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ABSTRACT

We present an algorithm to reconstruct a collection of piecewise smooth simple
closed curves in the plane from a set of n sample points in O(nlogn) time. We prove
our algorithm correctly reconstructs the curves assuming certain sampling conditions
which are based on the minimum angle made by tangents at any corner point but does
not include any assumptions about the uniformity of the sampling.

1. Introduction

Let T be a collection of simple closed curves in the plane. Let P be a finite set
of points from T, called the sample set of I'. Our objective is to reconstruct I" from
the sample set P. More specifically, two sample points p,p’ € P are adjacent (on
) if an interval on T from p to p' does not contain any other points of P. We wish
to form polygonal curves connecting all pairs of adjacent sample points on T

Numerous methods have been proposed which guarantee reconstruction of
smooth closed curves under uniform sampling conditions including a-shapes®12,
B-skeletons!®, r-regular shapes* and minimum spanning trees®. Edelsbrunner gives
a survey of these techniques in [11].

In 1998, Amenta, Bern and Eppstein® presented an algorithm, called CRUST,
which was guaranteed to reconstruct a smooth curve from a set of sample points
under appropriate sampling conditions. As opposed to previous algorithms, the
sampling was not required to be uniform. Instead, the sampling density could vary
over the curve, increasing in “crowded” areas or in areas of high curvature and
decreasing in flat, isolated areas of the curve.

The CRUST algorithm required two separate Voronoi diagram computations.
Dey and Kumar® and Gold'® gave simplified versions of the algorithm which re-
quired only one such computation.

*Funded by NSF grant CCR-9988216.



Figure 1: Nearest neighbors are not necessarily adjacent.

There were two major drawbacks to the CRUST algorithm and the variations.
First, the algorithm reconstructed closed curves, but was unable to handle open
curves or collections of open curves. Dey, Mehlhorn and Ramos'® presented the
CONSERVATIVE-CRUST algorithm which closely checked and eliminate some of
the reconstruction edges that might have been added by CRUST. They gave cer-
tain reconstruction guarantees, even for open curves, under appropriate sampling
conditions.

The second problem was that CRUST required the curves to be smooth to
guarantee reconstruction. It often failed, both in theory and in practice, to produce
correct reconstructions of curves with corner points. One problem is that in the
neighborhood of a corner, two non-adjacent sample points can be much closer to each
other than to any other points. (See Figure 1.) Increasing the required sampling
density will not help, since the same pattern can occur at a smaller scale arbitrarily
close to the corner.

In [14], Giesen showed that for sufficiently dense samplings, the travelling sales-
man tour will be a correct reconstruction of a piecewise smooth simple closed curve.
The curves must satisfy the condition that the angle made by the tangents at any
corner point must be non-zero. In general, the travelling salesman tour is difficult
to compute. Althaus and Mehlhorn! showed how to compute it in polynomial time
for curve reconstruction. Their solution is based on formulating the problem as
a linear program and applying the Ellipsoid method. They do not give the exact
polynomial which is dependent on the bit size in the cost function of the linear pro-
gram. In practice, they report using the simplex method with cutting planes which
seems to work well even though it takes potentially exponential time. Althaus et.
al. in [2] report that the travelling salesman method can take up to thirteen times
longer than CRUST and its variants on data sets of approximately three thousand
sample points.

Althaus and Mehlhorn® also showed how to extend the travelling salesman ap-
proach to handle an open curve or a collection of closed curves. They were unable
to apply the method to collections of open and closed curves.

In [8], we presented a heuristic for reconstructing collections of piecewise-smooth
curves from a set of sample points. We used the sampling conditions of Amenta,
Bern and Eppstein but modified those sampling conditions in the neighborhood of
the corner points. Our algorithm did not guarantee a correct reconstruction on
piecewise-smooth curves, but in practice did fairly well.
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Figure 2: Point set P’ satisfies the angular sampling condition of Ramos and Funke
for Ogngie = 120° but point set P C P’ does not, since Z(p1,ps, p2) > 120°.
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Figure 3: A uniform sampling which does not satisfy the angular sampling condition
of Ramos and Funke for 04,1 = 120°, since Z(p2, ps, p3) > 120°.

Recently, Ramos and Funke!® presented an algorithm for reconstructing collec-
tions of open and closed piecewise-smooth curves. Their algorithm used local criteria
to find reconstruction edges and estimate sharp corner points and endpoints. Their
algorithm runs in O(n.n?) time where n is the number of sample points and n,. is
the number of sharp corners. In practice, they claim that their algorithm runs in
O(n.n) time.

Ramos and Funke introduced a new sampling condition which was substantially
different from those in previous papers. For any edge (p1,p2) of the correct re-
construction and any other sample point ¢, angle Z(p1,q,p2) was bounded from
above by a constant 84,4 Their reconstruction guarantees depend upon this sam-
pling condition, particularly in the neighborhood of sharp corners. In practice, they
recommend a value of 120° for this bound.

The angular sampling condition of Ramos and Funke has some odd conse-
quences. For one thing, a subset of some sample set P may satisfy this sampling
condition while P does not. (See Figure 2.) For another, an arbitrarily dense
sampling may fail to satisfy this sampling condition near a corner angle less than
180 — Ogngie- (See again Figure 2, where P could be scaled down to be arbitrar-
ily close to the corner.) Even a dense uniform sampling where the length along
the curve between every two adjacent sample points is equal may not satisfy this
condition near sharp corners. (See Figure 3.)

If Oungie is chosen to be larger than 180 — i, where p is the minimum angle at any
corner, then the angular sampling condition will be guaranteed in the neighborhood
of corners. However, the angular sampling condition must also be satisfied in the
smooth portions of the curve. Thus as 0,4 increases, the required sampling
density in the smooth portions of the curve also increase.



In this paper, we present an algorithm for reconstructing a collection of
piecewise-smooth closed curves and prove that our algorithm produces a correct
reconstruction under appropriate sampling conditions. We require the same condi-
tion as Giesen that the angle made by the tangents at any corner point must be
non-zero. Qur algorithm is based on ideas from our algorithm Gathan in [8], but is
carefully structured to guarantee a provably correct reconstruction.

The only parameter required by our algorithm is the minimum angle over all
the corner points. This minimum angle affects the sampling condition for the three
or four points nearest to each corner. It has no affect on any other portions of the
curve.

Given the minimum angle p over all the corner points, Ramos and Funke could
apply their algorithm using a value 0,y > 180 — . In this sense, their algorithm is
more general than ours. On the other hand, Ramos and Funke’s algorithm requires
that the sampling density in smooth portions of the curve increases with 8,y,-
The minimum angle p affects our sampling density only in a small neighborhood
of each corner. In this sense, our sampling condition is less restrictive than the one
given by Ramos and Funke.

The algorithm by Ramos and Funke guarantees proper reconstruction in the
presence of open curves under appropriate sampling conditions. Our algorithm
does not. Our algorithm may also be affected by undersampling in critical portions
of the curve and by noise from outliers. We present some simple modifications to
our original algorithm which improve its performance under these various condi-
tions. The modified algorithm still is guaranteed to run correctly on collections of
properly sampled simple closed curves but no guarantees are made for open curves.
Guaranteeing correct reconstruction of even smooth open curves requires an addi-
tional level of algorithmic and analytic complexity which is far beyond our simple
modifications. (See [10].)

Both our original algorithm and the modified practical version run in O(nlogn)
time on a set of n sample points. The nlogn time is required for computation of
the Delaunay triangulation and for an initial sorting of the Delaunay edges. The
rest of the algorithm runs in linear time.

In Section 2, we discuss the basic ideas behind our algorithm. Section 3 describes
the algorithm itself. Section 4 discusses some properties of the neighborhoods of
corners. Section 5 gives the sampling conditions required for guarantees of re-
construction. In Section 6, we prove that the algorithm will correctly reconstruct
collections of simple closed curves under the appropriate sampling conditions. Sec-
tion 7 analyzes the running time of the algorithm. Section 8 describes the practical
modifications of the algorithm which help it handle endpoints, undersampling and
outliers. Section 9 gives some experimental results. Finally, Section 10 concludes
with some open problems.

2. Voronoi Diagrams of Sample Sets

Our algorithm belongs to a whole slew of curve reconstruction algo-
rithms [3,4,9,10,15,17] which are based on the Voronoi diagrams and Delaunay



triangulation of the sample point set. All the algorithms produce a reconstruc-
tion which is a subset of the Delaunay edges of the sample points. They differ in
how they use the Voronoi diagram to determine which Delaunay edges to choose.

Amenta, Bern and Eppstein noted that if a sampling of a smooth curve is suffi-
ciently dense, then the Voronoi cells are long and thin in a direction approximately
parallel to the curve normals. A pole of a sample point p is the furthest point from
p in its Voronoi cell. If the Voronoi cell is unbounded, then the pole is one of the
points in the Voronoi cell at infinity. The pole direction, d(p), is the direction from
p to the pole. If a sampling curve is sufficiently dense, then the pole direction d(p)
is a good approximator for the curve normal up to orientation.

The basis for our heuristic in [8] and our algorithm in this paper is the obser-
vation that even if a curve contains sharp corners, the Voronoi cells are almost all
still long and thin in a direction approximately parallel to the curve normals. Thus
the pole directions are still good approximators for the curve normals (Lemma 9.)
The only exceptions are the Voronoi cells of sample points which are located on or
adjacent to the corners.

Pole directions are good approximators of the curve normal only up to orienta-
tion. Two adjacent sample points on the curve may have pole directions which are
almost opposite. However, in a sufficiently small neighborhood of a sharp corner,
all pole directions will point on the same side of the curve, “away” from the corner
(Lemma 7.) We make extensive use of this fact to avoid non-reconstruction edges
which cut across a corner.

