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Abstract 

We describe an algorithm, Contour Area Filtering, for separating background from 
foreground in gray scale images.  The algorithm is based on the area contained within 
gray scale contour lines.  It can be viewed as a form of local thresholding, or as a seed 
growing algorithm, or as a type of watershed segmentation.  The most important feature 
of the algorithm is that it uses object area to determine the segmentation.  Thus it is 
relatively impervious to brightness and contrast variations across an image or between 
different images. 

Contour Area Filtering was designed specifically for image analysis of 2D 
electrophoresis gels, although it can be applied to other gray scale images.  A typical gel 
image is an electrophoretogram or a phosphor image of 1000 to 2500 spots representing 
protein or DNA restriction fragments. The images are quantitative with spot intensities 
reflective of the number of proteins or the DNA fragment copy number. The background 
intensity can vary widely across the image caused both by variation in spot density and 
by the physical laboratory process of creating a gel. Analyzing and comparing gel images 
entails extracting and segmenting spots, registering images and matching spots, and 
measuring differences between spots.  

We present experimental results which show that Contour Area Filtering is a quick, 
efficient method for separating electrophoresis gel background from foreground with 
extremely high accuracy.   

Introduction 

Segmentation of biomedical images is plagued by image inhomogeneities.  Image 
contrast and brightness often vary between different images and across a single image 
(Clarke, Velthuizen et al. 1995; Sugahara, Akiyoshi et al. 1998; Rapantzikos, Zervakis et 
al. 2003; Sebastian, Tek et al. 2003; Yao, Abolmaesumi et al. 2005).  On the other hand, 
biomedical images often consist of objects whose sizes are consistent across an image 
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and between different images.  These sizes are known a priori to the clinician or 
researcher. 

Global thresholding is a simple technique for image segmentation in which all pixels with 
intensity above or below a given threshold are set to foreground and all other pixels are 
set to background.  Global thresholding is almost always inadequate for biomedical 
images.  Because of differences in contrast and brightness between biomedical images, 
different thresholds are required for each individual image. Because of differences across 
an image, different thresholds are required for different portions of the image.  Local 
thresholding algorithms address the problem of variation within an image by setting 
thresholds within local windows (Sugahara, Akiyoshi et al. 1998; Rapantzikos, Zervakis 
et al. 2003). However, local thresholding requires some algorithm for setting the local 
threshold within a window and this algorithm itself depends upon user specified 
parameters. 

The simplest form of segmentation is separating foreground from background pixels. We 
present an algorithm, Contour Area Filtering, to separate foreground from background 
which depends on the sizes of the objects.  We identify isocontours which enclose 
regions of a specified area and select those regions as foreground. We do not actually 
construct the isocontours, only the set of pixels contained by the isocontour.  Since 
algorithm parameters are based on area, not intensity, the algorithm is relatively 
impervious to variations in brightness and contrast between and across images and can 
detect even the lightest objects in an image. 

Contour Area Filtering can be described as a form of local thresholding with thresholds 
determined dynamically by object size.  It can also be described as a watershed style 
algorithm which allows small watersheds to merge until they have a desired size.  Thus 
Contour Area Filtering avoids  the oversegmentation problems which plague watershed 
algorithms.  Finally, it can also be viewed as a seed or region growing and merging 
algorithm but with seeds automatically created at every local minimum.  (See Bieniek 
and Moga (2000), Dawant and Zijdenbos (2000), Rogowska (2000), Fu et al. (2004), 
Clarke et al. (1995), Sebastian et al. (2003), and Yao et al. (2005), for descriptions and 
applications of watershed and seed growing algorithms.) 

We developed Contour Area Filtering specifically to analyze Restriction Landmark 
Genomic Scanning (RLGS) gels.  RLGS is a 2D gel electrophoresis technique developed 
by Hatada et. al. (1991) for detecting DNA molecular changes that occur near restriction 
enzyme sites. (See Figure 1.)  Genomic DNA is digested by a “landmark” restriction 
enzyme (i.e., NotI or AscI) and radioactive nucleotides are incorporated into the cleavage 
sites.  The fragments are further digested by a second enzyme (i.e., EcoRV) and separated 
along the first dimension using agarose gel electrophoresis.  A third enzyme (i.e., HinfI) 
digests these fragments in gel followed by second dimension separation via 
polyacrylamide gel electrophoresis.  Autoradiography or phosphor imaging is applied to 
the dried gel producing an RLGS image of approximately 2500 spots (Figure 2).  Spots 
on this image correspond to radioactively labeled DNA restriction fragments. 
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The location of each spot in an RLGS image is determined by two DNA restriction 
fragments, the fragment after application of the second enzyme and a subset of that 
fragment produced by application of the third enzyme.  By convention, RLGS gels are 
oriented so that DNA migration is first horizontal from right to left, and then vertical 
from top to bottom. 

After application of the second enzyme, fragments for spots on the right have 4500-5800 
base pairs while fragments for spots on the left have 500-1000 base pairs.  Because there 
are many large fragments, spot density is high on the right side of the gels and gel 
analysis is difficult in this region.  After application of the third enzyme, fragments for 
spots on the top have 1000-1700 base pairs while fragments for spots on the bottom have 
100-200 base pairs. 

 Not all fragments appear on the gel.  Fragments which are very large do not enter the gel 
at all while fragments which are very small migrate out of the gel. Fragments without a 
first enzyme cleavage site do not have an attached radioactive nucleotide and do not 
create spots on the image.  

Fragments which are small (~800 base pairs) after the application of the second enzyme 
may not be split at all by the third enzyme.  These fragments will congregate in the upper 
left of the gel, forming a dark curve in that region.  Because spots along this curve are not 
separated in two dimensions, they are very dense and cannot be distinguished. 

