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Abstract

Let A be a family of convex sets in R?. A line transversal to A is a line
which intersects every member of A. More generally, a k-tranversal to A
is an affine subspace of dimension k£ which intersects every member of A.
This paper discusses recent progress in geometric transversal theory, in-
cluding necessary and sufficient conditions, Helly-type theorems, piercing
or Gallai numbers, topological and combinatorial structure, and induced
orderings.

1 Introduction

A k-transversal to a family of convex sets in R? is an affine subspace of dimension
k, called a k-flat, (such as a point, line, plane or hyperplane) which intersects
every member of the family. The study of k-transversals dates back to papers by
Vincensini in 1935 [63] and Santalé in 1940 [59] on line transversals in the plane
but really developed only in the late 1950’s and early 1960’s with contributions
by Danzer, Debrunner, Griinbaum, Hadwiger, Klee and Valentine [14]. There
was incremental progress since then, most notably Eckhoff’s thesis in 1969 [18]
and work by Katchalski and Lewis in the early eighties [40, 42, 43, 50]. In the
last ten years there has been an explosion of results, including necessary and
sufficient conditions for hyperplane transversals, Helly-type theorems for line
transversals to translates, piercing or Gallai numbers for hyperplane transver-
sals, bounds on the complexity of the space of transversals and the number
of orders induced by transversals, and algorithms for finding transversals. This
paper will cover some of the major recent results in geometric transversal theory
and describe some of the open problems suggested by these results.

2 The Space of k-Transversals

Let A be a family of convex sets in R¢. The set of k-transversals to A forms
a topological space, denoted T;¢(A), lying in the “affine Grassmannian” of all
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Figure 1: A family A of convex sets and its transversal space 7,2(A).

k-flats in RY. This space can be easily visualized for line transversals in the
plane by mapping each non-vertical line transversal {(z,y) : y = mz + b} to the
point (m,b) in dual space. (See Figure 1.)

As the example in Figure 1 shows, the space of transversals is not necessarily
connected, even for line transversals in the plane. The space of line transversals
to a family of n convex sets in the plane can have as many as 2n — 2 connected
components [24, 47].

Let A be a family of pairwise disjoint convex sets in R?. A directed line
transversal intersects the elements of A in a fixed order. An undirected line
induces a pair of linear orderings on A corresponding to its two possible orienta-
tions. Katchalski [41] studied pairs of linear orderings induced by line transver-
sals and called them geometric permutations.

If two line transversals induce different geometric permutations on 4, then
they must lie in different connected components in the space of line transversals
to A. Thus each connected component is associated with a single geometric per-
mutation of 4. In the plane, the converse is also true. Two lines which induce
the same geometric permutation on a finite family 4 of pairwise disjoint com-
pact convex sets in R? must lie in the same connected component in 7;2(.A) [66].
In R3, this is no longer true. Two lines which induce the same geometric per-
mutation on a family A in R® may lie in different connected components in
T2(A).

The generalization of geometric permutations to k-transversals requires a
generalization of linear orderings to higher dimensions. In the early eighties,
Goodman and Pollack [26] introduced and explored the notion of the order type
of a set of points which is the family of orientations (—1, 0 or +1) of its (d+1)-
tuples. For example, the order type of a set of points in the plane is the family
of left or right turns (or no turn) made by every three points of the set. The



order type of a set of points in R? describes the relative positions of the points in
R? in the same way that a linear ordering of points in R captures their relative
positions in R.

Order types are special cases of acyclic oriented matroids. A rank d+1 acyclic
oriented matroid on a set 4 is a family of orientations of the (d+1)-tuples of A
with the property that the orientations of the (d+1)-tuples of every subset of A of
size d+3 match the orientations of the (d+1)-tuples of some set of d+3 points in
R? [11, p.140]. In other words, an acyclic oriented matroid behaves locally (i.e.,
for subsets of size d+3) like an order type of points in R?. If all the (d+1)-tuples
have non-zero orientation, this property suffices to define an oriented matroid;
otherwise, additional conditions relating the zero and non-zero orientations are
needed. (A rank d+1 oriented matroid which is not acyclic “locally” matches
the orientation of vectors in R¢*t1.) Not every acyclic oriented matroid can be
represented as the order type of some set of points. Those that can are called
realizable. (See [11] for an introduction to oriented matroid theory.)

Let 7 be an oriented k-transversal of a family A of convex sets. For each
a € A, choose a point p, € aN7. Define a rank k + 1 realizable acyclic oriented
matroid on A by setting the orientation of every (k+1)-tuple of A to equal the
orientation in 7 of the corresponding (k+1)-tuple of points of {p,}. Goodman
and Pollack noted that if no k + 1 members of A have a (k—1)-transversal, then
none of the orientations are zero and so this oriented matroid is independent
of the choices of the points p,. Thus if no k + 1 members of A have a (k—1)-
transversal, then 7 induces an oriented matroid on A.

A family A of convex sets is k-separated if no k + 2 members of A have a
k-transversal. Note that a family of convex sets is 0-separated if and only if the
sets are pairwise disjoint. An oriented k-transversal induces a unique rank k+ 1
oriented matroid on a (k—1)-separated family of convex sets.

Just as a line induces a pair of linear orderings on a family of pairwise disjoint
sets, a k-transversals induces a pair of oriented matroids on a (k—1)-separated
family corresponding to its two orientations. Unfortunately, the term geometric
permutation is misleading when applied to pairs of oriented matroids which do
not resemble permutations in any way.