Another component of our algorithm is the ratio test which compares the length
of a Delaunay edge (p1,p2) to the distance from p; (or equivalently from ps) to the
endpoints of the dual Voronoi edge. (In [8], we used an equivalent ratio test which
compared the distance from the midpoint of (p;,ps) to the endpoints of the dual
Voronoi edges.) Let L be the distance from the p; to the farthest endpoint of the
dual Voronoi edge on a given side. If there is no endpoint on that side, let L be
0. The Delaunay edge (p1,p2) passes the ratio test on the given side for ratio o,
if L/|e| is greater than . We use the ratio test to avoid non-reconstruction edges
which cut across a corner.

3. Algorithm

Our algorithm is based on the nearest neighbor reconstruction algorithm by Dey
and Kumar®. Our algorithm starts by constructing the Delaunay triangulation and
Voronoi diagram of the sample points. It then reconstructs the curve in four steps.
First, it verifies that certain nearest neighbor edges are part of the reconstruction.
These verified edges are “seeds” for the rest of the reconstruction. The second
step extends the reconstruction along adjacent sample points whose poles point in
approximately the same direction. This will reconstruct most of the curve in the
neighborhood of each corner point, except perhaps for edges adjacent to the corner.
The third step adds any of the missing edges adjacent to the corners. The last step
adds any edges missed by the first three, essentially, any edges in smooth portions
of the curve where the pole direction flips from one side of the curve to the other.



Sharp_Reconstruction(P, n, «)

/* P is a set of n sample points */

/* a is a strict lower bound on the minimum corner angle */
1. Construct the Delaunay triangulation, T, of P;

2. Connect_Nearest_Neighbors(7); /* Connect nearest neighbors */
3. Extend_Pole Pole(T, a); /* Extend using pole-pole and angle tests */
4. Add_Corner _Edges(T, o); /* Add edges adjacent to corners */
5. Extend_Smooth(7); /* Extend to smooth portions of the curve */

Figure 4: Curve reconstruction algorithm.

Connect_Nearest_Neighbors(T)
/* Connect nearest neighbors which pass the pole-pole test */
1. for each vertex p; of 7 do

2. p2 <+ Nearest-Neighbor(p, );

3 if Z(d(p1),d(p2)) < 60°, then

4. Mark (p1,p2) as a reconstruction edge;
5 endif

6. endfor

Figure 5: Connect nearest neighbors algorithm.

(See Figure 4.)

In the neighborhood of a corner, nearest neighbors are not necessarily adjacent
reconstruction vertices (See Figure 1.) However, if nearest neighbors are not adja-
cent, then their pole directions will be vastly different (Lemma 12.) Thus in the first
reconstruction step, we check the angle between the pole directions at the endpoints
of an edge. If the angle is large, we do not add the edge to the reconstruction at
this time. (See Figure 5.)

The second step is the most difficult. The heart of the second step is a set of
criteria which permits us to eliminate some edges from consideration.

Consider a vertex p; which has exactly one edge (po,p1) in the current recon-

Vor_Del Ratio(T, po, p1, P2)
/* return Voronoi-Delaunay ratio for Delaunay edge (p1,p2) */

1. If d(p1) is on the left of curve (pg,p1,p2), then

2. V Rad <+ radius of largest empty circle through p; and p, whose center
lies on left side of (p1,p2). (0 if there is no such circle;)

3. else

4. V Rad < radius of largest empty circle through p; and ps whose center

lies on right side of (py,p2). (0 if there is no such circle;)
5. return(V Rad/|(p1, p2)|);

Figure 6: Compute Voronoi-Delaunay ratio.



Shortest_Potential(T, p, a)
/* return shortest potential edge incident on p */

1. (go,q1) ¢« shortest edge incident on p such that for each endpoint g; of e:
e At most one edge incident on ¢; is marked as a reconstruction edge;
e If ¢; is incident on a reconstruction edge (g:,q), and Z(q1—i,¢,q) < 30°,
then Z(d(g1-:),d(q)) > 90°;
/* Note ¢;_; is the other endpoint of e */

o If g; is incident on a reconstruction edge (g;,q) and Z(q1-s,4qi,q) < 135°,
then Vor_Del Ratio(T, q, gi, g1—i) >

= 2sin(a) ;

2. return((qo, q1));

Figure 7: Criteria for shortest potential edges.

Verify Edge(T, po, p1, P2)

/* verify that (p1,p2) is a reconstruction edge */

/* edge (po,p1) is an identified reconstruction edge */
1. if Z(pg, p1,p2) > 120° then

2. if Z(d(p1),d(p2)) < 60° then

3. return (true); /* verified reconstruction edge */

4. n <+ normal to (p1,p2) on same side of curve (pg,p1,p2) as d(p1);
5. if (Z(d(p1),d(p2)) < 120°) and (£(n,d(p2)) < 120°) then

6. if Vor_Del _Ratio(T, po, p1, p2) > m then

7.

return (true); /* verified reconstruction edge */
8. return ( false ); /* unable to verify reconstruction edge */

Figure 8: Verify that edge (p1,p2) is a reconstruction edge.

Extend_Pole_Pole(T, «)

/* Add shortest potential edges passing pole-pole and angle tests */
1. Add all vertices to stack S;

2. while S # 0 do

3. p1 < S.Pop();

4 if p; is incident on exactly one reconstruction edge (po,p1) then
5 (p1,p2) ¢ Shortest_Potential(T, p1, a);
6 if Verify _Edge(T, po,p1,p2) then

7. Mark (p1,p2) as a reconstruction edge;
8

9.

Add p2 and all neighbors of p; and ps to stack S;
endwhile

Figure 9: Extend using pole-pole and angle tests.



struction. (We use (po,p1) to denote both the line segment connecting points pg
and p; and the Delaunay edge connecting vertices pg and p;.) We would like to find
the missing edge. Possible candidates include the shortest edge (p1,p2) incident on
p1 (other than (pg,p1)) or the shortest edge (p1,p2) which makes an angle of at
least ninety degrees with (pg,p1). Neither of these quite suffice. Instead, we apply
three criteria to eliminate edges incident on p; from consideration.

Let (po,p1) be an edge of the Delaunay triangulation and (pi,p2) be a recon-
struction edge. We first note that if we have already found two reconstruction
edges incident on py or p;, then (pp,p:1) is not a reconstruction edge. Secondly, if
Z(po, p1,p=2) is at most 30 degrees and the angle between the pole directions d(po)
and d(p2) is small, then (pg,p:1) is not a reconstruction edge. Finally, the pole di-
rection d(p;) points to one side of the curve (po,p1,p2). If edge (po,p1) fails the
ratio test on this side and Z(po, p1,p2) is at most 135 degrees, then (po,p1) is not a
reconstruction edge. We use the ratio m for the ratio test where « is a strict
lower bound on the minimum corner angle. (See Figures 6 and 7.)

The justification for the first criterion is obvious. For the second, if (po,p;) and
(p1,p2) were correct reconstruction edges and Z(po, p1,p2) was less than 30 degrees,
then p; would be adjacent to a corner with angle approximately 30 degrees or less.
Since the pole directions all point away from the corner, the pole directions at pg
and ps should point away from one another (Lemma 11.) If they do not, then
(p1, p2) is not a reconstruction edge.

For the third criterion, if (po,p1) and (p1,p2) were correct reconstruction edges
and Z(pg,p1,p2) was at most 135 degrees, then again p; would be adjacent to a
corner (Lemma 3.) Our sampling condition in the neighborhood of a corner will
guarantee that (pi,p2) satisfies the ratio condition on its outer side which is the
side pointed to by the pole d(p;) of p; (Lemmas 7 and 16.)

An edge which satisfies all three criterion is called a potential edge. For each
vertex p; which has exactly one edge (pg,p1) in the current reconstruction, we
consider the shortest potential edge (p1,p2) incident on p;. Unfortunately, a non-
reconstruction edge which cuts across a corner may be the shortest potential edge
incident on p;. We apply a number of tests to verify that the shortest potential
edge is truly a reconstruction edge. (See Figure 8.)

First, we require that the angle between (p;,p2) and the reconstruction edge
(po,p1) be large (greater than 120°.) This requirement stops us from accidentally
creating sharp corners in smooth parts of the curve. Next, we require that angle
between d(p;) and d(p2) be small (less than 60°.) Since the pole directions between
the endpoints of edges which cross a corner vary greatly, non-reconstruction edges
will not pass this test.

Almost all reconstruction edges (p1, p2) satisfy the condition that Z(d(p1),d(p2))
< 60°. However, if ps is adjacent to a corner g, then (p1,p2) may not satisfy this
condition. We loosen this condition by replacing the bound of 60° with a bound
of 120° on the pole angle but augment with a ratio test and a bound on the angle
between d(p2) and the normal n to (py, p2). We prove that non-reconstruction edges
which cross a corner fail these tests.



Add_Corner_Edges(T, )
/* Add edges adjacent to a corner */

1. Add all vertices to stack S;

2. while S # 0 do
3. p1 < S.Pop();
4. if py is incident on exactly one reconstruction edge (po,p1) then
5. (p1,p2) < Shortest_Potential(T, p1, @);
6. if Z(po, p1,ps) > 70° then
7. Mark (p1,p2) as a reconstruction edge;
8. Add p2 and all neighbors of p; and ps to stack S;
9. endif
10. endif
11. endwhile

Figure 10: Add edges adjacent to the corner.

