arcs
contain a boundary point on the curve. We assume
that the curve sampling is dense enough so that no
sample point is adjacent to both a corner point and
a boundary point.

D1 D2
P1 g ps

Figure 3: Corner samples.

We will see that it is comparatively easy to esti-
mate normals to the curve at regular samples. Cor-
ner samples and boundary samples pose difficulty in
normal estimation and thus are difficult to handle
in reconstruction. However, the neighboring regu-
lar samples can be effectively used to detect cor-
rect edges that should be incident with the corner
and boundary samples. But, what about edges that
should connect two corner samples? There are two
distinct cases as shown in Figure 3. The two corner
samples p; and p, in the left picture behave differ-
ently than the two corner samples p3 and p4 in the
right picture. The corner sample p; behaves like a

true corner point on the curve. Our algorithm can es-
timate the normal at ps though it is a corner sample,
whereas it is very difficult to estimate the normals at
both corner points p; and p,. Consequently, the de-
tection of p;ps is harder than the detection of p3py.
We will see that edges incorrectly joining a corner
sample with other samples can be eliminated with a
topological criterion in a postprocessing.

3 Algorithm

The algorithms of [2, 5, 6, 10] works on the assump-
tion that the sample is sufficiently dense. Precisely,
all these algorithms require the following condition.

CONDITION (S): Any point on the sampled curve
has a sample point within a distance that is € < 1
times smaller than its distance from the medial axis.

As pointed out earlier, this sampling condition
cannot be satisfied for nonsmooth curves since it
would require the curve to be sampled with infinite
density near the corners. So, we require a modified
sampling condition.

Let g denote a corner point on the curve I'. At each
smooth point p € T there are two maximal circles C
and C; that touches T" tangentially at p and at least
one other point, or they reach infinity. Near g, one of
these circles gets smaller and smaller till it vanishes
at g. This phenomenon does not happen if there is
no corner. The sampling condition (S), in a sense,
depends on both of these circles and thus require
infinite density near g. Instead, if we modify the
sampling condition in the neighborhood of corners
as (S') below we do not face this problem.

CoNDITION (S'): Any point p on T’ must have a
sample point within € < 1 times the radius of the
larger circle between Cy and Cs.

The main observation here is that the bigger of the
two circles does not depend on the portion of the me-
dial axis going through g. The rationale behind the
conditions that we use for selecting output edges can
be explained by assuming (S’). Several experiments
with different examples support these explanations.

Our algorithm is based on nearest neighbors that
were used by Dey and Kumar in [5] for smooth
curve reconstructions. Their algorithm computes
two edges emanating from a sample, one connects
it to the nearest neighbor, and the other connects
it to the nearest neighbor in the opposite direction.



Figure 4: One of the two touching circles, C,Cs, is big near the corner g. Right picture shows elongated

Voronoi cells on one side near the corner.

So, if ¢ is the nearest neighbor of p, then pq is com-
puted and the other edge incident with p connects to
s where s is the nearest neighbor with ps making an
angle more than 90° with pg. See the right picture
in Figure 4. The motivation for this choice of edges
comes from the fact that the two edges incident with
p should make a large angle close to 180° and approx-
imate the tangential direction at p to the sampled
curve. It can be shown that the edges connecting
nearest neighbors approximate the tangential direc-
tion at the sample points if the sampling satisfies
condition (S). Unfortunately, this assertion does not
hold for curves with corners. First of all, tangents
are not defined at corners, and secondly condition
(S) cannot be satisfied in practice near the corners.
The most crucial observation we make is that, it
is still possible to estimate the tangents, or equiv-
alently normal directions at the sample points under
the modified sampling condition (S').