Two k-transversals which induce different pairs of oriented matroids on A
must lie in different connected components of 7;¢(A). The converse is not true in
general but does hold for hyperplane transversals [66]. Just as line transversals
in R? which induce the same geometric permutation lie in the same connected
component, two (d — 1)-transversals which induce the same pair of oriented
matroids on a finite (d—2)-separated family A of compact convex sets in R? lie
in the same connected component of T, (A).

3 Necessary and Sufficient Conditions

A 0-transversal to a family A of convex sets is simply a point common to all the
sets. The well-known Helly’s Theorem can be reformulated as necessary and
sufficient conditions for the existence of point transversals.



Theorem 1 Helly’s Theorem [36]. Let A be a finite family of at least d + 1
conver sets in RY. Family A has a point transversal (a point in common) if and
only if every d+ 1 members of A have a point transversal (a point in common.)

Helly’s Theorem motivated many other theorems of a similar form: A family
of objects has property P if and only if every m members of the family have
property P. These theorems are sometimes called Helly-type theorems.
Vincensini’s 1935 paper [63] gave a Helly-type theorem for the existence of
line transversals in the plane, a theorem which unfortunately was false. In 1940
Santal6 [59] showed that for any m there is a family A of convex sets in R? such
that every m members of A have a line transversal but .4 has no line transversal.
Necessary and sufficient conditions were given by Santalé and others for special
families such as parallelotopes with edges parallel to the coordinate axes [59],
but it was not until 1957 that Hadwiger gave the first general conditions for the
existence of line transversals in the plane. Hadwiger’s Transversal Theorem is:

Theorem 2 Hadwiger’s Transversal Theorem [33]. Let A be a finite fam-
ily of pairwise disjoint convex sets in R2. Family A has a line transversal if and
only if there exists a linear ordering of A such that every three members of A
are intersected by a directed line in the given order.

As was noted in Section 2, the space of line transversals to a family A of con-
vex sets in the plane can have many different connected components. To some
extent, this explains why there is no Helly-type theorem for line transversals
in the plane. The transversal space is simply too complicated. However, every
connected component in the space of line transversals of 4 is associated with
a unique pair of orderings of .A. By prespecifying a linear ordering, Theorem 2
focuses on the existence of a single connected component. Interestingly enough,
Theorem 2 does not guarantee that some directed line transversal intersects .4
in the given linear ordering. Every four members of .4 must be intersected by a
directed line in the given order to ensure that result.

Let A be a (d—1)-separated family of compact convex sets in R?. Every
connected component in the space of hyperplane transversals of A is associated
with a unique pair of oriented matroids on A. By prespecifying an oriented
matroid, one can focus on the existence of a single connected component of
T2, (A). Using order types (realizable acyclic oriented matroids) Goodman
and Pollack in 1988 generalized Hadwiger’s Transversal Theorem to hyperplane
transversals. Their proof only uses local properties of order types and so applies
equally well to acyclic oriented matroids as is stated here.

Theorem 3 [27]. Let A be a finite (d—2)-separated family of convex sets in
R?. Family A has a hyperplane transversal if and only if there exists a rank d+1
acyclic oriented matroid of A such that every d+1 members of A are intersected
by an oriented hyperplane consistently with that oriented matroid.

An oriented hyperplane h intersects a family B C A consistently with an oriented
matroid M on A if the oriented matroid M’ induced by h on B is a submatroid



of M, i.e., the orientation of every (d+1)-tuple in M’ equals the orientation of
the corresponding (d+1)-tuple in M. Theorem 3 does not guarantee that .4 has
an oriented transversal which induces the given oriented matroid on 4.

The condition that A4 is (d—2)-separated generalizes the pairwise disjointness
condition in Hadwiger’s original theorem. In 1989, Wenger [65] removed this
condition for line transverals in R? and subsequently Pollack and Wenger [57] re-
moved the condition for hyperplane transversals in R¢. Their theorem also gen-
eralizes conditions by Katchalski [40] for the existence of hyperplane transver-
sals based on the existence of line transversals to every three sets and applies
to families of connected sets, not just convex ones.

Theorem 4 [57]. Let A be a finite family of connected sets in R?. Family A
has a hyperplane transversal if and only if for some k, 0 < k < d, there exists a
rank k+1 realizable acyclic oriented matroid of A such that every k+2 members
of A are intersected by an oriented k-flat consistently with that oriented matroid.

Since A may not be (k—1)-separated, an oriented k-flat 7 which intersects B C A
may not induce a unique oriented matroid on B. Nevertheless, we say that a
k-flat 7 intersects B C A consistently with an oriented matroid M on A if for
every b € B there is a point py € bN 7 such that the orientations of (k+1)-tuples
in {py} match the orientations of corresponding (k+1)-tuple of M.

The proof by Hadwiger of Theorem 2 and the generalization by Goodman
and Pollack entails shrinking the convex sets in A until some d+1 sets have only
a single hyperplane transversal h consistent with the given oriented matroid.
Those d+ 1 sets pin the hyperplane h and one can show that h intersects every
other convex set in A.

The proof by Pollack and Wenger of Theorem 4 is quite different. Each rank
k+1 realizable acyclic oriented matroid corresponds to the family of orientations
of some set P of points in R¥. Pollack and Wenger construct an antipodal
mapping from the set of unit vectors in R¢ to R*¥ based on the family of convex
sets A and the point set P. By the Borsuk-Ulam theorem, one of these vectors
maps to zero. The proof concludes by showing that this vector is the normal of
a hyperplane transversal of A.