Enzyme 1 
(NotI or AscI) 

Enzyme 3 
(HinfI) 

Enzyme 2 
(EcoRV)

Electrophoretogram 
or Phosphor imager 

1D Electrophoresis 
(x direction) 

2D Electrophoresis 
(y direction) 

Radioisotope 
(at NotI site) 

RLGS Image 

Figure 1. Restriction Landmark Genomic Scanning (RLGS). 
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The majority of spots arise from diploid DNA fragments and appear as “normal” spot 
intensity while haploid DNA fragments create spots half  as dark (Asakawa, Kuick et al. 
1995) and may be due to heterozygosity or to allele specific methylation. (See Figure 3.) 
The 15-20 very large dark spots appearing in the gel are fragments from repetitive 
elements as well as  ribosomal DNA fragments.  Each ribosomal DNA fragment has 
approximately a 200 fold excess in  fragment number over the diploid DNA fragments. 

RLGS spots from normal, non-repetitive DNA fragments are oval in shape with 
dimensions approximately 0.5x0.4 cm on the autoradiographs. Spots often have a slight 
"tail" to the right, a result of the horizontal migration of the DNA from right to left in the 
electrophoresis separation along the first dimension. While the shape of individual, 
isolated RLGS spots is fairly uniform, the shape of clusters of overlapping spots can be 
quite arbitrary. 

Figure 2.  Human NotI-EcoRV-HinfI master gel.  DNA fragments migrate first horizontally from right to 
left and then vertically from top to bottom.  Spot density is higher on the right side of the gel, causing the 
region to be darker.  The dark curve on the upper left of the gel is caused by fragments which are not split 
by the third enzyme and cluster along this curve. 
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RLGS is used to detect DNA methylation changes between two genomes or between 
normal and tumor DNA. (For review, see Smiraglia and Plass (2002).)  Methylation 
sensitive landmark enzymes (i.e., NotI or AscI) cut the DNA only at unmethylated sites 
but not at methylated sequences.  RLGS images are created using DNA from tumorous  
and normal DNA which are then compared. Missing, added, or amplified spots indicate 
DNA methylation changes or DNA copy number changes respectively. These changes 
are commonly found in cancer and are potential biomarkers of the tumor.  This 
methodology has made significant contributions to our understanding of the importance 
of aberrant DNA methylation in cancer biology both through estimation of the extent to 
which it occurs (Costello, Frühwald et al. 2000; Smiraglia, Rush et al. 2001) and the 
identification of novel tumor suppressor genes such as SOCS1(Yoshikawa, Matsubara et 
al. 2001), BMP3B (Dai, Lakshmanan et al. 2001) and SLC5A8(Li, Myeroff et al. 2003). 

Two-dimensional gel electrophoresis is a standard technique in protein analysis. 
Extensive research and software has been developed for automatic analysis of protein 
images (http://expasy.ch/melanie; http://gelmatching.inf.fu-berlin.de; http://www.bio-
rad.com; http://www.amershambiosciences.com; http://www.phoretix.com; Appel, Plagi 

Figure 3.  Examples of various intensity spots.  RLGS spot intensity is measured from 0 to 1 with 
0 as white and 1 as black.  Spot 3e:64 has maximum intensity 1 and may represent ribosomal DNA 
or repetitive elements.  Spots 2e:69, 2e:70, 3e:52, 3e:53, 3e:62, 3e:65, 3e:69 and 3e:70 have 
intensity from 0.4 to 0.55 and probably represent diploid DNA fragments.  Spots 3e:50 and 3e:51 
have intensity 0.13 and 0.19, respectively, and represent haploid DNA fragments. 
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et al. 1997; Appel, Vargas et al. 1997). Commercial software includes ImageMaster, 
Melanie, PDQuest, and Phoretix among others (http://expasy.ch/melanie; 
http://www.amershambiosciences.com; http://www.phoretix.com; http://www.bio-
rad.com;). These packages provide excellent user interface, statistical and database tools 
for assisting in gel analysis.  They have more difficulty in fully automating the detection, 
identification and comparison of spots on the gel images. 

Two software packages have been developed specifically for the analysis of RGLS gels, 
RAT (RLGS Analysis Tool) by Sugahara et. al. (1998) and DNAInsight by Takahashi et. 
al. (1997, 1998, 1999 & 2001). To the best of our knowledge, neither package is used by 
any RLGS laboratory in the United States and neither package is under further 
development.  

Analysis of RLGS gels from genomic DNA poses certain challenges compared with 
analysis of protein gels.  RLGS spots are often lighter and smaller than protein spots. As 
a result, identifying individual RLGS spots is more difficult than identifying individual 
protein spots. It is often the lightest RLGS spots, their existence or lack thereof, which is 
of most interest in detecting DNA methylation. Moreover, samples of tumor tissue almost 
always contain some normal tissue, creating faint images of spots from the normal DNA 
which are affected, or methylated, in the tumor DNA.  In addition, RLGS gels typically 
contain over 2500 spots (although this is enzyme dependent) which is the high range for 
gel analysis.  

Numerous algorithms and techniques are used for filtering background pixels and 
identifying spots in protein and RLGS gels. Sternberg (1983) applies 3D gray scale 
morphological operators to separate foreground from background.  Takahashi et. al. 
(1997 & 1998) use the same morphological operators and then apply a “ring operator” to 
identify individual spots and their centers. They subtract these spots from the image and 
reapply their “ring operator” to further identify hidden spots. Sugahara et. al. (1998) use 
local thresholds to remove background pixels from the image. The software package 
Melanie by Appel et. al. (1997) uses thresholding of the second derivative of the gray 
scale intensities to identify foreground pixels. ImageMaster 
(http://www.amershambiosciences.com) compares pixel intensities to intensities on the 
boundary of a surrounding window to identify foreground pixels. 

