
EUROGRAPHICS 2013 / B. Preim, P. Rheingans, and H. Theisel
(Guest Editors)

Volume 32(2013), Number 3

Constructing Isosurfaces with Sharp Edges and Corners
using Cube Merging

A. Bhattacharya and R. Wenger†

(a) Polymender isosurface. (b) Close-up of blue square. (c) MergeSharp isosurface. (d) Close-up of yellow square.

Figure 1: Isosurfaces from the weld dataset with ‘sharp ’ mesh edges (large dihedral angles) marked in red.1a), 1b) Polymender
generates disconnected sharp mesh edges representing a sharp edge of the object. It also generates mesh edges with large
dihedral angle in smooth regions of the surface.1c), 1d) MergeSharp correctly generates a connected curve of sharpmesh edges
to represent a sharp edge of the object. It does not generate mesh edges with large dihedral angles in the smooth region of the
surface.

Abstract
A number of papers present algorithms to construct isosurfaces with sharp edges and corners from hermite data,
i.e. the exact surface normals at the exact intersection of the surface and grid edges. We discuss some fundamental
problems with the previous algorithms and describe a new approach, based on merging grid cubes near sharp
edges, that produces significantly better results. Our algorithm requires only gradients at the grid vertices, not at
each surface-edge intersection point. We also give a methodfor measuring the correctness of the resulting sharp
edges and corners in the isosurface.

Categories and Subject Descriptors(according to ACM
CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—

1. Introduction

Let f : R
3→ R be a scalar field. Various algorithms have

been proposed for constructing isosurface approximationsto
a surfacef−1(σ) with sharp edges and corners from distance

† Computer Science and Engineering Department, The
Ohio State University, E-mails: bhattaca@cse.ohio-state.edu,
wenger@cse.ohio-state.edu.

fields [GK04, HWCO05, KBSS01, ZHK04] or from an ex-
plicit definition of f [AB03,JLSW02,HWCO05,VKKM03,
SW04, MS10]. All these algorithms rely on the ability to
compute the exact intersection point of the isosurface and
each grid edge and an exact surface normal at that intersec-
tion point. Ju et al. [JLSW02] coined the term “hermite” data
to describe such inputs.

The algorithms listed above have a number of drawbacks.
First, some of these algorithms have fundamental problems
when surfaces or portions of surfaces are not oriented along
grid axes. They produce isosurface meshes which poorly
model the sharp edges or corners (Figure2.a) or contain de-
generate or overlapping triangles (Figure2.b).

Second, the algorithms listed above rely upon precise cal-

c© 2013 The Author(s)
Computer Graphics Forumc© 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

A. Bhattacharya & R. Wenger / Constructing Isosurfaces withSharp Edges and Corners

culation of both the intersection point and the normal. They
have little tolerance for approximation errors in those values.
Those algorithms which compute multiple intersections or
increase the grid resolution create small thin polygons near
sharp features. Such polygons are very sensitive to approxi-
mation error. Third, all these algorithms are restricted toher-
mite data or variations such as a signed distance field which
permit the computation of surface normals along grid edges.

In [CDR07], Cheng et al. describe a method for meshing
piecewise smooth complexes using protecting balls around
the sharp or boundary edges of those complexes. We apply
this idea to isosurface reconstruction by merging grid cubes
around sharp edges and corners, creating regions which act
like protecting balls. A single isosurface vertex is placedin
each such region.

By placing a single isosurface vertex near the center
of each region, we guarantee that the isosurface vertices
on sharp edges and corners are well separated from any
other isosurface vertices. Separating these isosurface ver-
tices avoids the creation of degenerate quadrilaterals or the
incorrect ordering of isosurface vertices along sharp edges.
It also avoids the creation of notches along sharp edges. A
notch is a discontinuity in the tangent of the sharp edge. (See
Figure2a.)

The separation of isosurface vertices on sharp edges
makes the sharp edge much less sensitive to changes in ver-
tex location. Our algorithm is tolerant of small approxima-
tion errors in the intersection locations or the surface normal
coordinates.

Because our algorithm is tolerant of approximation errors
in isosurface vertex location, we no longer require hermite
data as input. Instead we can use gradient grid data, regular
grids with scalar values and gradients at each of the grid ver-
tices. We compute isosurface vertex locations directly from
this data, using gradients from neighboring cubes to increase
reliability. As shown in Section9, our algorithm is tolerant
of noise in this gradient data.

Previous papers on reconstructing isosurfaces with sharp
edges and corners lacked any quantitative measure of the
quality of the reconstruction. The lack of such measure
makes it difficult to evaluate the claims of these papers or
compare the results of their algorithms in any systematic
way. In Section8, we propose a simple method for measur-
ing the quality of the reconstructed sharp edges and corners.
Our evaluation method helps us quickly find errors in the
sharp edge and corner reconstructions and allows us to eval-
uate our algorithm on numerous test datasets without requir-
ing visual inspection of the results of each test. It also per-
mits us to test and compare parameter changes to our algo-
rithm and to compare our algorithm with Polymender [Ju04].

Our paper contains three major contributions:

1. We present a new algorithm based on cube merging for
constructing isosurfaces with sharp edges and corners.

Our algorithm solves some fundamental problems with
previous techniques and is significantly more robust.