The shortest potential edge incident on p; may not be a reconstruction edge.
However, as more edges are added to the reconstruction, the set of potential edges
shrinks and the shortest potential edge incident on p; will change. We prove that
eventually the shortest potential edge incident on p; will be a correct reconstruction
edge.

The second reconstruction step may fail to add one or two edges at each corner,
either because such edges make an angle less than 120 degrees with the other recon-
struction edges or because the pole directions at vertices adjacent to the corner vary
greatly. In the third reconstruction step, we again consider the shortest potential
edge (p1,p2) incident on p;. However, we remove the conditions that the pole di-
rections at p; and p, point in the same direction. If Z(po,p1,p2) is at least seventy
degrees, then we add (p1, p2) to the set of reconstruction edges. (See Figure 10.)

The first three steps complete the reconstruction in the neighborhoods of sharp
corners. However, there may still be missing edges in the smooth parts of the curve
or in the neighborhood of angles which are not very sharp. The last step adds uses
Dey and Kumar’s algorithm to add in these edges. We extend the reconstruction
from an edge (pg,p1) by adding the shortest potential edge making an angle of at
least 90 degrees (po, p1). (See Figure 11.)

4. Neighborhoods of Corners

Let G(T') denote the set of non-smooth “corner” points of I'. The medial azis of
a curve I' is the set of points in the plane which have more than one closest point on
I'. A curve I splits a sufficiently small disk, B, , around a corner point g € G(T") into
two parts. One of these parts contains the medial axis which touches the curve at
the corner. This part is called the inner side of T' (in the neighborhood of g) while
the other part is the outer side. (See Figure 12.) A major observation (Lemma 7)
is that in the neighborhood of a corner the pole directions always point to the outer



Extend_Smooth(7)
/* Add remaining edges in smooth portions of the curve */
1. for each vertex p; of 7 do

2. p2 < Nearest-Neighbor(p );
3. if p1 and p» are not incident on any reconstruction edges, then
4. Mark (p1,p2) as a reconstruction edge;
5. endif
6. endfor
7. Add all vertices to stack S;
8. while S # 0 do
9. p1 < S.Pop();
10. if p; is incident on exactly one reconstruction edge (po,p1) then
11. (p1,p2) < shortest edge incident on p; such that Z(po,p1,p2) >
90°;
12. Mark (p1,p2) as a reconstruction edge;
13. Add ps to stack S;
14. endif

15. endwhile

Figure 11: Add remaining edges in smooth portions of the curve.

side of the curve.

We define the “outer side” of any line segment (p,p’) connecting points p,p’' €
I'NB, as follows. Without loss of generality, orient I' N B, so that the outer side is
on the left. This orientation order all the points on I'NB,. Let p, p’ be two distinct
points in I' N B, , where p precedes p'. The outer side of line segment (p,p’) is the
left side of this line segment when directed from p to p'. (See Figure 12.) Note that
this outer side is defined for any pair of points p,p’ € I N By (r,), not just adjacent
sample points.

We say that a sample point p is adjacent to a corner g, if g is a sample point
and p equals g or if g is not a sample point and there are no sample points on the
curve between p and g. A correct reconstruction edge (p,p’) is adjacent to a corner
g if either p or p’ (or both) are adjacent to g.

The intersection of I' and a suitably small disk around a corner point g is an
open curve. The corner point g splits this curve into two parts or legs. The corner
point g lies on both legs. A cross edge is a Delaunay edge which connects two points
which do not lie on the same leg. If the corner point g is not a sample point, then
the cross edge between the two sample points “adjacent” to g is a reconstruction
edge. All other cross edges are not reconstruction edges.

For each corner point g € G(T'), define the corner angle a, as lim, 4 Z(p, 9,p")
where p is on one leg of ' and p' is on the other. If the curve makes a very sharp
turn at g, then this angle is very small.

10
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Figure 12: Outer side of a line segment in the neighborhood of a corner.

5. Sampling Conditions

If a curve is undersampled, then there is, of course, no way to reconstruct the
original curve. We wish to give specific sampling conditions which will guaran-
tee that the curve is correctly reconstructed. Moreover, these sampling conditions
should vary over the curve, with more samples required in the neighborhood of
small features and fewer required in the neighborhood of large ones.

The medial axis of a curve I is the set of points in the plane which have more
than one closest point on I'. Amenta, Bern and Eppstein defined the local feature
size, f(q), at a point ¢ € T to be the distance from ¢ to the medial axis of . They
required that the sample set satisfy the following sampling condition for every point
on I':

Sampling condition Ri(e): Sample set P satisfies sampling condition R;(e) at
point p € T if every point on the closed intervals of I between p and the two sample
points adjacent to p are at most distance ef(p) from p.

This sampling condition is a modification of the one given by Amenta, Bern
and Eppstein but it is essentially equivalent. (See Dey and Kumar [9] for theorems
relating Amenta, Bern and Eppstein’s original condition and the distance between
adjacent sample points.) Note that if P satisfies sampling condition Ry (ef(p)) at a
sample point p, then the two reconstruction edges incident on p have length at most
€f(p). Amenta, Bern and Eppstein proved that for suitably small €, the CRUST
algorithm correctly reconstructed smooth curves.

Unfortunately, the sampling condition based on local feature size is not appro-
priate for curves with corners. The medial axis touches these curves at the corners
and so the local feature size goes to zero as points approach the corners. Thus
the local feature size sampling condition would require using an infinite number of
points in the neighborhood of corners. Thus in the neighborhood of a corner g € T,
we drop sampling condition R;(e). Instead we use the following simple sampling
condition, which guarantees that the distance between sample points is not too
large:

Sampling condition R»(d): Sample set P satisfies sampling condition R2(d) at
point p € T if every point on the two closed intervals of I' between p and the two

11



sample points adjacent to p are at most distance § from p.

Note that if P satisfies sampling condition R»(d) at a sample point p, then the
two reconstruction edges incident on p have length at most 6. Sampling condition
R (€) is the same as sampling condition Ra(ef(p)) where f(p) is the feature size at
point p.

For each corner point ¢ € G(I'), we actually define two neighborhoods, one
inside the other, and use one sample distance, §,, in the larger neighborhood, and
a smaller sample distance, 89 < 4y, in the smaller one. The value of J, depends
on the size of the larger neighborhood of g and the corner angle, ay. The value of
Sg also depends on the size of the larger neighborhood of g. However, in place of
a dependence on oy, the value of Sg depends upon a constant « which is a strict
less than the minimum angle at any corner point. By using Rg((?g), we ensure
that the edges with endpoints adjacent to corners pass a ratio test. Of course, we
could have required the stricter sampling condition R, (39) throughout the larger
neighborhood, but it was not necessary for the correctness of our algorithm.

We first define the larger neighborhood for sampling condition R»(d,). This
neighborhood should be very far from any other corner points and should contain
only the part of the medial axis which touches g. In this neighborhood, the two
legs of I' should be almost straight.

For any point p € R? and r > 0, let B, (r) be the disk (ball) of radius r around
p. If the disk around a corner point g intersects I' in a connected curve with two
endpoints, then g divides this curve into two legs. We need both upper and lower
bounds on the angle made by points on the two legs in B, (r). Let af(r) be the
upper bound limsup Z(p, g,p') where p and p' are points on different legs of the
curve N By (r). Let aﬁ (r) be the lower bound lim inf Z(p, p’, p") where p,p’,p" are
three distinct points in the given order in I' N B, (r). Let N, be the distance from
g to the nearest corner point g’ € G(T') — {g}. Note that o (r) bounds the angle
at the corner g whereas ag“ (r) bounds the angle at every point p. Note also that
al(r) < ay < al(r) for every r.

For each corner point g € G(I'), choose a ball B, (r,) around g such that:

1. TN By (ry) is a connected curve with two endpoints;

2. rg < Ng/4;

3. B, (r,) contains no medial axis points on the outer side of T';
4. ak(r) > 0;

5. oY (r) < ak(r) +15°

6. if p,p’,p"" are three points in the given order on a leg, then Z(p,p',p") > 175°%;

Note that since I' is piecewise smooth, for every corner point g, there is such a ball
By (ry). Let af and o equal ol (ry) and o (ry), respectively.

12



Conditions 1-3 on r, isolate By (r,) from other corner points or other parts of
the curve. Conditions 46 on r, require that the two legs of I' N B, (r,) be almost
straight.

Let r, = (1 - sin(ag/Z))(rg/S). We will prove that within By, (r;), the pole
directions always point to the outer side of the curve. Note that r; depends on the
upper bound of the angles at g.

For each g € G(T), let §, be

. [rgsin(af)
m1n< 5 -

We will require that our sample set P satisfies sampling condition Ry(d,) within
By (ry) whenever o < 150°.

We need a more restrictive sampling condition for the points adjacent to each
corner to enable the identification of a corner. Let a be strictly less than the
minimum angle at any corner point. Let 39 = min(d,, ry sin(a)). We will require
that our sample set P satisfies sampling condition R» (39) in By (59) whenever ol <
150°. This implies that g has two sample points within distance Sg of g and that
the edges incident on each of these sample points have length at most Sg. Note
that Ra (5g) depends both upon the radius of the larger neighborhood around ¢ and
upon the global parameter a.

As ozg approaches 180°, r’g and 04 approach 0. Thus, when agj > 150°, we drop
our sampling conditions based on r; and d,. Instead, we simply require that sample
set P satisfies condition Ry (r,/2) in B, (r,/2) whenever ag > 150°.

In the smooth portions of the curve, we will use sampling condition R;(0.5). We
need to overlap this sampling condition and condition Ry(d,) in the neighborhood
of corners. Let r) = r) — 26, whenever o} < 150° and let ) = r,/2 whenever
ol > 150°. We apply sampling condition R;(0.5) outside of Ugeg(r)int(By, (r")).
(int(B, (r"")) is the interior of disk B, (r").)