The filtering methods described above have two major drawbacks. First they all require 
the setting of some sensitivity threshold related to the gray scale intensity of the spots.  
Users must often adjust these parameters for individual gels.  Second, because of this 
sensitivity thresholding, the algorithms may fail to detect the lightest spots.  Many of the 
algorithms implicitly smooth gray scale intensities, causing these lightest spots to “wash 
out” with the background. In addition, full intensity saturated spots have to be handled 
specially by some of the algorithms.    

As previously noted, Contour Area Filtering does not rely upon any gray scale sensitivity 
threshold. In fact, there is no sensitivity parameter as input to our algorithm.  Instead, the 
primary input to our algorithm is the maximum area of a cluster of overlapping spots.  
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This metric depends upon spot density and is much more robust across gels than spot 
intensity. Our algorithm can detect even the faintest spots as long as they are not in 
regions of high spot density.  Faint spots which are adjacent to large clusters of darker 
spots can be missed by our algorithm but such hidden spots pose a problem for almost all 
algorithms. 

All biomedical images contain noise and RLGS images are no exception. We remove 
noise in post-processing steps after Contour Area Filtering by first applying an opening 
operator (erosion followed by dilation) to the foreground and then removing any 
connected components with area under some user specified threshold. (See Figure 9.) We 
use 4-connectivity where pixels are connected to pixels directly above, below or right or 
left of them.  Note that opening and removing small components are post-processing 
steps applied after Contour Area Filtering.  Contour Area Filtering is applied directly to 
the unfiltered data and does not perform any implicit smoothing of the data.  Thus it can 
detect even the faintest spots. 

The operations of opening and removing small components are extremely well suited for 
eliminating noise from RLGS images, but other post or preprocessing steps may be more 
suitable for other images.  For instance, streaking is a common problem in protein gels 
which is not found in RLGS gels. Streak removal using gray scale opening as described 
in Sternberg (1983) may be an appropriate preprocessing step for such protein gels.  

We applied our algorithm to three different types of RLGS gels and demonstrate that it 
performs exceptionally well, correctly identifying most of the background pixels and only 
rarely misidentifying spot pixels as background pixels. We would have liked to compare 
our results with results from DNAInsight by Takahashi et. al. (1998) but were unable to 
obtain a copy of their software.  Instead we compared results from our algorithm with 
results from ImageMaster (http://www.amershambiosciences.com). We also report the 
results of applying our algorithm to two benchmark protein gels used in Raman et. al. 

Separate Foreground from 
Background 

Foreground 
Segmentation 

Image 
Registration 

Template 
Segmentation 

Spot Measurement 
and Comparison 

Spot Intensity 
Normalization 

Figure 4.  RLGS image analysis pipeline. 
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(2002) and Rosengren et al. (2003). We did not compare our results on these protein gels 
with results from other software, although reports on the application of PDQuest, 
Progenesis, Z3 and Melanie to these benchmark protein gels are included in Raman et al. 
(2002) and Rosengren et al. (2003).  

Our isocontour filtering algorithm is one component of an automated RLGS gel analysis 
system under development (Figure 4). The final step in this system is spot measurement 
and comparison. Spots are compared by their intensity, both the maximum "normalized" 
intensity of the spot and the integral of the "normalized" intensity of all points in a spot. 
The latter is called the spot "volume". 

Construction and use of isocontours is a standard technique in image processing and 
visualization. Variations in background and image intensity, the difficulty of selecting 
appropriate isocontours and lack of control over object shape has led to them being 
supplanted by active or deformable contours (also called snakes) in medical image 
processing.  Contour Area Filtering addresses the first two of these problems by using the 
enclosed area in choosing isocontours. Contour Area Filtering is substantially different 
than all other published algorithms for protein or RLGS gel segmentation, none of which 
use isocontours. We have been unable to find any published image processing algorithm, 
biomedical or otherwise, which uses area to control isocontour selection. 
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Materials and Methods 
RLGS gels 

RLGS gels for both mouse and human genomic DNAs were run as previously described 
in Okazaki et al. (1995) and modified as described in Smiraglia et al. (1999). 

The autoradiograms are scanned at 300 dots per inch and stored as a tiff image of 5100 x 
4200 pixels with 8 bits per pixel representing a gray scale in the range 0 to 255. 

Contour Area Filtering Algorithm 

The convention in RLGS is to display spots as dark while the background is light or 
white.  Thus, our presentation of the Contour Area Filtering algorithm will assume that 
foreground pixels are dark while the background pixels are light. Of course, for the many 
medical images with the reverse representation we need to simply switch the roles of the 
dark and light pixels. 

The Contour Area Filtering algorithm is shown in Figures 6, 7, 8  and 9. The main 
procedure, Contour_Area_Filter, takes a single parameter M which bounds the size of the 
largest connected component of foreground pixels.  This parameter requires a priori 
knowledge of the size of the objects in the image. 

Figure 5.  Maximal connected components of pixels with intensity gray scale value 100.  Range of gray 
scale values is 0 (black) to 255 (white).  The connected component on the left has nine pixels.  The 
connected component on the right has thirteen pixels.  The contour area of pixels p1, p2 and p3 is nine. 
The contour area of pixels p4, p5, p6, p7 and p8 is thirteen. 
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If a pixel p with intensity γ is foreground, then all the adjacent pixels with intensity 
darker than γ should also be foreground.  All their adjacent pixels with intensity equal to 
or darker than γ should also be foreground.  Consider the maximal connected component 
containing p and pixels with intensity equal to or darker than γ.  (Use 4-connectivity, 
connecting a pixel to the pixels to the left, right, above and below.) If p is foreground, 
then all the pixels in this component are also very likely foreground. If this component is 
very large, then it is a good indication that pixel p is not foreground. 