2. We show how gradient grid data, not just hermite data,
can be used to calculate the locations of isosurface ver-
tices on sharp edges and corners.

3. We present a simple method for evaluating the quality of
our reconstruction of sharp edges and corners, and evalu-
ate our algorithm using that method.

2. Definitions

A scalar grid vertex isnegativeif its scalar values is less than
the isovalue. A grid vertex ispositiveif its scalar values is
greater than or equal to the isovalue.

A grid edge isbipolar if one endpoint is negative and one
endpoint is positive.

A grid cubec is a vertex neighborof grid cubec′ if c
shares a vertex withc′.

3. Related Work

The Marching Cubes Algorithm [LC87] by Lorensen and
Cline places all the isosurface vertices on grid edges. Be-
cause it does not place any vertices in cube interiors, it can-
not represent sharp edges or corners.

Instead of adding isosurface vertices on grid edges, Gib-
son’s dual contouring algorithm [Gib98a, Gib98b] places
isosurface vertices inside grid cubes intersected by the iso-
surface. Later, Nielson [Nie04] described a dual contour-
ing algorithm, Dual Marching Cubes, which sometimes adds
multiple isosurface vertices inside a grid cube.

Kobbelt et al. [KBSS01] published the first algorithm to
construct isosurfaces with sharp features. Their algorithm
constructs a parametric representation of an implicit surface
with sharp features from a grid of directed distances to that
surface. Using linear interpolation, the algorithm computes a
set of isosurface vertices on grid edges. It also computes sur-
face normals at each of these isosurface vertices. Grid cubes
with widely varying surface normals are identified as con-
taining sharp features. If a grid cube does not have sharp
features, an isosurface patch is retrieved from a lookup ta-
ble as in Marching Cubes. If a grid cube has sharp features,
then an additional isosurface vertex is added to the interior of
the grid cube and connected to the isosurface vertices on the
cube edges. The new isosurface vertex is positioned to mini-
mize its least squares distance to tangent planes of the neigh-
boring isosurface vertices. The final step applies edge flip-
ping to connect vertices on sharp features in adjacent cubes.

Ju et al. [JLSW02,SW02] gave an alternative approach us-
ing dual contouring to construct parametric representations
of implicit surfaces with sharp features. Input to their algo-
rithm is hermite data instead of directed distances but the

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

A. Bhattacharya & R. Wenger / Constructing Isosurfaces withSharp Edges and Corners

difference is minimal. Hermite data contains the exact inter-
section points of a surface with a regular grid and the ex-
act normals. These values are easily computed from implicit
surface representations.

The algorithm by Ju et al. retrieves the intersection points
of grid edges and the implicit surface from the hermite data
along with the normals at each intersection point. The nor-
mals define tangent planes at each intersection point. As
in [KBSS01], the algorithm positions the isosurface vertex
within a grid cube to minimize the least squares distance to
tangent planes.

Algorithms by Varadhan et al. [VKKM03] and Zhang et
al. [ZHK04] extended the dual contouring algorithm of Ju et
al. by modeling multiple intersections of an isosurface and
a grid edge and adding more than one isosurface vertex per
grid cube. These algorithms can model thinner features than
the original dual contouring algorithm.

Algorithms by Ho et al. [HWCO05] and Ashida and
Badler [AB03] approximate the intersection of a surface and
each grid cube boundary by a polygonal curve. They con-
nect the curve to a single isosurface vertex in the interior of
the cube. Sharp features are represented by appropriate po-
sitioning of the isosurface vertex and the curve vertices.

Schaefer and Warren [SW04] construct a dual grid whose
vertices and edges are on sharp isosurface features. They ap-
plied Marching Cubes to the dual grid to extract the isosur-
face. Manson and Schaefer [MS10] tetrahedralize the regu-
lar grid and place the tetrahedra vertices on sharp isosurface
features. They apply Marching Cubes to the tetrahedraliza-
tion to extract the isosurface.

Except for the original dual contouring algorithm by Gib-
son and Nielson’s Dual Marching Cubes, all the dual con-
touring algorithms listed above support multiresolution iso-
surface extraction. Other multi-resolution dual contouring
algorithms are given in [SJW07] and [GK04]. Techniques
for creating intersection free dual contouring isosurfaces are
in [JU06] and [Wan11].

Garland and Heckbert [GH97] represented the least
squares distance to a set of tangent planes by a 4x4 ma-
trix which they called the quadric error measure (QEM). The
matrix size is independent of the number of tangent planes.
Lindstrom [Lin00] used the quadric error measure to com-
pute the point which minimizes the least squares distance
to the represented set of tangent planes. When the tangent
planes define an edge or a smooth portion of the isosurface,
Lindstrom’s algorithm selects the point closest to the cube
center. The feature sensitive dual contouring algorithms all
use some variation of the quadric error measure to compute
isosurface vertex locations.

Cheng et al. [CDR07] described an algorithm to mesh
piecewise smooth complexes using weighted Delaunay tri-
angulations. They choose points along the boundaries of
each smooth piece and construct protecting balls around

each such point by assigning a weight to each point. They
then choose sample points from the smooth portion of the
surface outside of the protecting balls and returned the
weighted Delaunay triangulation of the points. Further de-
scriptions can be found in [CDS13].