The proof by Pollack and Wenger involves explicitly representing the oriented
matroid by a set of points P C R*. Thus the oriented matroids in Theorem 4
must be realizable. Anderson and Wenger removed this realizability condition
to give the theorem in its most general form:

Theorem 5 [9]. Let A be a finite family of connected sets in R?. Family A
has a hyperplane transversal if and only if for some k, 0 < k < d, there exists
a rank k+1 acyclic oriented matroid of A such that every k + 2 members of A
are intersected by an oriented k-flat consistently with that oriented matroid.

A rank k+1 oriented matroid can be represented by an arrangement of ori-
ented pseudospheres (topological spheres whose intersections are topological
spheres of the proper dimension) in S¥, the k-sphere [11, Chapter 5]. Based



on the family of convex sets .4, Anderson and Wenger construct a lower semi-
continuous antipodal mapping from the set of unit vectors S4~1 C R? to faces
in this pseudosphere representation in S¥. They prove that some unit vector
must map to the null face, (), and that this vector is the normal of a hyperplane
transversal of A.

Hadwiger’s Transversal Theorem and its generalizations give conditions for
the existence of hyperplane transversals ((d—1)-transversals) in R?. What about
k-transversals for values of k other than d — 1?7 Two lines may induce the same
pair of orderings on a family A in R® but lie in different connected components
in 73(A). Thus specifying a given ordering may not isolate a single connected
component in 72(A). Not suprisingly, Hadwiger’s Transversal Theorem does
not generalize to line transversals in R®. Aronov, Goodman, Pollack and Wenger
showed that for any number m there exists a family A of convex sets in R and a
linear ordering on A such that every m convex sets are met by a line consistently
with that linear ordering but A has no line transversal [29].

Problem 1. Give necessary and sufficient conditions for the existence of line
transversals to a family of convex sets in R® (or more generally k-transversals
to a family of convex sets in R? where 0 <k <d—1.)

4 Helly-Type Transversal Theorems

Santal6 [59] showed that there is no Helly-type theorem for line transversals
to families of convex sets in the plane. Hadwiger and Debrunner [35] proved
that there were no such theorems even if the convex sets were pairwise disjoint
and Lewis [50] constructed counter-examples for families of pairwise disjoint line
segments.

However, for special types of families there are Helly-type theorems for line
transversals. In a 1957 paper, Danzer [13] proved that if 4 was a family of
pairwise disjoint congruent circles and every five members of A have a line
transversal then 4 has a line transversal. A year later Griinbaum [32] gave a
similar theorem for pairwise disjoint congruent squares and conjectured that the
theorem was true for any family of pairwise disjoint translates of a convex set.

Starting around 1980, Katchalski worked on Griinbaum’s conjecture, pub-
lishing a number of papers on line transversals [40, 42, 43]. His efforts resulted
in a 1986 paper [41] in which he proved a weak form of Griinbaum’s conjecture
showing that if every 128 members of a family of pairwise disjoint translates had
a line transversal then the family had a line transversal. Finally, in 1988, thirty
years after Griinbaum published his conjecture, Tverberg presented a proof.

Theorem 6 [62]. Let A be a finite family of pairwise disjoint translates of
a convex set in R?. Family A has a line transversal if and only if every five
members of A have a line transversal.

Tverberg first proved the conjecture for families of six pairwise disjoint trans-
lates. These six translates can be characterized by six points in the plane rep-
resenting the six directions of translation. A careful analysis of the different



orders in which lines intersect five of the six translates and of different config-
urations of six points in the plane proves the conjecture for families of size six.
Larger families of more than six convex sets can be transformed by shrinking
into families where some subset of five translates has a unique line transversal.
Since Griinbaum’s conjecture is established for six translates, this unique line
transversal must meet every other translate and thus must be a line transversal
for the entire family.

Katchalski’s proof of a weak form of Theorem 6 is quite different. A family
of n pairwise disjoint convex sets in R? can have up to 2n —2 different geometric
permutations (Theorem 20.) However, Katchalski, Lewis and Liu [44] proved
that a family A of pairwise disjoint translates can have at most eight geometric
permutations, independent of the size of the family. They later reduced the
constant eight to three [45, 46]. In addition, any two of these geometric per-
mutations must agree on all but five of their elements. These conditions on
geometric permutations can be used to construct an ordering of A from the
line transversals of subsets of A of size 128 such that every three members of
A are intersected by a directed line in the given order. Applying Hadwiger’s
Transversal Theorem, Theorem 2, gives the desired result.

As discussed in Section 2, each geometric permutation of A corresponds
to a single connected component in 7;2(A). Thus, Katchalski, Lewis and Liu
implicitly proved that 7;2(.A) has at most three connected components if A is
a family of pairwise disjoint translates. This partly explains why there is a
Helly-type theorem for line transversals to pairwise disjoint translates.

A convex set is p-stubby, p > 1, if it is contained in a ball of radius p
and contains a ball of radius one. Katchalski’s proof of his Helly-type theorem
generalizes to finite families A of pairwise disjoint p-stubby sets. For each p
there is a constant c, such that a finite family A of pairwise disjoint p-stubby
convex sets has a line transversal if and only if every ¢, members of A have a
line transversal. Any family of pairwise disjoint translates can be mapped by
affine transformation to a 2-stubby family [38]. Thus the Helly-type theorem
for line transversals of p-stubby sets leads directly to a Helly-type theorem for
line transversals of translates.