If we replace the pixels by a continuous scalar field, then we can replace the maximal 
connected component by the area enclosed by an isocontour through p.  An isocontour is 
a curve consisting of points with the same scalar value. If the area contained by the 
isocontour through p is large, then we mark p as background.  This area can be thought of 
as part of the “watershed” containing p (where intensity represents depth) and is used in 
many similar “watershed” based algorithms (Bieniek and Moga 2000; Fu, Hojjat et al. 
2004).  

For each pixel p with intensity γ, let ABp B be the number of pixels in the maximal connected 
component containing p and pixels with intensity equal to or darker than I BpB (Figure 5). 
We mark all pixels with ABp B greater than the input parameter M as background. (See 
Figure 6). 

Input: Array I of pixel intensities. 
Algorithm parameters: M. 

A ← Compute_Contour_Area(I) 

For each pixel p, do: 
 If A[p] > M, then mark p as background pixel. 

Output: Array identifying each pixel as background or foreground. 

Figure 6.  Contour Area Filter algorithm. 
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Input: Array I of pixel intensities. 

For each pixel p, do:   
Create Set(p) = {p}. 

Sort pixels by intensity from dark to light. 

For each pixel intensity γ in sorted 
order from dark to light, do: 

For each pixel p with intensity γ, do:

For each pixel q adjacent to p, do: 

If (I[q] is darker 
than I[p]) 

Union Set(p) and Set(q). 

End loop.

End loop.

For each pixel p with intensity γ, do:
A[p] ← Area of Set(p). 

End loop.

Output: Array A of contour areas for each pixel. 

then

else

Figure 7.  Compute Contour Area algorithm. 
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Of course, if we compute ABp B for each pixel separately, the algorithm would be far too 
slow. Instead we compute ABp B in a single pass by slowly growing components starting at 
their most intense pixels.  For each pixel, create a set containing only that pixel.  Sort the 
pixels by intensity from dark to light. Sorting the pixels by intensity also sorts the set of 
pixel intensities. For each intensity γ in order from dark to light, make two passes over 
the set of pixels with intensity γ.  First, for each pixel p with intensity γ, union the set 
containing p and sets containing pixels adjacent to p (left, right, top, bottom) with 
intensities greater than or equal to γ.  This forms maximal connected components of 
pixels with intensity at least γ. Next, for each pixel p with intensity γ, store the size of the 
set containing p. This size is ABp. (See Figure 7).B   

We use a slight modification of the standard union-find data structure to represent the sets 
of pixels (Cormen, Leiserson et al. 2001).  The data structure is represented in an array, 
U, of pointers, one for each pixel. A set is represented by a tree of pointers, pointing back 
to the root.  FindSet(q) returns the element at the root of the tree containing q by 
following pointers U[q] back to the root. (See Figure 8).  It also performs “path 
compression” by resetting the pointers along the way to point to the root.  To form the 
union of two trees rooted at s and t, we simply set U[t] equal to s. 

The algorithm requires the input array, I, of pixel intensities and two other arrays U and 
A. Array U contains the pointers used to find the root of the tree containing a given pixel. 
Array A initially stores the size of the set containing each pixel. However, as each pixel p 
is processed in Compute_Contour_Area, the contour area of the isocontour through p is 
stored in A[p].  Element A[p] is never modified after this.   

Create_Set(p) 
/* p is a pixel */ 

1. U[p] ← p; 
2. A[p] ← 1; 

 
Union(p, q) 
/* p and q are pixels */ 

1. s ← FindSet(p); 
2. t ← FindSet(q); 
3. U[t] ← p; 
4. A[p] ← A[p] + A[t]; 

 
FindSet(q) 

1. if (q ≠ U[q]) then 
2.  U[q]  ← FindSet(U[q]); 
3. return(U[q]); 

Figure 8.  Subroutines for Compute Contour Area.  Array U represents the set containing each 
pixel. Array A stores the size of the set containing p. Note that once the contour area of p is stored 
in A in Compute_Contour_Area, array A is never modified. 
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The algorithm runs in worst case O(n log(n)) time where n is the number of pixels.  A 
modification which requires one more field per pixel can improve the running time to 
near, although not quite, linear.  (See Cormen et al. (2001) for a full discussion of union-
find algorithms and their implementations.)  In practice, the algorithm seems to take 
linear time and the modification is unnecessary. 

The running time and space for sorting pixels depends upon the type of sort used. Our 
images are 8-bit gray scale consisting of only 256 pixel intensities and so bucket sorting 
will sort the pixels in O(n) time using one array of size n. For larger sets of intensities, a 
more general O(n log n) sorting algorithm can be used. 

Contour_Area_Filter is a very conservative procedure which cannot distinguish between 
noise and foreground.  After applying Contour_Area_Filter, we use some standard 
morphological operators to remove some of the noise from the foreground (Figure 9).  
First, we apply the opening operator (erosion followed by dilation) to remove tenuous 
connections between pixels.  Second, we remove any remaining “salt and pepper” noise 
by identifying very small foreground connected components and marking them as noise. 
Again, we use 4-connectivity where pixels are connected to pixels directly above, below 
or right or left of them.  All reported results include the application of opening and of 
removal of small components. 

Input: Array I of pixel intensities. 
Algorithm parameters: M, N, P. 

Contour_Area_Filter(I, M) 

Open (erode and dilate) foreground by P pixels. 

Relabel as background any connected components in foreground 
containing fewer than N pixels. 

Figure 9.  Contour Area Filtering and noise removal. 
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Human NotI-EcoRV-HinfI  master gel with spot centers marked. Bounded region 
contains annotated spots. 

 
Contour area filtered NotI-EcoRV-HinfI human master gel. 