Salman et al. [SYM10] and Dey et al. [DGQ∗12] use the
protecting balls from [CDR07] to reconstruct surfaces with
sharp features from point cloud data. Both papers identify
sharp features and protect them with balls. They then recon-
struct the surface using the protecting balls.

4. Computing Vertex Locations

As noted in the previous section, hermite data determines
tangent planes to the isosurface, one at each intersection of
the grid edge and the isosurface. For a grid cubec, the k
tangent planes on its edges give a set ofk equations

Mx = b

whereM is a k× 3 matrix andx andb are column vectors
of length k. In general, this system is over-determined so
we wish to find the least squares solution. The least squares
solution is the solution to

MTMx = MTb.

The 3×3 matrixA= MTM and the column vectorb′ = MTb
gives the quadric error measure.

The singular valued decomposition (SVD) ofA is A =
UΣV where

Σ =





σ1 0 0
0 σ2 0
0 0 σ3



 .

σ1, σ2, andσ3 are the singular values ofA. If all three sin-
gular values ofA are large, thenc contains a sharp corner. If
two singular values are large, thenc contains a sharp edge.
Otherwise, cubec does not contain a sharp feature.

σ′
i =

{

σi if σi/σ∗ > ε
0 otherwise

whereσ∗ is the largest singular value andε is a threshold
parameter. LetA′ = UΣ′VT whereΣ′ is the diagonal matrix
with diagonal entries(σ′

1,σ′
2,σ′

3).

WhenA has three large singular values,A′ = A and there
is a single pointx such thatA′x = b. WhenA has two large
singular values,{x : A′x = b′} is a line. WhenA has one
large singular value,{x : A′x = b′} is a plane.

Let

σ+
i =

{

1/σ′
i if σ′

i 6= 0
0 otherwise

Let Σ+ be the diagonal matrix with diagonal entries

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

A. Bhattacharya & R. Wenger / Constructing Isosurfaces withSharp Edges and Corners

(σ+
1 ,σ+

2 ,σ+
3). As in [Lin00], compute:

x′ = qc +VΣ+UT(b′−Aqc). (1)

WhenA has three large singular values,x′ is the point solv-
ing Ax= b. WhenA has two large singular values,x′ is the
point closest toqc on the lineA′x = b. WhenA has only one
large singular value,x′ is a closest toqc on the planeA′x= b.
Lindstrom uses the center of grid cubec as the pointqc.

As described above, matricesA and b′ are determined
by tangent planes. However, they can also be determined
using gradients. Letgi and si be the gradient and scalar
value, respectively, at pointpi . Let σ be the isovalue. The
set{x : gi · (x− pi)+si = σ} is a plane in 3D. Equivalently,
this plane is{x : gi ·x= σ−(gi · pi +si). Letgi be the rows of
M begi/|gi | and the elements ofb be(σ− (gi · pi +si))/|gi |.
(We divide by|gi | so that all normal directions have equal
weight.) ComputeA = MT M and b′ = MTb and solve as
above. This formulation allows us to compute sharp isosur-
face vertex locations directly from gradients, without first
transforming the gradients to hermite data.

Instead settingqc in Equation1 to be the center of cubec,
Schaefer and Warren [SW02] propose settingqc to the cen-
troid of the intersections of the edges ofc and the isosurface.
For reasons discussed in the next section, this choice ofqc

improves the reconstruction results.

Hermite data gives the locations of the intersections of
the edgesc and the isosurface. If the input is a gradient grid,
then these intersections must be computed from the input. A
simple, but inaccurate approach, is to use linear interpola-
tion to compute these intersections points. A more accurate
approach is to use the gradients at the edge endpoints to de-
termine the intersection point.

5. Problems with Vertex Locations

The Extended Marching Cubes algorithm by Kobbelt et
al. [KBSS01] and the dual contouring algorithm by Ju et
al. [JLSW02,SW02] compute an isosurface vertex for each
grid cube using the quadric error measure (QEM). When the
surface is relatively smooth, the isosurface vertex lies within
the grid cube. However, if the surface has a sharp feature,
the vertex location computed using QEM may lie outside
the grid cube. Should the isosurface vertex be placed at the
location outside the grid cube?

The problem of isosurface vertex locations lying outside
the grid cube was noted by Schaefer and Warren in [SW02].
One reason an algorithm may compute a location outside a
grid cube is that it chooses the wrong location on a sharp
edge. Schaefer and Warren used the centroid of the intersec-
tions of the cube edge and the isosurface for the pointp in
Equation1 to make it more likely that a point on the intersec-
tion of the sharp edge and the grid cube is chosen. However,
what happens if the sharp edge or sharp corner does not in-

(a) Dual contouring with clamp-
ing. Notches along the sharp
edge (red) of the isosurface.

(b) Dual contouring with no
clamping. Purple triangle is a
self intersection in the isosur-
face.

(c) MergeSharp of the region in
2ashows no notches.

(d) MergeSharp of the region in
2b shows no intersections.

Figure 2: Isosurface errors produced by dual contouring and
corresponding MergeSharp results. Mesh edges with large
dihedral angle are colored red.

tersect the grid cube? In that case, Schaefer and Warren’s
algorithm will still return a location outside the grid cube.