To summarize, our sample set P will satisfies the following sampling conditions:

e For each g € G(T') where ag < 150°, sample set P satisfies sampling condition
R3(0y) in By (rg);

e For each g € G(T") where ag < 150°, sample set P satisfies sampling condition

A ~

R>(dg) in By (dg);

e For each g € G(I") where ag > 150°, sample set P satisfies sampling condition
Ry(rg/2) in By (ry/2);
e Sample set P satisfies sampling condition R;(0.5) outside of

Ugea(r)int(By (ry))-

6. Proof of Correctness

Our proof of correctness is divided into six parts. In the first part we discuss the
smooth part of the curve which satisfies sampling condition R;. The lemmas are
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Figure 13: Nearest neighbor of point satisfying sampling condition R;.

borrowed from Dey and Kumar [9], modified to fit our slightly different definition
of sampling.

In the second part, we prove various properties of pole directions in the neigh-
borhood of a sharp corner. In particular, we show that the pole directions of sample
points point to the outer side of the curve. The pole direction of a sample point
is bounded by the outer normals to the reconstruction edges incident on the sam-
ple point. (See Figure 19.) It follows that there is a large angle between the pole
directions of two sample points which are not on the same leg.

In the third part, we show that the sampling conditions guarantee that recon-
struction edges adjacent to a corner pass the ratio test for ratio m on their
outer side. We also show that “short” cross edges which are not reconstruction
edges do not pass the same ratio test on their outer side.

The fourth part contains two lemmas about the angle between reconstruction
and non-reconstruction edges. The fifth part discusses large corner angles where
ag > 150°. In the final part, we apply these results to show the correctness of our
algorithm.

6.1. Sampling Condition Ry

The following lemmas are from Dey and Kumar [9] although the sampling condi-
tion is slightly different. Because we need to use and calculate the precise constants
under our sampling conditions, we include the proofs.

Lemma 1 Let P be a sample set of curve I' which satisfies sampling condition
Ri(1) at point p € P. If p' € P is a nearest neighbor in P of p € P, then edge
(p,p') is a correct reconstruction edge of T'.

Proof. Assume (p,p') was not a correct reconstruction edge of I'. Since p
satisfies sampling condition R (1), the two sample points, ¢ and ¢', adjacent to p
on I' are at distance at most f(p) from p. Since p' is a nearest neighbor of p, it
must be at distance at most f(p) from p.

14



Figure 14: Angle between sample points within distance f(p;) of p;.

Draw a circle C' of radius |(p, p')| around p. (See Figure 13.) This circle intersects
I at p’ and between p and ¢ and between p and ¢'. Since the circle intersects T" at
least three times, there is some medial axis point in the interior of this circle. Thus
the feature size f(p) at p is less than the radius of the circle which is also f(p), a
contradiction. We conclude that (p,p’) must be a correct reconstruction edge of T'.
O

Lemma 2 If py,p1,p2 are sample points of curve T', and po and p2 lie within dis-
tance f(p1) > 0 of p1, then either Z(po, p1,p2) > 120° or Z(po,p1,p2) < 60°.

Proof. Since f(p1) > 0, curve I must be smooth at p;. Let D and D' be the
two tangent disks of radius f(p1) on either side of p;. Since the feature size of p;
is f(p1), disks D and D' do not contain any points of I" in their interior. (If D or
D' contained a point of T' in their interior, then some smaller tangent disk would
touch I" at two or more points on its boundary and so the feature size would be less
than f(p1).) Let go,q1 be the two points on the boundary of D at distance f(p1)
from p;. Similarly, let ¢, q; be the two points on the boundary of D' at distance
f(p1) from p;. (See Figure 14.) Since pp and ps lie in a circle of radius f(p;), they
lie in the wedges defined by Z(qo,p1,4)) and Z(q1,p1,4q1)- I po and ps lie in two
different wedges, then Z(pg,p1,p2) > 120°. If py and p, lie in the same wedges,
then Z(pg,p1,p2) < 60°. O
Lemma 3 If P is a sample set of curve I which satisfies sampling condition Ry(0.5)
at point p1 € P, then the angle between the two correct reconstruction edges incident
on py s greater than 150°.

Proof. Since P satisfies sampling condition R;(0.5) at p;, curve I' must be
smooth at p;. As in the previous lemma, let D and D’ be the two tangent disks of
radius f(p1) on either side of p;. Let qo, g1 and ¢}, g; be the points on the boundaries
of D and D', respectively, this time at distance 0.5f(p;) from p; .

Let pg and p» be the two sample points adjacent to p;. Points py and ps lie in the
wedges defined by Z(qo,p1,4}) and Z(g1,p1,4¢;)- Let c and ¢’ be the centers of disks
D and D', respectively. Since |(go,p1)| = 0.5f(p1), it follows that cos(Z(qo,p1,¢)) =
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Figure 15: Reconstruction angle.

0.25 and so Z(go,p1,¢) > 75°. Similarly, angles Z(gf,p1,¢') and Z(g1,p1,c) and
Z(q},p1,c') are all greater than 75°. Thus Z(qgo,p1,¢1) and Z(g§,p1,q;) are both
greater than 150°.

Let L be the line through p; and the centers of D and D'. If py and p, lay in the
same wedge, then they would lie on the same side of line L and line L would either
intersect the interval from py to p; or from p; to ps. Let ¢* be this intersection
point. Since the feature size of py is f(p1), disks D and D' do not contain any points
of T in their interior and so ¢* cannot lie in D or D’. Thus ¢* would have distance
at least 2f(p1) from p; and so P would not satisfy sampling condition R;(0.5) at
p1- Since po and ps lie in different wedges, the angle between them is greater than
150°. O
Lemma 4 If P is a sample set of curve T' which satisfies sampling condition Ry (1)
at point p1 € P and q is a sample point which is not adjacent to py, then either
[(p1,q)| > f(p1) or there exists a point ps adjacent to p; such that Z(q,p1,ps) < 90°
and |(p1,p2)| < |(p1,9)|-

Proof. Let D be the disk with diameter |(p1,¢q)| through p; and ¢. f DNT
is not homeomorphic to a line segment, then C' contains a medial axis point in its
interior and so |(p1,¢)| > f(p). If DN T is homeomorphic to a line segment, then
there is some sample point ps lying between p; and g in DNT. Since this point lies
in D and (p1,q) is a diameter of D, it follows that Z(q,p1,p2) < 90°. O

6.2. Pole Directions

We start our analysis of the pole directions in the neighborhood of a corner
point g € G(v) by showing that poles in a small neighborhood of g must be at least
distance r,/3 from their corresponding sample points.

Lemma 5 Let p be a point in a sample set P of T'. If p is in By (ry/3) for some
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Figure 16: Ball B’ tangent to T at p.

corner g € G(T'), then the pole of p is at least ry/3 from T.

Proof. Let B’ be a ball of radius r,/3 which is tangent to I" at p and lies on
the outer side of T'. (See Figure 16.) Note that even if p is the corner point g, there
is still such a ball B’ (actually many such B’.) Since p lies within distance r,/3 of g,
B' is contained in B(r,). Since the interior of the outer side of I' does not intersect
the medial axis, int(B’) does not intersect any other point of the curve and so the
center of B’ lies in the Voronoi cell of p. Thus the center of B’ is a point in the
Voronoi cell of p which is at least distance ry/3 from p. |

We will use the following simple trigonometric lemma which can be found in
any standard trigonometric text.

Lemma 6 The radius of the circle through three non-collinear points, pg, p1 and

. |(po,p2)|
P2, % 55in(Z(po.p1,p2)) "

We now show that the pole directions point to the outer side of the

curve. For each corner point g, let rj, = (1 — sin(al/2))(ry/5) and let §, =
min(r, sin(a;)/2,7;/4). Note that 8, < (1 —sin(al /2))(r,/20).
Lemma 7 Let (p,q1) and (p,q2) be correct reconstruction edges for a sample set P
of curve I'. If p is in By (ry) for some corner g € G(T') and P satisfies sampling
condition Rz(d,) in By (ry), then the pole direction of p points to the outer side of
curve (q1,p,q2).

Proof. The rays from p to ¢; and p to g2 partition the plane into two wedges,
one on the inner side and one on the outer side of (¢1,p,g2). (The inner wedge does
not necessarily have angle less than 180°.) We wish to show that the the pole of p
lies in the wedge on the outer side.

By Lemma 5, the pole of p is at least distance r,/3 from p. Let p’ be some point
in the intersection of the Voronoi cell of p and the inner wedge defined by (q1,p, ¢2)-
We will prove that p' is less than r,/3 from p and so cannot be a pole of p.

Let u; and us be the furthest points from g on each of the legs of the curve in
B(r,). By definition of agj, there is a wedge W of angle ag from g which contains
all the points in T' N B, (ry).
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Figure 17: Case I: Point p' lies outside of wedge W.

Case I: Point p’ lies outside of wedge W.

By the sampling condition u; and us are at least distance ry —d, > r,/3 from g.
Thus the intersection of the perpendicular bisectors of p and u; and p and us lies
in wedge W. Since p' lies outside of W, line segment (p,p’) does not intersect line
segment (u1,uz2). Therefore, line segment (p,p') intersects a correct reconstruction
edge (v1,v2) where v; and v, lie between u; and uy on T'NB, (ry). (See Figure 17.)

If Z(v1,p,v2) was less than 90 degrees, then the Voronoi cell of p would not inter-
sect (v1,v2) and so line segment (p, p') could not intersect (vy,vs). Thus Z(vy, p,v2)
must be greater than 90 degrees.