Figure 10. Human master NotI-EcoRV-HinfI gel, hand annotated and contour area filtered. 
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Test Data: RLGS Gels 

For test images we used master RLGS images created using enzyme combinations NotI-
EcoRV-HinfI and AscI-EcoRV-HinfI on human DNA and NotI-EcoRV-HinfI on mouse 
DNA. (See Figures 10 and 11.)  The human DNA is from the peripheral blood 
lymphocytes (PBLs) of a single healthy female donor. A mouse master gel was created 
from a combination of DNAs from mouse strains FVB, C57/BL6J, and 129/SV.  A 
mouse FVB gel was created from DNA from mouse strain FVB.  The master gels are 
used as a reference for all other gels with matching enzyme and genome in our 
laboratories and have been extensively analyzed.  We digitized autoradiograms of the 
gels at 300 dots per inch, creating tiff images of 5100 x 4200 pixels with 8 bits per pixel 
representing a gray scale in the range 0 to 255.  We implemented and tested 
Contour_Area_Filter on a 2.8 GHz personal computer with 2 Gigabytes of RAM running 
under the Linux operating system.  Our algorithm (including opening and removal of 
small components) runs in approximately 10 seconds on gels with dimension 5100 x 
4200 pixels.  

  

Human AscI-EcoRV-HinfI master gel. Mouse NotI-EcoRV-HinfI master gel. 

Figure 11.  Human AscI-EcoRV-HinfI master and mouse NotI-EcoRV-HinfI hand annotated master 
gels. Bounded regions contain annotated spots. 
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Typical spots on a 300 dpi RLGS image have 2000 pixels.  The smallest we found has 
500 pixels while the largest has 30,000 pixels. We applied Contour_Area_Filter using a 
threshold of 60,000 for the maximum contour area, which is twice the area of the largest 
spot.  Spots above this size were marked as background.  In post-processing, we used a 
pixel size of two for opening (eroding and then dilating the foreground by 2 pixels) and 
removed any small components with size less than 300 pixels. 300 pixels is a reliable 
lower bound on the area of the smallest spot.  The pixel size of two for opening was 
based on examination of numerous RLGS images produced in our laboratories and 
experimentation with different opening sizes.  The three settings are used for Contour 
Area Filtering all 300 dpi RLGS images in our laboratories and in practice are never 
changed. 

Our laboratories use an annotated image of each master gel, with an identifier marking 
each spot as described in Costello et al. (2000) for the human NotI-EcoRV-HinfI master 
image (Figure 12).  Spots on the boundaries, particularly the right boundary, are not 
labeled. Labeled spots are in the bounded region marked on each gel. (See Figures 10 and 
11.)   We compared the spots identified on the annotated master image with the 
foreground pixels generated by our algorithm within the bounded regions.  Any spot in 
the annotated image whose pixels were not identified as foreground by our algorithm 
were marked as a missed spot.  Any significant set of foreground pixels which were not 
part of an annotated spot were marked as an added spot.  

Figure 12.  Hand annotation of regions 4E and 4F of human master NotI-EcoRV-HinfI. The gel is 
partitioned into forty-eight rectangular regions, consisting of six rows and eight columns.  Rows are 
labeled with numbers 1 through 6, while columns are labeled with letters ‘a’ through ‘h’.  Spots within 
each region of the partitioning are numbered starting at 1.  Spot labels are the region label followed by 
the spot number within the region. 
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In order to better understand the nature of the errors made by the algorithm we broke the 
added spot errors into three distinct classifications: “Faint spots”, “Faint noise”, or “Dark 
noise”. Faint spots are pixels which have the appearance of a spot but are faint and more 
difficult to detect by hand (Figure 13).  Some of these are faint only compared to 
surrounding spots.  Others are so faint that they are only visible after applying contrast 
enhancement to the image.  The “Faint spot” classification of added spots therefore does 
not necessarily represent errors on the part of the algorithm, but may also represent the 
advantage in detection capability of the algorithm over the inherently subjective analysis 
by hand.  Added spots marked “Faint noise” are clusters of light pixels which are 
identified as spots which did not have the shape or appearance of a spot, even after 
contrast enhancement.  Added spots marked “Dark noise” are clusters of dark pixels 
probably caused by imperfections or physical marks on the gel (Figure 14). Both “Faint 
noise” and “Dark noise” represent errors in the algorithm where marks that are clearly not 
true spots are added as spots. 

The missed spots are broken down into two categories: “Faint” and “Distinct”.  The 
“Faint” classification is defined in the manner described above.  The “Distinct” 
classification represents spots that are clearly present in the image but not identified by 
the algorithm.  These two classes represent true errors of lack of identification by the 
algorithm.   

 

Figure 13. Faint spot added by Contour Area Filtering. 

 

Figure 14. Noise identified as spot by 
Contour Area Filtering. 
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Test data: Protein Gels 

We also applied Contour Area Filtering to two benchmark protein gel images described 
in Raman et al. (2002). (See TUhttp://www.umbc.edu/proteome U)T.)  Both are 8 bit gray scale 
images.  Dimensions of Gel A are 666 x 727 pixels and of Gel B are 993 x 1087 pixels.  
Because the protein gel image resolutions differed from the RLGS image resolutions and 
from each other and because protein spots are different from RLGS spots, we adjusted 
the algorithm parameters.  The average protein spot in Gel A has 150 pixels, the smallest 
has 20 pixels and the largest has 1000 pixels. The average spot in gel B has 300 pixels, 
the smallest has 30 pixels and the largest has 1100 pixels. For both protein gel images we 
used a threshold of 15,000 for the maximum contour area and a pixel size of two for 
opening.  For Gel A we used a minimum center size of 20 pixels and for Gel B we used a 
minimum center size of 40 pixels.  The parameters were chosen by experimenting on 
each gel. 