Consider a grid cubec which generates a vertex location
p on a sharp edge or corner which does not intersectc. Let
c′ 6= c be the grid cube containingp. If cubec′ has a bipolar
edge, then it also generates an isosurface vertexv′. Placingv
in c′ may create degenerate mesh triangles or it may create
overlapping triangles as the mesh folds back on itself. (See
Figure2b.) On the other hand, ifc′ does not have any bipolar
edge, then it does not generate an isosurface vertex. Clamp-
ing v to lie insidec will create notches in the isosurface or
cut off the corner. (See Figure2a.)

One plausible approach might be to clampp to cubec
only if c′ contains a bipolar edge. As shown in Section9,
this approach also produces numerous errors.

For surfaces whose sharp edges are parallel to thexy, yz,
orxzplanes, grid cubes which intersect the surface corners or
edges will almost always have bipolar edges. Thus clamping
isosurface vertexv will not create notches along the sharp
edges and will not cut off corners. On the other hand, ro-
tating such surfaces by any significant angle with respect to
the grid creates many sharp corners or edges which intersect
cubes with no bipolar edges.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

A. Bhattacharya & R. Wenger / Constructing Isosurfaces withSharp Edges and Corners

MERGE(Grid,Cselected)
1 foreach cubec do
2 Compute the centroidqc of the intersections of the

edges ofc and the isosurface;
3 Compute vertex locationpc using Equation1;
4 end
5 Ccorner← cubesc wherepc is on a sharp corner;
6 Cedge← cubesc wherepc is on a sharp edge;
7 SortCcornerandCedgein increasing order by
|pc−qc|∞ (the Linf distance);

8 Mark all cubes asUncovered;
9 MERGECUBES(Ccorner,Cselected);

10 MERGECUBES(Cedge,Cselected);
11 foreach cubec∈Ccorner∪Cedgedo
12 if (c is not selected)and (c is notCovered) then

pc← qc;
13 end

Algorithm 1: Algorithm MERGE.

MERGECUBES(C,Cselected)
1 foreach cubec∈C do
2 if (cubec is Uncovered) and (|pc−qc|∞ ≤ γ)

then
3 if (NOLARGEANGLETRI(c,Cselected)) then
4 Add c toCselected;
5 foreach vertex neighborc′ of c do
6 if cubec′ is Uncovered then
7 c′.MergeWith← c;
8 Mark c asCovered;
9 end

10 end
11 end
12 end
13 end

Algorithm 2: Algorithm MERGECUBES.

6. Merging Grid Cubes

To address the problems discussed in the previous sec-
tion, we use a technique similar to the protecting balls
from [CDR07]. We identify the grid cubes whose isosurface
vertices lie on sharp edges or corners, and select a subset
such that no two selected cubes are vertex neighbors. (A grid
cubec is avertex neighborof grid cubec′ if c shares a ver-
tex with c′.) We merge each selected cubec with its vertex
neighbors. We generate a single vertex for the merged re-
gion.

LetCcornerbe the grid cubes whose isosurface vertices lie
on sharp corners. LetCedgebe the grid cubes whose isosur-
face vertices lie on sharp edges. We start by selecting cubes
from Ccorner.

To select the cubes fromCcorner, we compute the vertex

Figure 3: 2D illustration of cube stack (blue, magenta, red)
which are close enough together to form a triangle yet far
enough apart so that no 3×3×3 cube region covers the other
two cubes. Sharp edge is represented by the green curve.
Each cube generates a vertex location (with the same color
as the cube) on the sharp edge. The triangle formed by the
three vertices is almost degenerate.

locationpc using Equation1. We use the centroid of the in-
tersections of the edges ofc and the isosurface as pointqc.
We process the cubes ofCcorner in increasing order of the
L∞ distance betweenpc andqc. This causes cubes which
are “closer” to the corners to be processed first.

As we select cubes, we merge their vertex neighbors with
them. A cube which has been merged with a selected cube is
labeled “covered”. All cubes are initially uncovered. We se-
lect only uncovered cubes. When we select cubec, we merge
the uncovered vertex neighbors ofc with c. Those vertex
neighbors become covered. Thus no two selected cubes can
be vertex neighbors. If theL∞ distance betweenpc andqc
is greater than some threshold, we do not selectc. We repeat
this procedure to select cubes fromCedge, processing them
in increasing order by theL∞ distance betweenpc andqc.

The procedure, as just described, may still create many
degenerate or near-degenerate triangles. Three cubes neara
sharp edge could be close enough together to form a triangle
yet far enough apart so that no cube region covers the other
two cubes. (See Figure3.) When the vertices generated by
the cube stack are mapped to the sharp edge, the angle at the
middle vertex becomes 180◦ or near 180◦. To avoid such
problem triangles, we do not select a cube which forms a
large angle triangle with already selected cubes. (See Algo-
rithm NOLARGEANGLETRI.)

Checking each pair of cubes inCselectedcan be a time con-
suming operation. We use a simple nearest neighbor data
structure based on a low resolution subgrid to quickly iden-
tify points inCselectedwhich are nearc.