Estimating normals

Amenta and Bern [1] observed that a Voronoi cell V,,
for a sample p is elongated along the normal direc-
tion if the sampling condition (S) is satisfied. This
important observation led to estimating the normals
at samples for reconstructing surfaces. They in-
troduced the concept of “poles” which are farthest
Voronoi vertices from the samples in their respec-
tive Voronoi cells. If a Voronoi cell is bounded, then
the line through the sample and the pole estimates
the normal up to orientation. Otherwise, the nor-
mal is estimated to be the average of the directions
given by the two unbounded rays. To see the rea-
son on curves, consider the two tangential circles C}

and Cs at a sample p that have centers on the me-
dial axis. These circles are large compared to the
edges pg and ps that are incident with p in the cor-
rect reconstruction. This follows from the sampling
condition (S). The two circles C; and Cy are empty
of samples which implies that their centers lie in the
Voronoi cell V,,. Thus V},, must lie within the narrow
slab formed by the lines containing the dual Voronoi
edges of pg and ps and contain the centers of C; and
C3. This forces V}, to be elongated on both sides of
the curve at p along the normal direction. In the
nonsmooth case, at least one of C; and C> is large
compared to the edges pg and ps under the modified
sampling condition (S’). This implies that V}, is still
elongated along the normal direction at p, but only
on one side. See Figure 4. Thus, the normals can
still be estimated using poles, or unbounded Voronoi
edges. This is the first step of our algorithm.

3.1 Nearest Neighbors

We can follow the nearest neighbor strategy of [5] af-
ter estimating the normals at the sample points. For
this, each sample point p can connect to the nearest
neighbors on each side of the estimated normal line
vp through p. But, one needs to be careful so that
these edges do not make large angles with v,.

Angle condition

Figure 5 shows an example where the nearest neigh-
bor captures a wrong edge pq with its normal making
an angle close to 90° with the estimated normal at
p (the normal is indicated with a small stick at the
samples). To rectify this problem, we introduce the



angle condition.

ANGLE CONDITION: An edge pq qualifies for the
nearest neighbor test only if its dual Voronoi edge
makes an angle less than a user defined parameter o
with the estimated normal at p.

Figure 5: A sample (left), reconstruction without an-
gle condition (middle) and reconstruction with angle
condition (right). Small sticks at the samples indi-
cate estimated normal direction.

Typically, we have observed that an angle between
35° and 40° is a good choice for o in most cases.
For example, setting a maximum angle bound in this
range disallows wrong edges in the output shown in
Figure 5. There is another good effect of this an-
gle condition. In some cases, it helps detecting the
boundary points of an open curve. The samples r
and s in Figure 5 are detected as boundary points
due to this reason.

Ratio condition

The angle condition alone is not sufficient to discard
wrong edges. The trouble is again caused by the
nonsmoothness at corner points. Consider the ex-
ample in Figure 6. The points p and r should not
be joined by an edge. But, the dual Voronoi edge of
pr makes small angle with the estimated normal at
p as does the correct edge pq. The nearest neighbor
algorithm will pick up the edge pr over pq since r is
closer to p than ¢q. This anomaly results from the
fact that we are using the sampling condition (S') in
the neighborhood of the corner. If instead we used
the sampling condition (S) , then we would not have
this problem, but the samples would have to become
infinitely dense in the neighborhood of the corner.
To fix this problem we observe that the ratio of
the lengths of the dual Voronoi edge and the edge pq
is much larger than the same ratio for the edge pr.
The intuitive explanation for this fact is that there

Figure 6: A sample with the Voronoi diagram(left),
reconstruction with angle condition but not with ra-
tio condition (middle), reconstruction with both an-
gle and ratio condition (right).

is a much larger empty circle on the right side of the
curve near p than the empty circle to the right of the
curve near r. The sampling condition (S') ensures
that the edge length of pq is small compared to the
empty circle to the right of I' at p, but the same
condition does not hold for r. Taking the cue from
this observation we require that an edge satisfy the
following ratio condition.

RaATio CONDITION: The ratio of the length of the
dual Voronoi edge to the length of the edge is more
than a preset threshold p.

We observe that the range 1.7 — 2.0 works best for
p in most cases.

3.2 Topological condition

The nearest neighbor algorithm chooses at most two
edges per sample point. Nonetheless, some sample
may acquire more than two edges due to some other
sample points. For example, the point p in Figure
7 has been connected with three edges, two of them
being correct, and one is not. The edge pr is ac-
quired incorrectly by the point 7. The corner sample
r behaves as a corner point and the estimated nor-
mal at r is incorrect. But, p being a regular sample
has its two computed neighbors much closer than r.
Thus, assuming that the input is sampled from a
1-manifold, i.e., curves without branchings, we can



Figure 7: Reconstruction with angle and ratio conditions but not with the topology condition (left); recon-
struction with angle, ratio and topology conditions (right).
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Figure 8: From left to right, reconstruction with o = 1°,10°,30° and 80°.

delete the longest edge pr incident with p. In gen-
eral, we keep only the smallest two edges incident
with a sample and delete others. Figure 7 shows an
example before and after this pruning. We name our
algorithm GATHAN, the sanskrit for “construction”.
(See Figure 9.)