Raman et. al. provide annotated versions of both images with boundaries drawn around 
each spot (Raman, Cheung et al. 2002).  Unfortunately, it is not always possible to 
differentiate between spots in these annotated images.  We used Raman et. al.’s 
annotation to generate our own annotated versions with a dot at each spot center (Figure 
15).  

All gels and annotated gels used in these experiments can be found at 
TUhttp://www.cse.ohio-state.edu/graphics/conimeUT. 

  

Annotated Gel a. Contour area filtered Gel a. 

Figure 15.  Benchmark protein gel used by Rosengren et. al. (2003). 
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ImageMaster 

ImageMaster is a commercial 2D protein gel analysis package from Nonlinear Systems 
(http://www.nonlinear.com). It is similar to the Phoretix package described in Mahon and 
Dupree (2001) and Rosengren et al. (2003).  We applied ImageMaster to three of the 
master RLGS gels for comparison with Contour Area Filtering.  Our configuration of the 
ImageMaster system could not handle 5100 x 4200 images so we reduced their 
dimensions to 2550 x 2100. 

We note that the ImageMaster system is designed and used for protein, not RLGS gels.  
Protein spots tend to be darker and more well defined than RLGS spots and typical 
protein gels often have fewer spots than RLGS gels.  The aim of protein gel analysis is 
often quantification as opposed to detection of added or missing spots.  Thus correctly 
detecting faint spots is both less difficult and less important in protein gels. 

ImageMaster identifies foreground pixels by comparing the average intensity of k pixels 
in a neighborhood of a pixel p with the average intensity of a 4k pixels on the boundary 
of a window  around p. It uses three significant parameters: sensitivity, window size and 
noise.  Pixel p is classified as foreground if (IBp B – IBs B)/IBp B > s/10000, where IBp B is the average 
intensity in the neighborhood of p, value IBs B is the average intensity of the 4k pixels on the 
boundary of the window around p, and s is the sensitivity parameter.  Higher values of s 
detect more spots but give more false positives. The noise parameter is the number k of 
pixels used for the neighborhood of p.  It reduces the effect of high frequency noise on 
the filtering.  The window size determines the size of the spots detected.  Smaller window 
sizes detect smaller spots, but fail to detect large saturated spots. We used sensitivity 
9500, window size 15x15, and noise 7 on our 2550 x 2100 images. 
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Results 
Contour area filter algorithm accuracy assessment 

As previously noted, all reported results include the application of opening and removal 
of small components for noise reduction.  Analysis of the four RLGS images, human  
NotI-EcoRV-HinfI and AscI-EcoRV-HinfI and mouse master and FVB NotI-EcoRV-
HinfI, resulted in excellent correlations between the spots annotated by hand and those 
identified by the Contour Area Filtering.  Of  the 2500 to 3300 spots identified on the 
annotated human NotI, human AscI the master mouse NotI  and the FVB mouse NotI 
images, approximately 96-99% were correctly identified.  In addition, the algorithm 
added small numbers of spots not seen in the annotated images.  We marked a set of 
foreground pixels produced by Contour Area Filtering as an added spot if its pixels did 
not lie in any of the annotated spots on the master image.  Similarly, we marked an 
annotated spot as missed if the pixels of that spot were not identified as foreground by 
our algorithm.  Table 1 shows the breakdown of added and missed spots for each image.  
Since spots on the master images were marked only at their centers as judged by human 
analysis of the gels, some degree of subjectivity is necessarily a part of the determination 
of the extent of a spot.   

Table 2 contains the breakdown of added spot errors into “Faint spots”, “Faint noise” and 
“Dark Noise” for the first three images.  “Faint spots” dominated the added spot errors on 
the human NotI image while “Faint noise” dominated the errors on the human AscI and 
mouse NotI images.  The gels contain very few imperfections of physical marks and so 
few of the errors are “Dark noise”.  

Gel Enzymes Annot  
# spots 

CAF 
# added

CAF 
# missed

IM 
# added 

IM 
# missed

Human DNA NotI-EcoRV-HinfI 2425 46 34 104 51 

Human DNA AscI-EcoRV-HinfI 2277 63 64 84 164 

Mouse master  NotI-EcoRV-HinfI 3228 47 139 15 719 

Mouse fvb NotI-EcoRV-HinfI 2590 38 5 *** *** 

Protein Gel A  922 91 100 *** *** 

Protein Gel B  1350 117 91 *** *** 

Table 1.  Results from filtering DNA and protein images using Contour_Area_Filter (CAF) and 
ImageMaster (IM):  Number of labeled spots on hand annotated master images, number of spots added or 
missed by Contour_Area_Filter (including post-processing,) and number of spots added or missed by 
ImageMaster.  
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Missed spots are described in Table 3.   Almost no “Faint spots” were missed for the 
human NotI image.  “Faint spots” were 68% and 51% of the human AscI and mouse NotI 
missed errors, respectively.  Nearly all of the missed spot errors occurred in the areas of 
the highest spot density.  Such high density regions occur near the right edge and the 
upper left corner of each image.  They can also occur in the neighborhood of largely 
enhanced spots.  Each gel contains about a dozen such large spots generated by the 
repetitive ribosomal DNAs (rDNAs). 

For Raman et. al.’s two benchmark protein gels (Raman, Cheung et al. 2002;  
TUhttp://www.umbc.edu/proteomeUT), Contour Area Filtering found 89% of the 922 spots in 
Gel A and 93% of the 1350 spots in Gel B.  It erroneously reported 10% additional spots 
in Gel A and 9% additional spots in Gel B.  Problems were in high density spot areas and 
with noise near the boundaries of the gels. 