7. Isosurface Construction

The algorithm MERGE (Algorithm 1) constructs regions
with irregular shapes around selected vertices. Instead ofex-
tracting the dual isosurface from those regions, we extract
the dual isosurface from the full grid and then merge isosur-
face vertices which are from cubes in the same region. This

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

A. Bhattacharya & R. Wenger / Constructing Isosurfaces withSharp Edges and Corners

NOLARGEANGLETRI(c,Cselected)
1 for each pairc′,c′′ ∈Cselectednearc do
2 R′← Reg3x3x3(c)∩Reg3x3x3(c’);
3 R′′← Reg3x3x3(c)∩Reg3x3x3(c”);
4 R′′′← Reg3x3x3(c’)∩Reg3x3x3(c”);
5 if (R′ has a bipolar edge andR′′ has a bipolar edge

andR′′′ has a bipolar edge)then
6 α← max angle of triangle∆(pc, pc′ , pc′′);
7 if (α≥ 140◦) then return (false);
8 end
9 end

10 return (true);

Algorithm 3: Algorithm NOLARGEANGLETRI.

is simpler than trying to extract the dual isosurface from the
regions.

Our algorithm for isosurface construction has four steps.
First, compute an isosurface vertex location for each grid
cube with a bipolar edge. Second, select a set of isosurface
vertices on sharp corners and edges and their surrounding
regions. Third, apply Nielson’s Dual Marching Cubes algo-
rithm [Nie04] to construct the dual contouring isosurface
from the full grid. Finally, for each merged region, merge
isosurface vertices generated by the cubes in that region (Al-
gorithm 2). Merging isosurface vertices transforms isosur-
face quadrilaterals to triangles and creates some degenerate
quadrilaterals which are removed.

8. Measuring Correctness of Sharp Features

A procedure called FindSharp is used to compute and vi-
sualize sharp edges. FindSharp computes the dihedral angle
between adjacent surface polygons. It reports any isosurface
edge whose dihedral angle is greater than a threshold (40◦)
or which is incident on three or more isosurface polygons.
We visualize such edges by drawing them in red, either with
or without the underlying isosurface.

The set of isosurface edges reported by FindSharp is a
graph embedded inR3. Procedure CountDegree measures
the correctness of the sharp feature reconstruction by count-
ing the number of vertices of each degree in this graph. The
absolute difference between this and the expected number
gives the number of errors for that degree. The total error is
the sum of those errors.

For example, the flange isosurfaces (Figure4b) have no
corners, so the graph of its sharp edges should have no ver-
tices of degree other than two. Any vertices of any other de-
gree are errors. The isosurface of cube stack (Figure4a) have
32 corners and saddles. The graph of its sharp edges should
have exactly 32 degree 3 vertices. Any vertices of degree 1
or degree more than three are errors.

(a) Cube stack. (b) Flange.

Figure 4: Elements from our evaluation datasets. The cube
stacks and flanges are rotated at various angles to test the
robustness of the algorithms. Note that each data set contains
only one cube stack or flange, not two or three as shown here.

9. Experimental Results

9.1. Benchmark Datasets and Evaluation Interpretation

We developed two sets of data to test our algorithm. The
cube stack datasets sample a scalar fieldf : R

3→ R where
f (p) is the minimum of theL∞ distance to three points,
q1,q2 andq3. Isosurfaces in the datasets are three (overlap-
ping) cubes, whose centers areq1,q2 andq3 (Figure4a). To
tilt the cubes, we used orthogonal frames other than the stan-
dard one given by thex, y, z axes, and computed theL∞

metric in those other frames. The cube stack datasets test the
performance of our algorithm on sharp corners or saddles.

The flange datasets sample a scalar fieldf : R3→R where
f (p) is the combination of the distancedC(p) to a cylinder
and the distancedP(p) to a plane orthogonal to the cylinder
axis. The functionf is defined as:

f (p) = max(min(dC(p),dP(p)),max(dC(p),dP(p))/2).

Isosurfaces in these datasets are flanges with sharp concave
and convex edges. (Figure4b). The flange datasets test the
performance of our algorithm on sharp edges.

We embedded each scalar field in a 100x100x100 grid at
various angles to the grid axes. The grids contain both scalar
values AND the gradients of the underlying scalar field at
each grid vertex. With the different embeddings, we have a
total of 100 datasets, which we test with six different isoval-
ues for a total of 600 test cases. We applied FindSharp and
CountDegree to the isosurfaces produced from each dataset
and measured the total degree errors as described in the pre-
vious section. Isosurfaces that have poor representation of
sharp features produce numerous graph vertices with degree
one, three or higher. We counted the number of isosurface
which had no errors, the number which have between 1 and
10 errors and the number with more than 10 errors. For in-
stance, the second column of Table1 shows that our algo-
rithm produced 343 isosurfaces with no detected errors, 243
isosurfaces with 1 to 10 errors, and 14 isosurfaces with more
than 10 errors. In contrast, the various versions of dual con-

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

A. Bhattacharya & R. Wenger / Constructing Isosurfaces withSharp Edges and Corners

Dual Contouring
Num
Errors

Merge-
Sharp

Clamp No
Clamp

Clamp
Conflict

0 343 10 56 32
1-10 243 23 370 221
> 10 14 567 174 347

Table 1: Error counts for MergeSharp and for dual contour-
ing. Error counts for dual contouring where isosurface vertex
positions are clamped to their generating cube (Clamp), not
clamped (No Clamp), or clamped if they initially lie in some
cube which has a bipolar edge (Clamp Conflict).

touring with and without clamping produced fewer than 60
isosurface with no detected errors.