Without loss of generality, assume that vy lies between p and va on 'NBy (ry). By
definition, Z(p,v1,v2) > a} and so Z(vy,p,v;) < 180° — a/. Note that |(vy,v,)| <
by < rygsin(ag)/2. By Lemma 6, the distance from p to the center of the circle
through p,v; and v, is

|(v1,v2)] < T sin(al)/2
2sin(Z(v1,p,v2)) ~ 2sin(180° — af)
< T sin(al) /2
- 2sin(af)
Ty T
< Ll
= 153

Thus the direction from p to p’ cannot be the pole direction of p.
Case II: Point p’ lies in wedge W.

Let B' be the ball of radius |(p,p')| centered at p'. Ball B’ may not be totally
contained in W. However, we claim that the ball B" of radius |(p, p')| — d, centered
at p is contained in W. (See Figure 18.)

We first show that Z(g,u1,p") < 90° and Z(g,u2,p’) < 90°. Let u} and u) be
the two points on line segments (g,u1) and (g,uz), respectively, which are exactly
ry — &, from g. Let B be the ball tangent to (g,u1) and (g,u2) at u} and uh. The
radius of ball B is (r, —d,) tan(Z(u1, g,us)/2) and the distance from g to the center
of B is (r, — 6,)/ cos(£(u1,g,us)/2). Thus the distance from g to any point on B
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Figure 18: Case II: Point p' lies inside wedge W.

is at least

(rg — §y)(1 — sin(£Lage:12)y)
é(uug,uz)) )
2

rg =9 Z(u1, 9, u2)
— < _ —(r, —0,)tan =
COS(A(UI’Zg,uZ)) ( g y) ( 9 ))

cos(

Since Z(u1,g,u2) < o, this distance is at least

(rg —65)(1 — sin(ozg/2))
cos(al/2))

Let B” be the ball of radius |(p, p')| — J, around p'. Since uj and uj are distance
0y from uq and wus, respectively, and B’ does not contain u; or us, ball B” does
not contain uj or uh. If Z(g,us,p") or £Z(g,us,p’) was greater than 90°, then either
Z(g,ut,p') or Z(g,ul,p') (or both) would be greater than 90°. Thus ball B would
be closer to g than B" and so the distance from g to B" is more than

(rg — 8,)(1 — sin(ag/2))
cos(al /2))

Since B’ differs from B" by d,, the distance from B’ to g is more than

(rg = 84)(1 —sin(eg/2))
cos(ay /2))

re(l— sin(agU/Z))
cos(al/2))
> 5ry — 20,

> r

_6g

— 25,

!
o
(Note that (1 —sin(e/2))/ cos(al /2) is less than or equal to 1 for any af < 180°.)
However, p lies in B, (r;) and p lies on B'. Thus, both Z(g,u1,p') and £(g,u;,p’)
are less than or equal to 90°.

We now show the ball B" of radius |(p,p’)| — d, centered at p' is contained in
W. If not, then there is some point ¢ € B" which is not contained in W. Since
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Figure 19: Angle p between pole direction and edge normals.

Z(g,u1,p") <90° and Z(g,us,p') < 90°, the curve I must cross (¢,p’). However,
ball B’ does not contain any sample points, so no sample point lies within distance
04 of B". In particular, no sample point lies within distance d, of (g, p"). Thus the
edge of I' crossing (¢,p’) must have length greater than 4,, violating the sampling
condition.

Consider a tangent line to B” through g intersecting B at point p”. Let R
be the radius of B"” and let L be the distance from p to g. Since B is contained
in W, angle Z(p', g,p") < agj/Q. Since B" is within distance §, of p, the distance
from p' to g is at most 8, + L+ R. Thus, sin(a] /2) > R++;+L. Solving for R gives

R < ity Since L < vy =1, (1=sin(all /2))/5 and §, < 7, (1-sin(al/ /2))/20,
it follows that R < r,/4 < r,/3. Thus the direction from p to p’ cannot be the pole
direction of p.

Since the distance from p to any point p’ in the intersection of the Voronoi cell
of p and the inner wedge defined by (gi,p,q2) is less than r,/3 and the distance
from p to its pole is at least r,/3, the pole direction of p must point to the outer
wedge defined by (¢1,p, ¢2)-

O

Not only does the pole direction point toward the outside of the corner, it also
approximates the surface normal. To prove this, we show that the pole direction is
bounded by the outer normals to its two incident reconstruction edges. Actually, we
show that the pole direction is bounded by normals to any “short” edges connecting
sample points.

For any two vectors, uy and ug, let [uy,uz] +/— 9° denote the set of vectors
which either lie in the angle spanned by u; and uz or make an angle of at most ¥
degrees with either u; or us.

Lemma 8 Let p,p',p" be three sample points in sample set P of curve T' where
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p' € By(ry/3) for some corner g € G(I'). Let ny and ng be the normals to line
segments (p,p') and (p',p"), respectively, on the same side of curve (p,p',p") as
d(p'), the pole direction of p'.

1. If |(p,p")| < 84 and |(p',p")| < &y, then vector d(p') is in the angle spanned
by [n1,n2] +/—10°.

2. If |(p,p')| < 204 and |(p',p")| < 20,4, then vector d(p') is in the angle spanned
by [n1,n2] +/—15°.

Proof. Without loss of generality, assume that the outside of curve (p, p’,p")
is to the left of directed curve (p,p’,p"). Let p be the maximum angle that d(p')
can be turned to the left of ny. (See Figure 19.)

By Lemma 5, the pole of p' is at least distance r4/3 from p'. If |(p, p')| < dg, then
the perpendicular bisector of (p, p') is at most d,/2 from p’. Thus sin(p) < ij g <&
and p < 10°. If |(p,p')| < 24, then the perpendicular bisector of (p,p’) is at most
dg from p' and sin(u) < r573 < 2 and p < 15°. The same arguments hold for nj.
Thus, if |(p,p')| < &, and |(p', p")| < d,, then d(p') lies in the range [ny, na]+/—10°.
If |(p,p")| <26, and |(p',p"")| < 2d4, then d(p') lies in the range [ny,ng] +/— 15°.
O

As a direct corollary, the pole directions are bounded by the outer normals of

their incident edges.
Lemma 9 Let P be a sample set of curve T which satisfies the sampling condition
R>(04) on T' N By (ry) for some corner point g € G(I'). Let p,p',p" € P be three
adjacent sample points of ' and let n1 and ngy be the outer normals to line segments
(p,p') and (p',p"), respectively. If p' € By (ry), then vector d(p), the pole direction
of p, is in the angle spanned by [n1,n2] +/— 10°.

Proof. By Lemma 7, if p’ € B, (r; ), then the pole direction of p’ points toward
the outside of curve (p,p’,p"). Since P satisfies sampling condition R»(d,), both
|(p,p')| and |(p",p')| are at most d,. Applying Lemma 8, vector d(p') lies in the
range [ny,ng] +/— 10°. O
Lemma 10 Let P be a sample set of curve I which satisfies the sampling condition
Ry(6,) on T N By (ry) for some corner point g € G(T'). If p,p’ € P are two (not
necessarily adjacent) sample points on the same leg of TN B, (r) and neither p nor
p' are adjacent to corner g, then Z(d(p),d(p')) < 30°.

Proof. Let e and €’ be the correct reconstruction edges incident on p and p/,
respectively, whose other endpoints do not lie on the portion of I' N B, (1) between
p and p'. (See Figure 20.) By the sampling condition, the lengths of e and e’ are
less than ¢, and so all their endpoints lie in B, (r,). Since p and p’ are not adjacent
to the corner g, all the endpoints of e and €’ lie on the same leg of the curve. By
condition 6 on I'NB, (r,), the angles between e and (p,p’) and between e’ and (p, p')
are at least 175°. Therefore, the angle between the outer normals of e and ¢’ are
at most 10°. Applying Lemma 9, directions d(p) and d(p') lie in the range given by
those angles +/— 10°. Thus, the angle between d(p) and d(p’) is at most 30°. O
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Figure 21: Nearest neighbor of point satisfying sampling condition Rs.

Lemma 11 Let P be a sample set of curve T which satisfies the sampling condition
Ry(6,) on T N By(ry) for some corner point g € G(T'). If p,p',p" € P are three
adjacent sample points in By (ry) and Z(p,p',p") < 30°, then Z(d(p),d(p")) > 130°.

Proof. Let n; and na be the outer normals to (p,p’) and (p',p"), respectively.
Since Z(p,p',p") < 30°, the angle between ny and ny is at least 150°. Applying
Lemma 9, bounds the angle between d(p) and d(p") by at least 130°. O

In the neighborhood of a corner, nearest neighbors may not form correct re-
construction edges. However, nearest neighbors whose pole directions are approxi-
mately the same do form correct reconstruction edges.

Lemma 12 Let P be a sample set of curve T' which satisfies sampling condition
R3(dg) in By (ry). Ifp' € P is a nearest neighbor of point p € P and p € By (ry —d,)
and Z(d(p),d(p')) < 65°, then edge (p,p') is a correct reconstruction edge of T'.
Proof. Assume (p,p') was not a correct reconstruction edge of I'. Since
By (ry — d4) C By (ry), point p satisfies sampling condition Ry(dy). Thus the two
sample points adjacent to p are at distance at most d, from p. Since p' is a nearest

neighbor of p, it also must be at distance at most d, from p. Since p lies in B, (r;—dy),
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Figure 22: Reconstruction edges in the neighborhood of a corner.

point p’ must be be in By (r;).