Comparison to ImageMaster 

The results of the ImageMaster analysis are presented in Table 1.  The ImageMaster 
program does not distinguish separating foreground from background and segmenting 
foreground into individual spots in reporting its segmentation results.  As in the 
comparison of Contour Area Filtering and the annotated images, we are not interested in 
the segmentation of the foreground into individual spots, only whether the spots are 
included in the image foreground. A spot was counted as appearing in a filtered image if 
its center lay in the foreground area of that image. ImageMaster did quite well compared 
to Contour Area Filtering of the human, NotI-EcoRV-HinfI  image.  However, 
ImageMaster failed to correctly report some of the large saturated spots in this image 
which is a glaring error since those spots are so prominent.  With larger window sizes, 
ImageMaster reported those spots, but then missed many of the smaller ones. 

For the human, AscI-EcoRV-HinfI and the mouse, NotI-EcoRV-HinfI images, 
ImageMaster missed considerably more spots compared to Contour Area Filtering.  The 
missed spots were concentrated in the lower left region of the gels where spots were 
extremely faint.  A higher sensitivity number should have been used for the mouse 
images, detecting more spots at the expense of false positives.  On the other hand, 

genome enzymes faint spots faint noise dark noise 

human NotI-EcoRV-HinfI 33 3 13 

human AscI-EcoRV-HinfI 13 43 8 

mouse NotI-EcoRV-HinfI 9 47 0 

Table 2.  Breakdown of spots added by Contour_Area_Filter which are not identified in annotated gels. 
Number of faint added spots, number of added spots caused by faint noise on the gel, and number of 
added spots caused by dark noise on the gel. 
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ImageMaster was already reporting more false positives than Contour Area Filtering for 
the other images and a higher sensitivity would simply have increased that number. This 
illustrates the need to modify the ImageMaster parameters based on the gel or even 
specific regions within the gel.  We did try setting sensitivity to 9999, the maximum, for 
each gel, but this always produced tremendous numbers of spurious spots. 

Table 4 in Rosengren et. al. (2003) contains spot detection results for Melanie, PDQuest, 
Progenesis and Z3 on protein Gels A and B but those results include the effects of spot 
segmentation.  Nevertheless, our algorithm and error rates seem competitive with the best 
of the others.   In addition, our algorithm can quickly detect spots on images with a much 
higher resolution than the images provided for Gels A and B.  It is this higher resolution 
which allows us to report much better results on the RLGS gels. 

Rosengren et. al. report 3-15 minutes running times for PDQuest on a 750 MHz processor 
and 15-180 minutes for Progenesis on a 2.0 GHz processor.  Our algorithms running time 
of 10 seconds on images which are 10 to 30 times the size of Gels A and B is clearly 
superior. 

genome enzymes faint distinct 

human NotI-EcoRV-HinfI 2 32 

human AscI-EcoRV-HinfI 43 21 

mouse NotI-EcoRV-HinfI 76 71 

Table 3.  Breakdown of spots missed by Contour_Area_Filter which are identified in annotated gels. 
Number of missed faint spots and number of missed distinct spots.  
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Discussion 
Separating Foreground from Background Pixels 

Our algorithm reports correctly the foreground for 96-99% of the spots on 300 DPI 
RLGS images and 89-93% of the spots on lower resolution protein images, with errors 
concentrated in regions of high spot density.  Background intensity varies greatly over 
these images and some of the spots are extremely faint.  Good algorithm parameters 
depend upon spot size and density, not spot intensity, and thus do not need to be modified 
for each gel. 

In all cases Contour Area Filtering agreed with the hand annotated gel more than 
ImageMaster software.  As importantly, good filtering parameters in Contour Area 
Filtering depend upon the spot size and density, not upon the spot intensities.  Since spot 
size and density are consistent between RLGS images, we don’t modify the parameters 
for each gel.  Good sensitivity values in ImageMaster depend greatly on spot intensity 
and are much more gel dependent.  As previously noted, the ImageMaster system is 
designed and used for protein, not RLGS gels, where detection of faint spots is less 
difficult and less important.  ImageMaster’s intensity based algorithm has difficulty 
detecting faint spots because their intensities differ so slightly from the background. 

The major weakness of our algorithm is in areas of high spot density where fainter spots 
may be obscured by stronger ones.  High density areas are problematic for the algorithm 
since it uses the maximum contour area as a parameter.  One can view this as the 
maximum size of a cluster of overlapping spots.  If such a cluster has more pixels than 

Figure 16.  Circle near image center contains spot missing from contour area filtered image. Spot is part 
of a large cluster extending to the right and upward surrounded by dotted curve. Because the spot is so 
faint compared to other spots in the cluster, Contour Area Filtering marks it as background in the process 
of breaking up the cluster. Other spots with similar intensity such as the spot circled in upper left are 
detected by the algorithm because they are not part of a large dark cluster. 
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this maximum, the algorithm will remove fainter spots until it breaks the cluster apart 
(Figure 16).  The distinct spots missed by Contour Area Filtering (Table 3) can all be 
attributed to this problem. 

Areas of high spot density are either on the upper-left or the right side of the gels.  In 
other areas, our algorithm gives 99% accuracy. Postprocessing or hybrid algorithms 
could perhaps be used to find faint spots in areas of high density.   

Both our algorithm and ImageMaster missed a proportionately larger number of spots on 
the mouse master gel than on the other gels.  These misses most likely stem from two 
factors.  First, the mouse master gel is slightly anomalous since it uses a combination of 
DNA from three mouse strains, FVB, C57/BL6J, and 129/SV.  Spots corresponding to 
DNA fragments which appeared in only one or two strains (strain specific 
polymorphisms) had significantly lower intensity than spots which appeared in all three 
strains making them more difficult to detect.  Second, the density of spots on this 
combination mouse gel is higher than the other gels.  The master mouse gel contains over 
3200 identified spots, compared with under 2500 identified spots in the mouse FVB gel.   
Contour Area Filtering missed very few spots on that gel. 