9.2. Evaluation

We first compared our algorithm based on merging cubes
with an implementation of dual contouring with no cube
merging. We compared it against versions of dual contour-
ing where isosurface vertices are clamped to their generat-
ing grid cube, where isosurface vertices are not clamped to
their generating grid cube, and where isosurface vertices are
clamped only if they lie in some other grid cubec′ which has
a bipolar edge.

The flange and cube stack datasets contain scalar values
and gradients at grid vertices. To make the dual contouring
algorithms as similar as possible to [JLSW02], we converted
the grid data to hermite data by computing the intersection
of the isosurface and each grid edge using the gradients at
the edge endpoints. We ran both our algorithm and the dual
contouring on this hermite data.

The results are described in the Table1. Our algorithm
(MergeSharp) does significantly better than the various ver-
sions of dual contouring. Figure2 contains sample problems
region produced by dual contouring with conflict clamping
and with no clamping and the MergeSharp isosurface for the
corresponding regions.

The program Polymender [Ju04] produces and outputs
hermite data representing the distance to an input polygo-
nal model. We downloaded four triangle mesh datasets from
grabcad.com/library/software/stl-for-3d. We rotated three of
the datasets (brake, rotor, rotor arm) so that their sharp edges
were not parallel to thexy, yz or xz planes. We used Poly-
mender to produce hermite data for the datasets and com-
pared the isosurfaces produced by Polymender and by our
algorithm. We used an octree depth of 8 and a scale parame-
ter of 0.8 for Polymender.

Figures1 and5 contain visual comparisons of outputs of
Polymender and MergeSharp on the weld and rotor datasets.
Results in Table2 show that MergeSharp is far superior
at constructing sharp isosurface edges which represent the

(a) Polymender isosurface.

(b) MergeSharp isosurface.

Figure 5: Close-up isosurfaces on the rotor dataset. Edges
with large dihedral angle are shown in red. (a) Yellow rect-
angles indicate some problematic regions in Polymender iso-
surface.

sharp edges in the original polygonal model. Polymender did
well on the three original models of brake, rotor and rotor
arm when no rotation was applied to those models.

An implementation by J. Manson of isosurfacing from
simplicial decompositions [MS10] is available at josiahman-
som.com/research. Figure6 contains an isosurface of a non-
axis aligned cylinder produced by Manson’s program. The
isosurface contains many small, thin triangles. The smooth
part of the isosurface contains many (red) edges with large
dihedral angles. There are also many errors around the sharp
cylinder edge.

We applied FindSharp and CountDegree to the isosurface
displayed in Figure6. The graph of sharp edges of this iso-
surface has 381 vertices with degree other than two. It should
have zero vertices with degree other than two. Because Man-
son’s program does not produce hermite data or a scalar grid,
we were unable to compare it directly with MergeSharp.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

A. Bhattacharya & R. Wenger / Constructing Isosurfaces withSharp Edges and Corners

Polymender MergeSharp
Dataset Degree

1
Degree
3

Degree
≥ 4

Total 6=
2

Degree
1

Degree
3

Degree
≥ 4

Total 6=
2

Weld 437 429 176 1042 48 34 3 85
Brake 674 490 282 1446 7 35 3 45
Rotor arm 58 72 19 149 2 6 2 10
Rotor 647 485 188 1320 2 6 2 10

Table 2: Comparison of Polymender and MergeSharp on triangle mesh data sets.

Figure 6: Results of Manson’s implementation of [MS10]
on a non-axis aligned cylinder.

min large singular value
Num Errors 0.05 0.1 0.2
0 418 411 344
1-10 175 185 250
≥ 10 7 4 6

Table 3: Comparing different thresholds for the singular
value. Singular values below the threshold are set to 0 in
computing vertex locations.

As in [SW02] we truncate the singular values based on
the relative magnitude to the largest singular value. For all
previous tables, we use 0.1 as the threshold. In Table3 we
show the results of running MergeSharp with other threshold
values.

Finally, we claim that our algorithm was robust to noise.
Figure7 contains a visual comparison of the results of our
algorithm and MergeSharp. Table4 contains results compar-
ing MergeSharp on perfect data and on data with noisy gra-
dient directions. The results from dual contouring (Fig7a)
contain numerous errors, with almost all cases resulting in
more than 10 errors.

More evaluation results are contained in the technical re-
port [BW13].

(a) Dual contouring,
no clamping.

(b) MergeSharp.

Figure 7: Noisy data where gradients were perturbed uni-
formly by an angle of 20 degrees. a) Isosurface from dual
contouring with no clamping. b) MergeSharp isosurface.

Num Errors perfect grad 10 degrees 20 degree
0 201 155 43
1-10 96 135 100
≥ 10 3 10 157

Table 4: Effect of adding uniform noise to the gradients (300
test cases). Gradients were perturbed uniformly within the
given angular bound.

9.3. Timings

We ran our experiments on a standard desktop with four
giga-byte ram and with two cores Intel CPU. Table5 gives
execution times both for hermite data and gradient data. Fig-
ure8 graphs execution time as a function of grid size.

Both Table5 and Figure8 show that the most time con-
suming step is computing vertex locations. This step is com-
mon to all algorithms which construct isosurfaces with sharp
features. Vertex locations are computed for every cube inter-
sected by the isosurface. Thus, the time for computing loca-
tions is proportional to the number of cubes intersected by
the isosurface. The time to merge cubes, a step specific to
MergeSharp, is insignificant compared to the time to com-
pute vertex locations.