Let ¢ be the sample point adjacent to p which lies between p and p' on I'NB, ().
If p’ was on the same leg of I' N B, (r,) as p, then condition 6 on B, (r,) guarantees
that Z(p,q,p') > 175°. In that case, ¢ would be closer to p than p'. Thus, p and p'’
must lie on different legs of I' N By (ry).

By Lemma 7, the poles at p and p' point to the outside of the curve I' N B, (r,).
Since |(p, ¢)| > |(p,p")|, it follows that Z(p, ¢,p') < 90°. Let ny be the outer normal
to (p,q) and let na be the normal to (g, p’) on the same side of (p, ¢,p') as n;. (See
Figure 21.) Since Z(p,q,p') < 90°, it follows that Z(n;,nz) > 90°.

Without loss of generality, assume that the outer side of I' N By (r,) lies to the
left of edge (p,q). By Lemma 9, the pole direction of p can be at most 10° to the
right of ny. The distance from p to p’ is at most d, and from p to ¢ is at most d,,
so the distance from p' to ¢ is at most 20,. By Lemma 8, the pole direction of ¢
can be at most 15° to the left of na. Thus the minimum angle between d(p) and
d(p') is greater than 65°, violating the angle condition on d(p) and d(p'). O

Edges connecting nearest neighbors are automatically Delaunay edges of P. We
need to show that other edges between adjacent sample points are also Delaunay
edges of P.

Lemma 13 If P is a sample set of curve I which satisfies the sampling condition
Ry(04) at sample point p € B(ry /3) and p' is a sample point adjacent to p, then
edge (p,p') is in the Delaunay triangulation of P.

Proof. Let D be the disk of radius r,/3 whose boundary passes through p and
p' and whose center lies on the outer side of edge (p,p’). (See Figure 22.) We claim
that D contains no sample points other than p and p’.

Since p is at most distance r,/3 from g, disk D is contained in B(r,). Thus the
portion of D on the outer side of (p,p’) contains no medial axis points and thus no
sample points.

Let ¢ be the center of disk D and let § equal Z(p,c,p'). Since |(p,p')] < dy <
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Figure 23: Z(d(p1),d(q)) > 65°.

r,sin(ak) /2, it follows that
9 g

8,/2 < 3sin(ay)

sin(8/2) < (200 < =

and thus /2 < .

On the other hand, the tangents to disk D at point p and p’ make angles of 5/2
with (p,p'). Thus for any sample point ¢ contained in disk D on the inner side of
(p,p'), we have that Z(¢,p,p') < /2 < al and Z(q,p',p) < B/2 < af. One of
these inequalities violates the definition of ag . Since disk D contains no sample
points other than p and p', edge (p,p’) is in the Delaunay triangulation of P. O

Finally, we show that if (p1,q) is a “short” cross edge, then the angle between

the pole directions d(p;) and d(q) is larger than 65°. Procedure Verify_Edge tests
the angle between pole directions to avoid “short” cross edges.
Lemma 14 Let P be a sample set of curve T' which satisfies sampling condition
Ro(dg) in By (ry), let p1 € P be a sample point in By (r, — d,) and let po,ps € P be
the two sample points adjacent to py. If ¢ € P is a sample point not adjacent to py,
and £(po, p1,4) > 120° and |(p1, )| < |(p1,p2)], then Z(d(p1), d(q)) > 65°.

Proof.

Since P satisfies sampling condition R»(d,) at pi, it follows that |(p1,q)| <
|(p1,p2)| < dg. Thus point g must also lie in By (ry). If ¢ were on the same leg as
point p;, then by condition 6 on By (r,) either Z(p1,p2,q) > 175° or Z(p1,p2,q) <
5°. The first case is ruled out by |(p1,¢q)| < |(p1,p2)|, while the second is elminated
by Z(po,p1,q) > 120°. Thus q is on a different leg from p; or (p1,q) is a cross edge.

Without loss of generality, assume that the outside of curve (pg, p1,p2) is to the
left of directed curve (po,p1,p2). Let ng and n; be the outer normals to (po,p:1)
and (p1,p2). By Lemma 9, vector d(p;) lies in the range [ng,n;] +/— 10°. Let n
be the normal to (p1,q) on the right side of directed curve (pg,p1,q). Let n' be the
normal to (p2,q) on the left side of directed curve (p1,p2,q). (See Figure 23.)

Since Z(po,p1,q) > 120°, it follows that Z(ng,n) > 120°. Since |(p1,q)| <
|(p1,p2)|, it follows that Z(p1,p2,q) < 90°, and thus Z(ni,n’) > 90°. Since
|(p1,p2)| < 8, and |(pr,q)| < &, it follows that |(q,p2)| < 20,. By Lemma &,
vector d(q) lies in the range [n,n’] +/— 15°. Thus, Z(d(p1),d(q)) > 65°. O
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6.3. Ratio Test

The ratio test in procedure Shortest_Potential() is a key element in the rest of
the algorithm. We show by the sampling conditions that an edge whose endpoint
is adjacent to a corner passes this ratio test and that a cross edge which is shorter
than adjacent reconstruction edges fails this test.

As defined before, « is some angle which is strictly less than the minimum angle

at any corner point and Sg = min(dy, ry sin(a)).
Lemma 15 If P is a sample set of curve T which satisfies the sampling condition
R, (59) at sample point p € P adjacent to corner point g € G(T) and p' is a sample
point adjacent to p, then edge (p,p') passes the ratio test on its outer side for ratio
1/(2sin(@)).

Proof. Let D be the disk of radius (r, —d,)/2 whose boundary passes through
p and p' and whose center lies on the outer side of edge (p,p'). (See Figure 22.) We
claim that D contains no sample points other than p and p'. The proof is similar
to the proof of Lemma 13.

Since p is adjacent to g and satisfies sampling condition R» (Sg), the distance
from the p to g is at most Sg. Since p lies on disk D, disk D is contained in By (r).
Thus, the part of D on the outer side of (p,p') does not contain any sample points
other than p and p'.

By the sampling condition, the length of (p,p') is at most 39 < 6y <
rgsin(al)/2 < ry/2. Let c be the center of disk D and let 8 equal Z(p,c,p').
Since |(p,p")| < 59, it follows that

. R . L
sin(82) < — 202 _ % % Frysimlag)2_ L on
(rg —0g)/2  1g—0g rg/2 Ty !

and thus /2 < o}

On the other hand, the tangents to disk D at point p and p’ make angles of
B/2 with (p,p'). Thus for any sample point ¢ contained in disk D on the inner side
of (p,p'), we have that Z(q,p,p') < /2 < a} and Z(q,p',p) < B/2 < . One
of these inequalities violates the definition of agL. Thus disk D contains no sample
points other than p and p'.

The ratio of the radius of D to the length of edge e is at least

(rg —d4)/2 > Ty 1 1 )
b, ~ rgsin(fa) 2 T 2sin(a)
Thus (p,p’) passes the ratio test on its outer side for ratio 1/(2sin(a)). O

As explained in Section 5, the outer side is defined for any line segment connect-

ing two points in I' N By (ry). We show that “short” cross edges fail the ratio test
on their outer side.
Lemma 16 Let p and p' be sample points from sample set P on two different legs
of TNBy(ry). If ¢ € P is a sample point lying between p and p' on T NBy(ry) and
[(p,p)| < |(p,q)|, then line segment (p,p') fails the ratio test on its outer side for
ratio 1/(2sin(a)).
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Figure 24: Cross edge in the neighborhood of a corner.

Proof. Since |(p,p)| < |(p,q)l, it follows that Z(p,¢,p') < 90°. Thus a < 90°
and so agU < 120° by condition 5 on By (r,). Applying condition 6 on By (ry), shows
that ¢ must be on the outer side of (p,p').

Let D be the disk whose boundary passes through p,p' and ¢. (See Figure 24.)
Let ¢ be the center and R the radius of disk D. By definition of o and agL, we have
Z(p,q,p') > agL > a. Let 8 equal Z(p,c,p'). The length of (p,p') is 2Rsin(3/2).
Since 8 equals 2Z(p, q,p') > 2a, the length of (p,p') is greater than 2R sin(«). Thus
the ratio of the radius of D to the length of (p,p’) is less than 1/(2sin(a)).

Any disk larger than D containing p and p’ whose center is on the outside of
(p,p") must also contain ¢ in its interior. Thus, line segment (p,p’) fails the ratio
test on its outer side for ratio 1/(2sin(a)). O

Our algorithm calls a procedure Verify_Edge to verify that an edge is a re-
construction edge. We must show that almost all the reconstruction edges in the
neighborhood of a corner pass this test and that no non-reconstruction edge does
S0.

If (p1,p2) is a correct reconstruction edge and neither p; nor p, is adjacent to a
corner, then by Lemma 10 the angle between d(p;) and d(p2) is at most 30° < 60°.
By condition 6 on I' N B,y(ry), if p; is not adjacent to a corner, then the angle
between the two edges incident on p; is at most 175° > 120°. Thus, if neither p;
nor py is adjacent to a corner, then Verify_Edge will correctly verify (p1,p2) as a
reconstruction edge.

If py is adjacent to a corner, then d(p;) and d(ps) can vary greatly. We show
that under appropriate conditions Verify_Edge will correctly verify (p1,p2) even if
po is adjacent to a corner.

Lemma 17 Let P be sample set of curve T' which satisfies the sampling condition
Ry(dy) in By (rg). If po,p1,p2,p3 € P are four adjacent sample points in B, (ry), and
n is the outer normal to (p1,p2) and Z(po,p1,p2) > 175° and Z(p1,p2,p3) > 85°,
then Z(d(p1),d(p2)) < 120° and Z(n,d(ps)) < 120°.