In the breakdown of Contour Area Filtering errors (Tables 2 and 3), Contour Area 
Filtering added 33 faint spots in the human NotI-EcoRV-HinfI annotated gel but only 13 
and 9 such spots to the human AscI-EcoRV-HinfI and mouse NotI-EcoRV-HinfI 
annotated gels.  These represent errors in manual annotation of the gels rather than errors 
of Contour Area Filtering and illustrate a significant advantage over manual annotation 
and analysis.  We hypothesize that the annotators of the human AscI-EcoRV-HinfI and 
mouse NotI-EcoRV-HinfI  gels were a bit more aggressive at identifying spots than the 
annotator of the human NotI-EcoRV-HinfI gel.   We also note that in the Contour Area 
Filtering miss errors, only two human NotI-EcoRV-HinfI spots were classified as faint 
while 43 and 76 human AscI-EcoRV-HinfI spots and mouse NotI-EcoRV-HinfI  spots 
were classified as faint.  This again supports the hypothesis that the annotators of the 
human AscI-EcoRV-HinfI and mouse NotI-EcoRV-HinfI gels were more aggressive. 

The number of added spots errors caused by dark noise are very small in the human gels 
and zero in the mouse gel.  These errors are caused by physical imperfections in the gels, 
often caused by accidents in handling the physical gel and are immediately obvious as 
errors.   The Master gels were chosen as representative of a set of gels exactly because 
they had excellent quality.  Many gels have poorer quality and more added spot errors 
caused by physical imperfections. 

Changes in the Contour Area Filter parameter M will lead to changes in the classification 
of some light pixels. In addition, light pixels near isolated spots are more likely to be 
classified as foreground than light pixels near spot clusters. Since we segment all pixels 
in foreground into individual spots, the total number of pixels assigned to a spot is 
sensitive to parameter changes and nearby spots. However, spot comparison and 
measurement is done based on spot's maximum intensity or spot volume. Light pixels 
make little contribution to maximum intensity or spot volume, so the difficulty in 
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classification of light pixels will not significantly affect the comparison or measurement 
of spots. 

RLGS gels have three properties which make them particularly suited for Contour Area 
Filtering.  First, all pixels of an RLGS spot are darker than the local background intensity.  
Contour Area Filtering will not work well for non-homogeneous objects which have 
some parts lighter and some parts darker than the local background.  Second, reliable 
upper and lower bounds can be placed on the size of RLGS spots.  Without these bounds, 
Contour Area Filtering will oversegment large objects or treat small objects as noise.  
Third, the background does not vary significantly around a single RLGS spot.  Thus the 
contour lines around that spot can be used to segment the spot. 

Segmentation of Foreground into Individual Spots 

In addition to using Contour Area Filtering for separating foreground and background, 
we also use the algorithm for segmenting foreground pixels into individual spots.  Each 
RLGS spot has a “center”, usually consisting of a relatively small number of high 
intensity pixels.  If the area of a contour is approximately this size, then this contour 
surrounds a center. We call Contour Area Filtering with the parameter M set to the 
maximum spot center size.   We use 100 pixels for the maximum spot center size on 
5100x4200 RLGS images. 

Some spots, called saturated spots, contain a large set of pixels which are all very dark.  
These pixels should be grouped together as a single spot center even thought this spot 
center size is much larger than average.  If all the pixels in a contour have approximately 
the same dark intensity, then that contour forms a single center, even though the contour 
area may be very large.  We modified Contour Area Filtering to identify such contours 
and avoid oversegmentation of saturated spots. 

Segmentation into individual spots is an extremely challenging problem.  Spots may 
overlap in ways which make it difficult or even impossible to tell by visual inspection 
whether they are two or one.  In fact, biomedical researchers segment RLGS gels by 
comparing multiple gels or comparing gels with a segmented “master” gel.  Contour Area 
Filtering makes many more errors when applied to foreground segmentation than when 
used to separate foreground from background.  Foreground segmentation errors are 
almost always undersegmentation errors. Thus, Contour Area Filtering can be used as an 
initial foreground segmentation step, but further splitting of spots is required. 

We experimented with an expectation maximization (EM) algorithm for improving the 
foreground segmentation produced by Contour Area Filtering, but with limited success. 
Instead we use a previously segmented “template” to add or split spots in a target gel. 
The template gel will usually, although not necessarily, be a master gel which has been 
meticulously segmented by biomedical researchers by hand.  This master gel is 
repeatedly used to segment all other gels from the same genome and enzyme 
combination.  A complete description of the algorithm and experimental results will be 
reported elsewhere. 
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Once all spot centers have been properly identified, spot boundaries must be constructed 
for each spot. For isolated spots, we simply use the boundary of the connected foreground 
component containing the spot center. This boundary may not have the oval shape 
characterizing most spots, and is sensitive to changes in the Contour Area Filter 
parameter M. As previously noted, spot comparison and measurement is done based on 
spot's maximum intensity or spot volume. Changes in the boundary shape or size of 
isolated spots have little effect on these measurements. 

For clusters of overlapping spots, multiple spots contribute to pixel intensities in the 
region of overlap. Thus it is extremely difficult to determine appropriate spot boundaries 
or to accurately calculate spot intensities. Algorithms which assign each pixel to a single 
spot can greatly underestimate the spot volume of overlapping spots. The protein gel 
analysis software Phoretix (http://www.phoretix.com) models individual spots as a 
Gaussian distribution of intensities and then measures the maximum and volume of this 
distribution. This approach addresses the problem of overlapping spots but introduces its 
own inaccuracies in the simplified modeling. Accurate estimation of RLGS spot 
boundaries and spot intensities for overlapping spots is one subject of our ongoing 
research. 
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