MergeSharp takes slightly more time on gradient data
than on hermite data. The gradient based computation uses
more vectors per cube than the hermite based computation.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

A. Bhattacharya & R. Wenger / Constructing Isosurfaces withSharp Edges and Corners

Time (seconds)
Dataset # cubes pos merge trimesh total
Weld 60389 6.14 0.13 1.36 7.63
Rotor 174323 11.6 0.3 1.4 13.3

Flange(h) 154380 11.1 0.22 1.25 12.57
Flange(g) 154380 9.98 0.22 1.25 10.45

Table 5: Execution times for MergeSharp on weld, rotor and
flange datasets. All data set dimensions are 2563. Flange(h)
is computation time on hermite data. Flange(g) is compu-
tation time on gradient data. Second column (# cubes) is
the number of cubes intersected by the isosurface. Reported
times are time to compute isosurface vertex positions (pos),
time to merge cubes using Algorithm2 (merge), time to con-
struct the triangle mesh (trimesh) and total time to construct
the isosurface (total).

 0

 5

 10

 15

 20

 25

100 200 250 300 350

T
im

e
in

 S
ec

on
ds

Number of cubes per-grid-direction (total num = R3) :

Position Isovert (hermite)
Position Isovert (Grad)

Merging isovert
Trimesh

Figure 8: MergeSharp on flange datasets of various sizes.
Graphs of time to position the isosurface using hermite data,
time to position the isosurface using gradient data, time to
merge grid cubes and time to extract isosurface triangles.

The gradient based computation also takes time to select the
relevant gradients.

To compute the isosurface vertex location we use the
Eigen Library, which we suspect is slow. A dedicated sin-
gular value decomposition solver for a 3x3 matrix would de-
crease the time to compute vertex locations.

10. Discussion and Future Work

MergeSharp produces significantly better results than the
dual contouring algorithm [JLSW02] implemented in Poly-
mender [Ju04]. It also does better than the tetrahedral based
algorithm in [MS10]. MergeSharp also shows measurable
robustness under noise and it can run directly from gradient
data, not just hermite data.

We do not have implementations for the other algorithms
for constructing isosurfaces with sharp features. We discuss
those algorithms below.

The Extended Marching Cubes [KBSS01] behaves quite
like the dual contouring algorithm of [JLSW02]. We believe

that our algorithm would also do measurably better against
Extended Marching Cubes on the same test cases given in9.

The algorithms in [AB03, GK04, HWCO05, VKKM03,
ZHK04] implicitly address the problems described in Sec-
tion 5 by adding more vertices and polygons around sharp
features. Our approach is the exact opposite, using fewer, not
more, vertices to represent the isosurface near sharp features.
We don’t know how well those algorithms would perform on
the FindSharp and CountDegree tests of Section8, but they
may do quite well. However, because of their subvoxel con-
structions, we believe that they are very sensitive to errors in
their input data. We are interested in computing sharp fea-
tures from gradient data and ultimately scalar data where the
gradients are computed from a scalar grid. The precise posi-
tion and gradient information needed for those algorithms is
probably not available in scalar input data.

The algorithm in [SW04] is similar to the one in [MS10].
We believe it would have similar problems, producing small,
thin triangles that poorly model the sharp features.

Many of the dual contouring algorithms support multi-
resolution contouring. Our algorithm can easily be modified
to support multi-resolution contouring in the smooth regions
of the grid. Supporting multi-resolution contouring around
the sharp features would be more difficult, but possible.

The use of fewer, not more, isosurface vertices around
sharp features may seem counter-intuitive but we believe itis
in fact correct. Continuity in smooth regions implicitly gives
information about surface location. This information is miss-
ing near sharp features requiring the use of more sample
points to determine feature location. Thus isosurface reso-
lution should be lower, not greater, around sharp features.
However, if our algorithm processes smooth regions with
high levels of detail as regions containing a sharp feature,
then some of that detail will be lost. This is an unfortunate,
unintended consequence of our processing of sharp regions.
We plan to run experiments to determine the extent of this
problem. We also think that some extra processing to de-
termine smooth regions with high levels of detail will help
ameliorate this problem.

Our algorithm does not guarantee that the output isosur-
face is a manifold. We are currently working on modifying
our algorithm to make this guarantee.

Our ultimate goal is to reconstruct sharp isosurfaces from
just scalar data. Gradient information must be computed
from the scalar data, and will inherently have some errors.
Our algorithm which is robust under gradient errors is an
important step toward our goal.

11. Acknowledgments

Work on this research was partially supported by NSF grant
CCF-0635008.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

A. Bhattacharya & R. Wenger / Constructing Isosurfaces withSharp Edges and Corners

References

[AB03] A SHIDA K., BADLER N. I.: Feature preserving manifold
mesh from an octree. InProceedings of the Eighth ACM Sympo-
sium on Solid Modeling and Applications(2003), ACM Press,
pp. 292–297.

[BW13] BHATTACHARYA A., WENGER R.: Experimental Re-
sults on MergeSharp. Tech. Rep. OSU-CISRC-3-15-TR05, Dept.
of Computer Science and Engineering, The Ohio State Univer-
sity, 2013.