Recently, Robert [58] replaced the pairwise disjointness condition in Theo-
rem 6 by a condition that the intersection of any j translates is empty. For every
J there is a constant c; such that if A is a finite family of convex translates and
the intersection of every j translates in 4 is empty, then .4 has a line transversal
if and only if every c; translates have a line transversal.

Under certain conditions, Helly-type theorems can be used to derive linear
expected time algorithms for related algorithmic problems. In [61], Sharir and
Welzl described a technique called Generalized Linear Programming which they
applied to many problems related to convex programming. In particular, they
gave an algorithm for finding a point in the intersection of n half-spaces in R¢
and proved that their algorithm ran in O(d®2%n) expected time. This bound is
linear in the number of half-spaces, n, although exponential in d. (Matousek,

Sharir and Welzl [53] subsequently proved a subexponential O(nde*Vn(n+1))



bound on the expected running time of this algorithm.) Amenta [7] showed that
Generalized Linear Programming could be applied to solve in linear expected
time many other algorithmic problems related to Helly-type theorems including
the problem of finding a line transversal for translates. (See also [15, 16, 17, 25,
54, 55] for deterministic algorithms which solve specific Helly-type problems in
linear time.)

Katchalski conjectured that Theorem 6 generalizes to families A of translates
in higher dimensions. If this were true, the number of connected components
of T3(A) and the number of oriented matroids on A induced by oriented k-
transversals is probably bounded by a fixed constant depending only on &k and
d.

Problem 2. Do there exist numbers m, m' and m" such that for any family A
of pairwise disjoint translates of a convex set in R3:

o A has a line transversal if and only if every m members of A have a line
transversal;

e the number of geometric permutations of A is at most m';
e the number of connected components of T3(A) is at most m" ?

(More generally, do there exist similar bounds for k-transversals to (k—1)-
separated families of translates in R% ?)

5 Piercing Numbers

In 1957, Hadwiger and Debrunner gave the following variation of Helly’s Theo-
rem:

Theorem 7 [34]. For everyp > q > d+ 1 where p(d—1) < (¢—1)d: If A is
a finite family of at least p convex sets in R? and out of every p members of A
some q have a point in common, then some set of p — q + 1 points intersects
every member of A.

The value of p — ¢ 4+ 1 is tight and cannot be reduced. The smallest number of
points required to intersect every member of A is called the piercing number or
sometimes the Gallai number of A after a question of T. Gallai on the smallest
number of needles required to pierce all members of any family of pairwise
intersecting circular disks in R2.

Without the condition p(d — 1) < (¢ — 1)d it is not necessarily true (and
sometimes false) that some set of p—g+1 points intersects every member of A but
Hadwiger and Debrunner conjectured that for every p and ¢ one could replace
p—q+1 by some constant ¢ for which the theorem would hold. In the following
ten years, this was shown for families of axes parallel parallelotopes [35] and for
families of homothets [64] but it was not until 1992 that Alon and Kleitman
presented a proof for the general case.



Theorem 8 [6]. For every p > q > d+ 1, there exists a positive integer ¢, 4.4
such that: If A is a finite family of at least p conver sets in R? and out of every
p members of A some g have a point in common, then some set of c, 4,4 points
intersects every member of A.

Let A be a family of n > p convex sets in R? such that out of every p members
of A some ¢ have a point in common. Alon and Kleitman use Katchalski
and Liu’s fractional version of Helly’s Theorem [48] to show that some point
intersects at least fn members of A where g is a fixed constant depending
solely on p, g and d. (See also [4, 20, 39] for sharp quantitative proofs.) They
then apply duality in linear programming to construct a family Y of points such
that every member of A intersects at least 3|Y| elements of Y. Finally, using
weak e-nets for convex hulls they find a set X whose size is a fixed constant
depending solely on 8 and d such that the convex hull of any subset of Y of size
B|Y| contains some member of X. Since every convex set in A contains at least
B|Y| elements of Y, every convex set in A intersects X. (See [49] for a new,
purely combinatorial proof by the same authors.)

Although Helly’s theorem does not generalize to hyperplane transversals,
Alon and Kalai showed that Theorem 8 does.

Theorem 9 [5]. For every p > q > d+ 1, there exists a positive integer ¢p 4.4
such that: If A is a finite family of at least p convex sets in R? and out of every
p members of A some g have a hyperplane transversal, then some set of ¢p q.4
hyperplanes intersects every member of A.

The proof of Theorem 9 follows the proof of Theorem 8. Let A be a family
of n > p convex sets in R? such that out of every p members of A some ¢ have a
hyperplane transversal. Alon and Kalai show that some hyperplane intersects at
least fn members of 4 and for some family Y of hyperplanes every member of
A intersects at least 8|Y| elements of Y. They construct a S-cutting for YV, i.e.,
a set of d-dimensional simplices partitioning R? whose size is a fixed constant
depending solely on 8 and d such that the interior of every simplex intersects
fewer than (|Y| members of Y. (See [52].) Every member of A intersects at
least B|Y'| members of Y so every member of A intersects at least one simplex
facet. If X is the set of hyperplanes containing the simplex facets, then every
member of A intersects X.