Proof. Let n' be the outer normal to (ps2,ps3). (See Figure 25.) Since
Z(p1,p2,p3) > 85° it follows that Z(n,n’) < 95°. By Lemma 9, d(p:) lies in
the angle spanned by [n,n’] +/— 10°. Thus d(p2) lies within 105° of n.

Let n' be the outer normal to (pg,p1). Since Z(po, p1,p2) > 175°, it follows that
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Figure 25: If Z(pg,p1,p2) > 175° and Z(p1,p2,ps3) > 85°, then Z(d(p1),d(p2)) <
120° and Z(n, d(p2)) < 120°.

d(pl)n

np

Figure 26: Non-reconstruction cross edge.

Z(n,n"") < 5°. thus Z(n",n’) < 100°. Since by Lemma 9, d(p;) lies in the angle
spanned by [n,n"] 4+/—10° and d(p2) lies in the angle spanned by [n,n'] +/—10°,
the angle between d(p;) and d(p2) is at most 120°. O

If po,p1,pe2,ps are four adjacent sample points and p, is adjacent to a cor-
ner while p; is not, then Z(pg,p1,p2) > 175° by condition 6 on I' N By(ry).
If Z(p1,p2,p3) > 85°, then Z(d(p1),d(p2)) < 120° and Z(n,d(p2)) < 120° by
Lemma 17. If P satisfies sampling condition Rz(s) at po, then (p2,ps) passes the
ratio test on its outer side for ratio 1/(2sin(a)) by Lemma 15. Thus, an edge with
one vertex p, adjacent to a corner will pass the verification test as long as the angle
at po is not too small.

We need also to show that non-reconstruction edges will not pass the verification
test.

Lemma 18 Let P be a sample set of curve T' which satisfies sampling condition
Ro(dg) in By (rg), let p1 € P be a sample point in By (r, — d,) and let po,pa € P be
the two sample points adjacent to py. If ¢ € P is a sample point closer to p; than
p2 and Z(po,p1,q) > 120° and n is the normal to edge (p1,q) on the same side of
curve (po,p1,p2) as d(p1) then either:

e Z(d(p1),d(q)) > 120°, or
e /(d(q),n) > 120°, or

e edge (p1,q) fails the ratio test on side n for ratio 1/2(sin(a)).
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Figure 27: Either Z(p1,p2,ps3) > 85° or Z(p2,ps3,ps) > 85°.

Proof. Since P satisfies sampling condition R»(d,) at pi, points po,p2 and
q must also lie in B, (ry). If ¢ was on the same leg of T'N B, (ry) as p;, then
Z(p1,p2,q) > 175° by condition 6 on B, (ry) and thus ¢ would not be closer to p;
than p,. Therefore, ¢ must be on a different leg of I' N B, (r,) from p;.

If n points to the outer side of edge (p1,q), then edge (p1, q) fails the ratio test
on side n for ratio 1/2(sin(a)).

Assume n points to the inner side of edge (p1,¢q). (See Figure 26.) Let ¢’ be the
sample point adjacent to ¢ which does not lie between ¢ and p; on I' N B(r,). Let
ng be the outer normal to (g,¢') and let n, be the outer normal to (p1,p2). Let
L be a line through the corner point g which separates p; from q. Let d be the
direction of L pointing away from the cone defined by Z(q, g, p1). Condition 6 on
B, (ry) states that Z(g,q,q') > 175° and Z(g,p1,p2) > 175°. Thus Z(d,np) < 95°
and Z(d,nq) < 95°.

Either d is contained in the cone defined by d(p;) and d(q) or it is not. If it is not
contained in that cone, then Z(d(p1),d(q)) > 360° — (95° + 95°) = 170°, proving
the assertion. Assume d is contained in that cone. Let n’ be the outer normal
to (po,p1). Since Z(po,p1,q) > 120°, it follows that Z(n,n') < 60°. Applying
Lemma 9, the angle between n and d(p;) is at most 70°. If Z(d(q),n) was less
than or equal to 120°, then the angle between d(p;) and d(g) would be at least
360° — (70° + 120°) = 170° > 120°, again proving the assertion. O

6.4. Reconstruction Angles

We need two theorems about the angles between adjacent reconstruction edges
in the neighborhood of corners. First, we claim that in the neighborhood of a
corner at most one such angle is less than 85°. Secondly, a “short” cross edge (p,p')
which is not a reconstruction edge makes an angle at most 125° with one of the
reconstruction edges incident on p or p'.
Lemma 19 If P is a sample set of T, then there is at most one set of three adjacent
points p,p,p" lying in By (ry) such that Z(p,p',p'") < 85°.

Proof. By condition 6 on B, (ry), if Z(p,p',p") < 85°, then p’ must be
adjacent to a corner. Let pi,po,ps3,ps be four adjacent sample points where po
and ps are adjacent to the corner g. (See Figure 27.) By condition 6 on B, (r,),
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Figure 28: Either |(p2,ps4) > |(p2,ps)| or Z(p1,p2,p4) < 125° or Z(ps, pa,p2) < 125°.

both Z(p1,p2,g9) > 175° and Z(ps,ps,g) > 175°. If Z(p1,p2,p3) < 85° then
Z(p3,p2,9) > 90°. If Z(p2,p3,ps) < 85°, then Z(pe2,ps,g) > 90°. However,
Z(p3, p2, 9) + Z(p2,p3,9) < 180° and so both cannot be greater than 90°. O
Lemma 20 Let py,ps,ps3,Ps,Ps be five sample points of T' lying in the given or-
der on I' N By(ry). If [(p2,p4)| < [(p2,p3)l, then either Z(p1,p2,pa) < 125° or
Z(ps,p4,p2) S 125°.

Proof. If p, and ps were on the same leg of T' then Z(p2, ps3,ps) > 175° and
|(p2,p4)| > |(p2,p3)|- So assume ps and p4 are on different legs of T'. (See Figure 28.)

Assume Z(p1,p2,p4) > 125° and Z(ps, ps,p2) > 125°. Without loss of generality,
assume ps lies on the same leg as po. By condition 6 on By (), Z(p1,p2,ps) > 175°
and so Z(p4,p2,p3) < 185° — Z(p1,p2,p4) < 60°. Similarly, Z(ps,ps,9) > 175° and
50 Z(p2,p4,03) < Z(p2,p4,9) < 185° — Z(ps,pa,p2) < 60°. Thus Z(p2,p3,ps) >
60° > Z(p2,p4,p3) and so |(p2,p3)| < |(p2,p4)|- O

6.5. Large Corner Angles

If agj > 150°, then we apply sampling condition Ry(r,/2) in By (ry). We need
two lemmas about reconstruction edges in such neighborhoods. Note that ozg >
150° implies that o > 135° by condition 5 on By (ry).

Lemma 21 If sample points p and p' lie in By (r,) where a{; > 90° and p' is not
adjacent to p, then there is a sample point q adjacent to p such that |(p,q)| < |(p,p")]
and Z(q,p,p'") < 90°.

Proof. Since p' is not adjacent to p, then there is a sample point ¢ € B, (ry)
lying between p and p’ on I' N B, (ry). Applying aﬁ > 90° gives Z(p,q,p') > 90°
and thus |(p, ¢)| < |(p,p')|. Since Z(p,q,p') > 90°, it must be that Z(g,p,p") < 90°.
O
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As an immediate corollary, if the nearest neighbor to p is inside B, (r4), then the
nearest neighbor is adjacent to p.
Corollary 1 If sample points p and p' lie in B, (r,) where ag > 90° and p' is the
nearest neighbor of p, then edge (p,p') is a correct reconstruction edge of T'.

6.6. Algorithm Correctness

We are finally ready for the main theorem showing that, under appropriate
sampling conditions, algorithm Sharp_Reconstruction correctly reconstructs sharp
curves. We need to partition the correct reconstruction edges into certain subsets.
For each corner point g € G(I") where af}] < 150°, let E,; be the set of correct
reconstruction edges both of whose endpoints lie in B, (r; — dy). Let E, C E, be
the set of reconstruction edges in B, (r;, — d,) whose endpoints lie on the same leg
of I' N By (ry) and whose adjacent reconstruction edges form angles of at least 85°.
Note that if the two endpoints of an edge in [, are not adjacent to the corner, then
both angles are at least 175° by condition 6 on By(ry) and so the edge is in E,.
Note also that since by Lemma 19 there can be at most one sample point in By (r4)
whose incident edges form an angle less than 85° and this sample point must be
adjacent to the corner g, there are at most two edges of E, missing from IE;.

Theorem 1 If P be is a sample set of curve T such that:

e For each g € G(T') where agj < 150°, sample set P satisfies sampling condition
R>(8g) in By(ry);

e For each g € G(T') where agj < 150°, sample set P satisfies sampling condition

Ry(8,) in By (3,);
e For each g € G(T) where ag > 150°, sample set P satisfies sampling condition
Ry(rg/2) in By (ry/2);

o Sample set P satisfies sampling condition R;(0.5) outside of
Ugea(r)int(By (ry));

then algorithm Sharp_Reconstruction correctly reconstructs I' from P.

Proof. Algorithm Sharp_Reconstruction starts by calling procedure Con-
nect_Nearest_Neighbors. Every sample point p either satisfies sampling condition
R1(0.5) or lies in By (ry — d,) for some ag < 150° and satisfies sampling condition
R3(3y) or lies in By (ry/2) for af > 150°. If point p lies in By (r,/2) for af > 150°,
then it satisfies sampling condition Ry(r,/2) and its nearest neighbor lies in B, (r,).
By Lemmas 1, 12 and Corollary 1, every pair of nearest neighbors whose pole direc-
tions lie within 60° of one another form a correct reconstruction edge. Thus, Con-
nect_Nearest_Neighbors does not erroneously mark any non-reconstruction edges as
reconstruction edges.