[CDR07] CHENG S.-W., DEY T. K., RAMOS E. A.: Delaunay
refinement for piecewise smooth complexes. InProceedings of
the eighteenth annual ACM-SIAM symposium on Discrete algo-
rithms (Philadelphia, PA, USA, 2007), SODA ’07, Society for
Industrial and Applied Mathematics, pp. 1096–1105.

[CDS13] CHENG S.-W., DEY T. K., SHEWCHUK J. R.: Delau-
nay Mesh Generation. Chapman and Hall / CRC computer and
information science series. CRC Press, 2013.

[CK07] CHENEY E. W., KINCAID D. R.: Numerical Mathemat-
ics and Computing. Brooks/Cole Publishing Co., Pacific Grove,
CA, USA, 2007.

[DGQ∗12] DEY T. K., GE X., QUE Q., SAFA I., WANG L.,
WANG Y.: Feature-preserving reconstruction of singular sur-
faces.Comp. Graph. Forum 31, 5 (Aug. 2012), 1787–1796.

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification
using quadric error metrics. InProceedings of the 24th Annual
Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 1997(1997), pp. 209–216.

[Gib98a] GIBSON S. F. F.: Constrained elastic surface nets: Gen-
erating smooth surfaces from binary segmented data. InPro-
ceedings of the First International Conference on Medical Image
Computing and Computer-Assisted Intervention, MICCAI 1998
(1998), Springer-Verlag, pp. 888–898.

[Gib98b] GIBSON S. F. F.: Using distance maps for accurate sur-
face representation in sampled volumes. InProceedings of the
1998 IEEE Symposium on Volume Visualization(1998), pp. 23–
30.

[GK04] GRESSA., KLEIN R.: Efficient representation and ex-
traction of 2-manifold isosurfaces using kd-trees.Graphical
Models 66, 6 (2004), 370–397.

[HWCO05] HO C., WU F., CHEN B., OUHYOUNG M.: Cubical
marching squares: Adaptive feature preserving surface extraction
from volume data.Computer Graphics Forum 24(2005), 2005.

[JLSW02] JU T., LOSASSOF., SCHAEFERS., WARREN J.: Dual
contouring of hermite data.ACM Transactions on Graphics 21,
3 (2002), 339–346.

[Ju04] JU T.: Robust repair of polygonal models.ACM Transac-
tions on Graphics 23, 3 (Aug. 2004), 888–895.

[JU06] JU T., UDESHI T.: Intersection-free contouring on an oc-
tree grid. InProceedings of the 14th Pacific Conference on Com-
puter Graphics and Applications(2006).

[KBSS01] KOBBELT L. P., BOTSCH M., SCHWANECKE U.,
SEIDEL H.-P.: Feature sensitive surface extraction from volume
data. InProceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 2001(2001),
ACM Press, pp. 57–66.

[LC87] LORENSENW., CLINE H.: Marching cubes: A high res-
olution 3D surface construction algorithm.Computer Graphics
21, 4 (1987), 163–170.

[Lin00] L INDSTROM P.: Out-of-core simplification of large

polygonal models. InProceedings of the 27th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIG-
GRAPH 2000(2000), ACM Press/Addison-Wesley Publishing
Co., pp. 259–262.

[MS10] MANSON J., SCHAEFERS.: Isosurfaces over simplicial
partitions of multiresolution grids.Computer Graphics Forum
29, 2 (2010), 377–385.

[Nie04] NIELSON G. M.: Dual Marching Cubes. InProceed-
ings of IEEE Visualization 2004(2004), IEEE Computer Society,
pp. 489–496.

[SJW07] SCHAEFER S., JU T., WARREN J.: Manifold dual
contouring. IEEE Transactions on Visualization and Computer
Graphics 13, 3 (May 2007), 610–619.

[SW02] SCHAEFER S., WARREN J.: Dual Contouring: The Se-
cret Sauce. Tech. Rep. TR 02-408, Dept. of Computer Science,
Rice University, 2002.

[SW04] SCHAEFER S., WARREN J.: Dual marching cubes: Pri-
mal contouring of dual grids. InProceedings of the Computer
Graphics and Applications, 12th Pacific Conference(2004),
IEEE Computer Society, pp. 70–76.

[SYM10] SALMAN N., YVINEC M., MERIGOTQ.: Feature pre-
serving mesh generation from 3d point clouds.Computer Graph-
ics Forum 29, 5 (2010), 1623–1632.

[VKKM03] V ARADHAN G., KRISHNAN S., KIM Y. J.,
MANOCHA D.: Feature-sensitive subdivision and isosurface re-
construction. InProceedings of IEEE Visualization 2003(2003),
IEEE Computer Society, pp. 99–106.

[Wan11] WANG C.: Intersection-free Dual Contouring on Uni-
form Grids: An Approach Based on Convex/Concave Analysis.
Tech. rep., Dept. of Mechanical and Automation Engineering,
The Chinese University of Hong Kong, Hong Kong, 2011.

[ZHK04] ZHANG N., HONG W., KAUFMAN A.: Dual contouring
with topology-preserving simplification using enhanced cell rep-
resentation. InProceedings of IEEE Visualization 2004(2004),
IEEE Computer Society, pp. 505–512.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