Eckhoff gave almost exact minimal values for ¢, p 2.

Theorem 10 [19]. Let A be a finite family of convez sets in R>. If every four
members of A have a line transversal, then there is a set of two lines which
intersects every member of A.

Theorem 11 [21]. Let A be a finite family of convex sets in R. If every three
members of A have a line transversal, then there is a set of four lines which
intersects every member of A.

Eckhoff conjectured, although he could not prove, that the number four in the
conclusion of Theorem 11 could be reduced to three.



Alon and Kalai conjectured that Theorem 9 could be generalized to k-
transversals in R?. A first step would be to show that the existence of a
k-transversal to every r members of a family of A implies the existence of a
k-tranversal to r + 1 members of A. They posed the following problems.
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Problem 3.

e For r > 5, do there exist integers n, such that: If A is a finite family
of at least n, convex sets in R® and every r members of A have a line
transversal, then some r+ 1 members of A have a line transversal? (More
generally, if A is in R? and every r members of A have a k-transveral,
does some set of r + 1 members of A have a k-transversal?)

o For p > q > 5, do there exist integers c,, such that: If A is a finite
family of at least p convex sets in R® and out of every p members of A
some q have a line transversal, then some set of c, 4 lines intersects every
member of A? (More generally, if A is in R? and out of every p members
of A some q have a k-transveral, does some set of cp q.x,4 k-flats intersects
every member of A?)

6 Combinatorial Complexity

Let A be a family of convex sets in R¢. Much of the early work on transversals
was motivated by Helly’s theorem and directed toward giving conditions for the
existence of a k-transversal of A. More recently, researchers have studied the
structure of Ed(A), the space of all k-transversals of 4. Computer scientists,
in particular, have been interested in explicitly constructing representations of
this set.

The boundary of 7,%(A) consists of k-transversals which are tangent to one
or more members of A. A face of this boundary is a maximally connected re-
gion of k-flats which are tangent to the same members of 4. The combinatorial
complezity of T(A) is the number of such faces. A major problem has been to
bound this combinatorial complexity for various families of convex sets, partic-
ularly convex sets bounded by algebraic surfaces, and thus bound the size of an
explicit representation of T;¢(A).

Most progress has been made in bounding the complexity of 72 ,(A), the
space of hyperplane transversals to A. Let D(h) be the mapping which takes
each “non-vertical” hyperplane

h={(z1,...,24) 1 xg = 0121 + O2%2 + - -+ 041241 + 04}
to the point (o1,...,04) in dual space. The set of non-vertical hyperplane
transversals to A is represented by a set of points in this dual space. (See
Figure 1.)

To construct this set in dual space, consider a single compact convex set
a € A. The non-vertical hyperplanes tangent to set a map to two unbounded
surfaces in the dual space. The hyperplanes intersecting set a map to the points
between these two surfaces. (See Figure 2.)

More precisely, define

¢t (o1,...,04-1) = max{oq:D (o1,...,04-1,04) Na# 0} and

¢, (01,...,04-1) = min{og:D *o1,...,04-1,04) Na # B}.

11
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Figure 2: A convex set and its transversals.

For fixed {o1,...,04-1} the set
{D_l(ala' . Jadflao-d) : ¢;z|—(017' e JO-d*l) <04 < ¢;(017' . Jadfl)}

is a set of parallel hyperplanes which intersect a.

For each a € A, the graphs of functions ¢} and ¢, define two surfaces in
R?. The “corridor” of points between those surfaces represents the set of hy-
perplanes intersecting a. (If a is not closed, the boundaries of the corridors may
not represent hyperplanes intersecting a. If a is not bounded, the functions ¢
and ¢, may not be defined at all points.) The intersection of all these corri-
dors represents the set of non-vertical hyperplane transversals to A. Since each
corridor is bounded by a “top” and “bottom” surface, the points correspond-
ing to hyperplane transversals are the points below all the “top” surfaces and
above all the “bottom” surfaces. Formally, the space of non-vertical hyperplane
transversals to a family A of compact convex sets is

{D_l(ala .- '7Ud—130d) : géiﬂd)j(o'l: s 3Gd—1) Z 04 2 Iglea‘j((;b;(o'la .- '7Ud—1)}'

The function minge 4 ¢ (01,...,04-1) is called the lower envelope of the
functions {¢}}. Similarly, max,ea ¢, (61,...,04—1) is the upper envelope of
the functions {¢, }. A representation of the space of non-vertical hyperplane
transversals of A can be constructed by computing the lower and upper en-
velopes of {¢F} and {¢, }, respectively, and then intersecting these envelopes.

Upper and lower envelopes have been studied extensively over the past fif-
teen years, particularly by Micha Sharir and his students and colleagues who
made great progress in bounding their combinatorial complexity. This work
led to asymptotically tight bounds in 1989 by Pach and Sharir on the combi-
natorial complexity of upper and lower envelopes of piecewise linear functions.
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Edelsbrunner, Guibas and Sharir applied these bounds to the combinatorial
complexity of the space of hyperplane transversals to a family of convex poly-
topes:

Theorem 12 [56, 23]. Let A be a family of convex polytopes in R? with a total

of ny faces. The combinatorial complexity of the space of hyperplane transversals
to A is O(n‘;_la(n)).

a(n) is the slow growing inverse of the Ackermann function.