4 QObservations

We experimented with different values of the two pa-
rameters, p and a. If we are strict on the angle
condition, many correct edges may not qualify for
output. On the other hand, if we increase the value
of a, the algorithm allows edges whose dual Voronoi
edges make larger angle with the estimated normal
at the respective sample points. The nearest neigh-
bor algorithm picks up wrong edges connecting two
regular samples on the two legs from a corner point.
We experimented with several examples, and found
that the range 35° —40° is the most suitable for most
of the input. Figure 8 shows the effect of varying «
over a range 0° — 90°.

We also experimented with the parameter p. If the
value of p is small, the algorithm allows edges con-
necting regular samples on two different legs. These

edges may not be eliminated solely by the angle con-
dition. Figure 10 shows such an example. Increasing
the value of p eliminates these faulty edges, but that
may affect some of the correct edges connecting reg-
ular points. So, again we need to strike a balance.
Experiments with several examples suggest that a
value between 1.7 and 2.0 is appropriate for p. See
Figure 10 for an illustration.

~*

Figure 10: From left to right reconstruction with p =
1,2 and p=3.

One good feature of the algorithm is that, in some
cases, it connects samples correctly even at places
where the sampling is relatively sparse. Figure 6
shows such an example. The edge uv is computed
correctly though sampling is not very dense. The



GATHAN(P, a, p)
Compute the Voronoi diagram Vp
for each p € P do

compute the pole and the normal line v,

Let E be the set of Voronoi edges satisfying the following conditions:

A. Each e € E makes an acute angle less than a with v,,.

B. If px is the dual Delaunay edge and £ is the lenght of e, the ratio £/|pz| is greater than p.
Let T denote the dual of E. Keep only the smallest edges pg € T and ps € T on each side of v,,.

endfor

Delete any edge that is not among the smallest two edges incident with a sample point.

end

Figure 9: GATHAN

reason for this added feature is that the algorithm is
based on a sampling which may be sparse if one side
of the curve in the respective region does not have
medial axis nearby.

The algorithm is capable of detecting boundaries.
Figure 11 shows an example where the boundary has
been detected correctly. However, some cases may
arise where the requirements between the sharp cor-
ners and the boundaries may conflict. Consider the
example in the right picture of Figure 11. The edge
between the points p and ¢ may be added to detect a
sharp corner at p, or it might be dropped to detect p
as a boundary point. The algorithm decides in favor
of the first in most cases.

Figure 11: Boundary samples are detected in the left
picture; in the right picture there is an ambiguity
as to whether p is a boundary sample or a corner
sample.

5 Conclusions and future work

We presented a new algorithm for curve reconstruc-
tion that can handle smooth and nonsmooth curves
with multiple components. The algorithm can de-

tect boundary points as well in many cases. No such
algorithm is known till date. We experimented with
several inputs and our algorithm performed better
than the existing algorithms near sharp corners in all
cases. Two more examples are shown in Appendix A.
The algorithm is based on several new observations
some of which are fundamental and may throw light
on the difficult problem of reconstructing nonsmooth
surfaces from samples.

All steps in our algorithm can be extended to three
dimensions. The “poles” can be computed for each
Voronoi cell and the angle condition can be checked
with the dual Voronoi edges of the triangles and the
estimated normals at the sample points. The ratio
condition translates to the ratio of the length of the
dual Voronoi edge to the radius of the circumcircle of
the triangles. The topology criterion would require
that each edge has no more than two triangles and
each vertex is incident to a set of triangles that real-
izes a disk or a half-disk. Currently, efforts are being
made to develop the software for nonsmooth surface
reconstruction in three dimensions.
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Appendix A.

Figure 12: Crust algorithm(left), ours (right).

Figure 13: Crust algorithm (left), ours (right).