Let A\s(n) be the maximum length of an (n, s) Davenport-Schinzel sequence.
(See [60] for the definition and discussion of Davenport-Schinzel sequences and
Ackermann’s function and their relationship to upper and lower envelopes.)
As(n) is almost but not quite linear in n and is O(na(n)o(a(”)(s_zw)). Atallah
and Bajaj bounded the complexity of line transversals in the plane in terms of
As(n).

Theorem 13 [10]. Let A be a family of n compact connected sets in R? such
that any two members of A have at most s common supporting lines. The
combinatorial complexity of the space of line transversals to A is O(As(n)).

In R®, Agarwal, Schwarzkopf and Sharir bounded the complexity of the space
of plane transversals to convex sets bounded by algebraic surfaces with degree
less than or equal to some fixed constant.

Theorem 14 [3]. Let A be a family of convex sets in R® bounded by algebraic
surfaces of bounded degree. The combinatorial complexity of the space of plane
transversals to A is O(n?*), for any € > 0.

Of course, the hidden constant in the O-notation depends upon € and the max-
imum degree of the algebraic surfaces.

For hyperplane transversals to families of balls, the known bounds on the
combinatorial complexity is drastically lower.

Theorem 15 [37]. Let A be a family of n (d—1)-balls in R%. The combinatorial
complexity of the space of hyperplane transversals to A is O(n!4/21).

It is not known if this bound is asymptotically tight.

The proof by Houle et al. is based on the fact that a convex polytope in
R4*! which is the intersection of n half-spaces has O(n/%/21) faces. Represent
each hyperplane

h={(z1,...,2q) : 0121 + 0232 + - -- + 0qxq + 0g41 = 0}
uniquely by the (d+1)-tuple (o1,...,0441) where o7 + --- + 02 = 1. (Note
this representation is different from the previous one.) The hyperplanes which

intersect a ball centered at (e1,ca,...,cq) with radius r are:

{(01,-+-,0411) 7> (0161 + -+ 0qcq +0qy1) > —r and o5 +---+ 05 = 1.}
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Thus each ball defines two linear inequalities or, equivalently, two half-spaces.
The hyperplane transversals for n balls is the intersection of 2n half-spaces, two
for each ball, and the quadric surface o7 + - - - + 05 = 1. The intersection of the
2n half-spaces has O(n/%/?1) faces and the intersection with the quadric surface
has the same complexity.

Finally, some bounds are known for the space of line transversals in R3. A
series of papers led to nearly tight bounds by Agarwal on the complexity of line
transversals to convex polytopes in R3:

Theorem 16 [1]. Let A be a family of convex polytopes in R® with a total of
ny faces. The combinatorial complexity of the space of line transversals to A is
O(n}logn).

A very recent result by Agarwal, Aronov and Sharir bounds the complexity
of the space of line transversals to balls in R3.

Theorem 17 [2]. Let A be a family of n balls in R®. The combinatorial com-
plexity of the space of line transversals to A is O(n3t¢), for any e > 0.

In higher dimensions, there are no published tight or nearly tight bounds on
the combinatorial complexity of the space of transversals.

Problem 4.

o What is the combinatorial complexity of the space of k-transversals to a
family of convex polytopes in R¢ ford >4 andk <d—1?

o What is the combinatorial complexity of the space of line transversals to
a family of convex sets bounded by algebraic surfaces of bounded degree
in R® or the space of k-transversals in R? for d > 42 (This is not even
known for hyperplane transversals when d > 4.)

Most of the above results bound the complexity of the space of transversals
in terms of the complexity of the underlying objects, either the total number
of polytope faces or the maximum degree of the algebraic curves bounding the
convex sets. This is because even two convex sets in the plane could have an
arbitrary number of common tangent lines, each of which is a face in the space
of line transversals. Thus there is no finite bound which is only in terms of
n on the complexity of the space of k-transversals to an arbitrary family of n
convex sets. However, if A is a family of pairwise disjoint compact convex sets
in the plane, then any two sets in .4 have exactly four common tangent lines.
By Theorem 13, the combinatorial complexity of the space of line transversals
to A is O(A4(n)). In fact, a closer analysis gives the combinatorial complexity
as O(n).

Two sets are pairwise disjoint if they have no point transversal. The proper
generalization for m sets in higher dimensions is that they have no (m —2)-
transversal. In this case, in place of four tangent lines to two convex sets,
Cappell et. al. showed that the space of tangent hyperplanes to m < d compact
strictly convex sets in R? form 2™~ copies of S¢=™, the (d — m)-sphere.
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Theorem 18 [12]. Let A be an (m —2)-separated family of m < d compact
strictly convex sets in R?. The space of hyperplanes simultaneously tangent to
each member of A is homeomorphic to the union of 2™~ copies of S4~™.

The condition of strict convexity can be dropped when m equals d. It is not
known if this condition is required for m less than d.

The proof of Theorem 18 involves shrinking the m convex sets in A4 to m
points. The set of hyperplanes through m < d points in general position is
homeomorphic to S¥~™. After some topological analysis, it follows that the set
of hyperplane tangents which separate A in a particular manner is also home-
omorphic to S¥~™. Since there are 2™~! ways in which hyperplanes separate
A (including not separating .4 at all) the space of hyperplane transversals is
homeomorphic to 2™~ copies of S?~™. Lewis, Von Hohenbalken and Klee [51]
gave a simple, elegant proof for the case m equal to d using Brouwer’s fixed
point theorem.

Theorem 18 implies that the hyperplane tangents to separated families be-
have essentially like topological spheres. By analyzing the complexity of the
boundary of the union of a set of topological spheres, Cappell et. al. gave the
following bound:

Theorem 19 [12]. Let A be a (d—2)-separated family of n compact strictly
convez sets in R*. The combinatorial complexity of the space of hyperplane
transversals to A is O(n71).

The only known lower bounds are for line transversals in the plane in which
case the bound is tight.

No bounds are known on the complexity of the space of k-transversals to a
(k—1)-separated family of convex sets in R?. Anderson noted that the space of
k-flats which are simultaneously tangent to a (k—1)-separated family of k + 1
balls in R? is (S¢~*~1)k+1 the product of k+1 spheres of dimension d—k—1 [8].

Problem 5. Let A be a (k—1)-separated family of compact convez sets in R%.

o What is the topological structure of the space of k-flats simultaneously
tangent to m < k+ 1 members of A?

o What is the combinatorial complezity of the space of k-transversals to A?

7 Counting Geometric Permutations

Let A be a (k—1)-separated family of convex sets in R?. Two k-transversals
which induce different pairs of oriented matroids on A must lie in different
connected components of 4. Thus a lower bound on the number of pairs of
oriented matroids induced by k-transversals of A is also a lower bound on the
number of connected components of A. When k equals d — 1, each connected
component is associated with a unique pair of oriented matroids on A induced
by a hyperplane transversal of A. The number of connected components equals
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the number of such pairs. Given a (k—1)-separated family of convex sets in R?,
how many different pairs of oriented matroids on A are induced by k-transversals
of A?

In 1985, Katchalski, Lewis and Zaks [47] constructed families of n > 4
pairwise disjoint convex sets in R? which have 2n — 2 geometric permutations.
Five years later, Edelsbrunner and Sharir showed that 2n — 2 was the maximum
achievable.

Theorem 20 [24]. Let A be a family of n > 4 pairwise disjoint compact convex
sets in R2. The mazimum number of pairs of linear orderings induced by line
transversals of A is 2n — 2.

Represent the directions in the plane as points on the unit circle. Edelsbrun-
ner and Sharir noted that each directed line transversal can can be translated
to the right until it is tangent to at least one convex set a € A. Label the
direction of that line transversal “a”. This labelling divides the transversal di-
rections into labelled arcs which form a cyclic sequence around the unit circle.
This cyclic sequence has the property that a...b...a...b... is not a subcy-
cle for any a,b € A. These sequences are (n,2) Davenport-Schinzel cycles and
their maximum length is 2n — 2. (See [60, p.7].) Since each geometric permuta-
tion corresponds to one or more arcs, 2n — 2 is also a bound on the number of
geometric permutations.

Any bound on the combinatorial complexity of the space of k-transversals to
A is also a bound on the number of oriented matroids induced by k-transversals
of A. In particular, Theorem 18 implies the following:

Theorem 21 [12]. Let A be a (d—2)-separated family of n convexr sets in
R¢. The mazimum number of oriented matroids induced by oriented hyperplane
transversals of A is O(n?1).

As with Theorem 18, it is not known if this bound is tight.
Finally, Goodman, Pollack and Wenger bounded the number of oriented
matroids induced by k-transversals in R? for general k and d.

Theorem 22 [31]. Let A be a (k—1)-separated family of n compact convez sets
in R where k < d — 2. The mazimum number of oriented matroids induced by
oriented k-transversals of A is O(nk(k+1){d=k)),

The O(n**+1(@=k)) term actually bounds the maximum size of a set of in-
compatible oriented matroids induced by k-transversals to subsets of A and is
probably not tight. Two oriented matroids of two possibly different subsets
A", A" C A are incompatible if the two oriented matroids restricted to their
common elements, A’ N A", are different. Note also that when k equals d — 1,
the O(n*(*+1)(d=k)) term evaluates to O(n{4~D?) which does not match the
O(n?~') term in Theorem 21.

The order in which a directed line [ intersects two sets separated by a hyper-
plane h depends upon the order in which [ intersects the two half-spaces defined

16



by h. For each pair of convex sets a,a’ € A, choose a hyperplane strictly sep-
arating a from a”. A careful analysis of the number of different ways a line
can intersect these (%) hyperplanes gives an O(n?(¢~1) bound on the maximum
number of oriented matroids induced by line transversals of A.

Similarly, a family A of compact convex sets is (k — 1)-separated if and
only if every j sets in A can be strictly separated by a hyperplane from every
other k + 1 — j sets. The oriented matroid (consisting of a single orientation)
induced by an oriented k-transversal on k+1 sets is determined by the manner in
which the k-transversal intersects these separating hyperplanes, i.e., the 2% — 1
hyperplanes which separate every j sets from every other k + 1 — j sets for
every 1 < j < k. In fact, the oriented matroid depends only on the relationship
between the k-transversals and the normal vectors to these hyperplanes. For
each pair of subsets A', A" C A of size j and k + 1 — j, respectively, choose a
hyperplane strictly separating A’ and A”. A careful analysis of the number of
different ways a k-flat can intersect these (2% —1)(,%';) hyperplanes gives the
O (n**+1)(d=k)) hound in Theorem 22.

The only lower bounds known are by Katchalski, Lewis and Liu for line
transversals in R?.

Theorem 23 [46]. There exist families A of n pairwise disjoint conver sets in
R? whose directed line transversals induce Q(n~') linear orderings of A.

Even for line transversals in R?, the asymptotic upper and lower bounds, O(n*)
and Q(n?), do not match.

Problem 6. Give asymptotically tight upper and lower bounds on the mazimum
number of linear orderings induced by line transversals of n pairwise disjoint
convez sets in R® (or more generally give tight bounds on the mazimum number

of oriented matroids induced by k-transversals of (k—1)-separated conver sets
in R?.)

8 Convexity on the Affine Grassmannian

In a 1995 paper entitled “Foundations of a theory of convexity on affine Grass-
mannian manifolds” [28], Goodman and Pollack suggest yet another way of
exploring geometric transversals. Instead of asking for conditions for the exis-
tence of transversals or studying the structure of the space of transversals, they
ask under what conditions is a set F of k-flats the space of transversals to some
family of convex sets? They answer that F is a space of transversals to some
family A of convex sets if and only if every k-flat “surrounded” by F isin F. A
k-flat f is surrounded by F if f € F or there is some j-flat g containing f such
that every (j—1)-flat in g which contains f strictly separates two k-flats of F
lying in g; i.e., f is “trapped” by the elements of F lying in g. The family A of
convex sets need not be finite and the convex sets in .4 may not be compact.
Given a family F of k-flats in R?, let C(F) be the set of all k-flats surrounded
by F or, alternatively, the smallest space of k-transversals containing F. C(F)
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shares many properties with the convex hull of a set of points. For one thing,
if F is a family of 0-flats or points, then C(F) is simply the convex hull of the
point set F. As with convex hulls of point sets, the operator C is monotone
(increasing) and idempotent, i.e.:

o FCC(F);

o F1 CFy = C(F1) CC(F); and

o C(C(F)) =C(F).
It also has an “anti-exchange” property:

o If f,f' ¢C(F) and f € C(FU{f'}) while f' € C(FU{f}, then f = f'.
Finally, it is invariant under nonsingular affine transformations, so

e C(o(F)) = o(C(F)) for nonsingular affine transformations o.

C also satisfies a property similar to the Krein-Milman property for point
sets. The extreme k-flats of F, denoted ext(F), are the k-flats f € F which are
not surrounded by F\ {f}, i.e., f € C(F\ {f})-

o If F=C(F) and F is compact, then F = C(ext F).

Because of these many similarities with point convexity, Goodman and Pol-
lack called C the convex hull operator for the affine Grassmannian. A set of k-
flats F is convex if F = C(F), or, equivalently, if F is the space of k-transversals
to some family of convex point sets. However, there is one major difference be-
tween convex point sets and convex sets of k-flats. Convex point sets are always
connected while a space of k-transversals may have many connected compo-
nents. Goodman and Pollack showed that this difference is inevitable since
there is no way of defining convex sets of k-flats which have the properties listed
above and are always connected.

As we noted, C(F) is not necessarily connected. However, if F is connected,
is C(F) connected? Equivalently, if F is convex (i.e., F = C(F)) is every
connected component of F convex? Goodman, Pollack and Wenger showed this
was false by constructing a connected set F of lines parallel to the (z,y)-plane
in R® which surround the z-axis and no other line. C(F) equals F U {z-axis}
which is clearly not connected. Alternatively, the connected component F of
C(F) is not convex, since F # C(F).

The set F given by Goodman et. al. was not closed. What if F is both
closed and connected? What if it is compact and connected? If F is compact
and convex, is every connected component of F convex? Goodman, Pollack and
Wenger showed that the last statement was true for lines in R® under stronger
conditions.

Theorem 24 [30]. Let A be a finite family of pairwise disjoint compact convex
point sets in R3. If £ is a connected component of T3> (A), then £L = C(L). More-
over, L is itself the space of line transversals to some finite family of pairwise
disjoint compact convex point sets.
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Goodman et. al. first proved that every two lines in C(£) C T(A) induce
the same geometric permutation on 4. They then showed that if two line
transversals which induce the same geometric permutation of A intersect, then
the lines lie in the same connected component of 72(A). Finally, they proved
that if [ is some line in C(£), then [ is connected to a parallel line in C(£) which
intersects a line in £. Thus C(£) is connected and hence equals L.

Problem 7.

o Is it true that if A is a finite 1-separated family of compact conver sets in
R* and F is a connected component of T5*(A), then F = C(F)? (More
generally, if A is (k—1)-separated and F is a connected component of
TA(A), then is F =C(F)?)

o Is it true that if F is a compact, connected family of lines in R®, then C(F)
is connected, (or, more generally, that C(F) is connected for any compact,
connected family of k-flats?)

9 Surveys

The classical 1963 survey “Helly’s Theorem and its relatives” by Danzer, Griin-
baum and Klee [14] contains much of the early work on geometric transversal
theory. Two recent survey papers, “Helly, Radon and Carathéodory type theo-
rems” by Eckhoff [22] and “Geometric transversal theory” by Goodman, Pollack
and Wenger [29] describe the progress made in the eighties. The Handbook of
Discrete and Computational Geometry contains a chapter “Helly-Type Theo-
rems and Geometric Transversals” by Wenger [67]. Much of the material on
the combinatorial complexity of the space of transversals can be found in Sharir
and Agarwal’s book Davenport-Schinzel Sequences and Their Geometric Appli-
cations [60], including definitions and analyses of Davenport-Schinzel sequences
and upper and lower envelopes.
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