We claim that certain reconstruction edges are found by Con-
nect_Nearest Neighbors. Let p be a point in B, (r, — dy) but outside By (r; — 2d,).
Let p’ be the nearest neighbor of p. Since p is outside B, (r;, — 2d,), sampling
condition R;(0.5) is satisfied at p. By Lemma 1, edge (p,p') is a reconstruction
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edge. Since p is inside By (r,), sampling conditions Ry(d,) is satisfied at p and
thus |(p,p’)| < ;. Thus p' in inside B, (ry) and outside of B, (ry; — 3d,). Since
r, > 46,, neither p nor p’ are adjacent to the corner g. Thus, by Lemma 10,
Z(d(p),d(p')) < 30° and so Connect_Nearest_Neighbors finds the reconstruction
edge (p,p').

Sharp_Reconstruction next calls procedure Extend_Pole Pole. We claim that
Extend_Pole_Pole does not erroneously mark any non-reconstruction edges as re-
construction edges. We also claim that Extend_Pole_Pole finds all reconstruction
edges in E,.

Assume that Extend_Pole_Pole does mark a non-reconstruction edge as a recon-
struction edge. Let (p1,q) be the first such non-reconstruction edge. Let pg and p»
be the sample points adjacent to p, with (po,p1) already marked as a reconstruction
edge.

Assume that p; lies outside of Uy (r)int(By (ry)). Point set P satisfies sam-
pling condition R;(0.5) at p;. We claim that (p1,p2) passes all the tests in Short-
est_Potential. Since (p1,q) is the first incorrectly marked non-reconstruction edge,
at most one edge incident on p, is marked as a reconstruction edge. By Lemma 3,
Z(po,p1,p2) > 150° and so (p1,p2) satisfies all the other tests in Shortest_Potential.

By Lemma 4, |(p1,p2)| < |(p1,q)|- Since (p1,p2) satisfies all the tests in Short-
est_Potential and |(p1,p2)| < |(p1,¢)|, edge (p1,q) could not be returned by Short-
est_Potential and so could not have been marked as a reconstruction edge by Ex-
tend_Pole_Pole.

Next assume p; € By(ry/2) for some g € G(I') where al > 150°. Point set
P satisfies sampling condition Ry(r,/2) at p;. We again claim that (p,ps) passes
all the tests in Shortest_Potential. Since (p1,q) is the first incorrectly marked non-
reconstruction edge, at most one edge incident on p, is marked as a reconstruction
edge. Since o > 150°, it follows from condition 5 on By (r,) that o} > 135° and so
Z(po, p1,p2) > 135°. Thus (p1, p2) satisfies all the other tests in Shortest_Potential.

By the sampling condition, |(p1,p2)| < r4/2. If |(p1,9)| > r4/2, then |(p1,q)| >
|(p1,p2)|- T |(p1,q)| < 7y/2, then q € B, (r,). By Corollary 1, [(p1,p)| < |(p1, )|
Since (p1,p2) satisfies all the tests in Shortest_Potential and |(p1,p2)| < |(p1,9)],
edge (p1,q) could not be returned by Shortest_Potential and so could not have been
marked as a reconstruction edge by Extend_Pole_Pole.

Now assume p; € B, (r) — 26,) for some g € G(T') where o) < 150°. Again
we claim that (p1,p2) passes all the tests in Shortest_Potential. Since (p1,¢q) is the
first incorrectly marked non-reconstruction edge, at most one edge incident on ps is
marked as a reconstruction edge. By Lemma 11, if (p;, p2) makes an angle of 30° or
less with reconstruction edge (pg, p1), then Z(d(po), d(p2)) > 130° > 90°. Similarly,
if (p1,p2) makes an angle of 30° or less with a reconstruction edge (p2,ps3), then
Z(d(p1),d(ps)) > 130° > 90°. Finally, if (p1,p2) makes an angle of 135° or less
with a reconstruction edge, then one of its endpoints is adjacent to a corner g. By
Lemma 15, edge (p1, p2) passes the ratio test for ratio 1/(2sin(e)) on its outer side.
Since (p1,p2) passes all the tests in Shortest_Potential but is not returned as the
shortest potential edge, the length of (p1, ¢) must be less than the length of (p1,p2).
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qo 1

Figure 29: (go,q1) < (p1,p2) and Z(qo,q1,p1) < 135° so (p1,q1) will be eliminated
as a potential reconstruction edge.

If ¢ was on the same leg of 'NB, (1) as p1, then Z(p1,p2,q) > 175° by condition 6
on B, (ry) and thus ¢ would not be closer to p; than p,. Therefore, ¢ must be on a
different leg of I' N B, (r,) from p;. By Lemmas 14 and 18, edge (p1,q) will fail to
be verified by procedure Verify_Edge. Therefore, Extend_Pole Pole will not mark
(p1,q) as a reconstruction edge.

To show that Extend_Pole_Pole reconstructs all edges in ]E;, we need to order
those edges. For any two edges e,e’ € E, on the same leg of B, (r;) N T, we say
that e < e’ if €' lies between e and g. For any two edges e,e’ € E, on different
legs of B, (r,) NT, we say that e < € if there is some cross edge (p,p') such that p
separates e from g and e’ separates p' from g. This gives a total ordering on all the
reconstruction edges in [Ej .

We claim that Extend Pole_Pole finds all reconstruction edges in E|, (which have
not yet been found by Connect_Nearest_Neighbor.) Assume not. Let (p1, p2) be the
first such reconstruction edge not found using the total ordering described above.

Without loss of generality, assume that py lies between p; and g. (See Fig-
ure 29.) Let (po,p1) be the other reconstruction edge incident on p;. We claim
that (po,p1) has already been reported as a reconstruction edge. If (po, p1) is in [/,
then (po,p1) < (p1,p2) and so by assumption must have already been reported. If
(po,p1) is not in E|, then po must lie outside of By (r;, — d,). Point set P satisfies
sampling condition Ra(dy) at p1, so [(po,p1)| < dy. Thus p; lies inside By (r, — &,)
but outside By (r; — 2d,) As noted above, Connect Nearest Neighbor would re-
port one of the reconstruction edges incident on p;, either (pg,p1) or (p1,p2).
Since (p1,p2) is not found by Connect_Nearest_Neighbor or Extend_Pole_Pole, Con-
nect_Nearest_Neighbor must have found (pg, p1).

We claim that Shortest_Potential will return edge (p1,p2)- If not, there must
be some cross edge (p1,q1) shorter than (pi,p2) which was returned by Short-
est_Potential. By Lemma 16, edge (p1,q¢1) fails the ratio test on its outer side.
Therefore, it must be that Z(po,p1,¢1) > 135°, so that Shortest_Potential does not
apply the ratio test to (p1,q1)-

Let go € P be the sample point adjacent to ¢g; which does not lie between ¢; and
g- Edge (qo,q1) precedes (p1,p2) in our total ordering. We show that (go,q1) € E'.
Since qq is not adjacent to the corner, the angle between the edges incident to qq is
at least 175° > 85°. Let g2 be the other sample point adjacent to q;. If ¢; is not
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adjacent to a corner, then Z(qo, q1,g2) > 175° > 85° and so (go,¢1) € E'. However,
if ¢; is adjacent to a corner, then the argument is a little more complicated.

Since |(p1,q1)| < |(p1,p2)],
Z(p1,p2,q1) < Z(p1,q1,p2) < £(q0,q1,p2) < £(q0,41,¢2)-

If Z(qo,q1,p2) < 85° and Z(p1,p2,q1) < 85°, then either Z(gg,q1,9) < 175° or
Z(p1,p2,9) < 175° violating condition 6 on I' N B, (ry). Thus Z(qo, ¢1,¢2) > 85°
and so (go,q1) € E.

Since (g0,q1) € E; and (go,q1) < (p1,p2), edge (go,q1) must already have
been identified as a reconstruction edge. Since Z(pg,p1,q1) > 135°, it follows by
Lemma 20 that Z(go,q1,p1) < 125° < 135°. Thus (p1,q:1) fails the third test in
Shortest_Potential and so cannot be the edge returned by Shortest_Potential.

We have shown that Shortest_Potential returns the edge (p1,p2). If ps is not
adjacent to a corner, then Verify_Edge correctly identifies (p1, p2) as a reconstruction
edge by Lemma 10. If ps is adjacent to a corner, then sampling condition R» (59)
is satisfied at ps. Verify_Edge correctly identifies (p1,p2) as a reconstruction edge
by Lemmas 15 and 17. Thus Extend_Pole_Pole finds all the reconstruction edges in
E .

! The next call is to procedure Add_Corner_Edges. Add_-Corner_Edges replaces
the call to Verify_Edge with a 70° angle test. We claim that Add_Corner_Edges does
not erroneously add any non-reconstruction edges outside of Uyeq By (ry, — 2dy),
and that it correctly finds all remaining unreported edges in E, — E| for each
g€ GD).

Let p1 € P be some sample point outside of Uyeq(r)By (r, — 2d,) and let po and
p2 be the sample points adjacent to p; with (po,p1) already marked as a recon-
struction edge. As argued above, (p1,p2) passes all the tests in Shortest_Potential.
Assume |(p1,q)| < |(p1,p2) for some sample point ¢ € P. Since P satisfies sampling
condition R;(1) at pi, it follows that |(p1,q)| < |(p1,p2)| < f(p). By Lemma 2,
either Z(po,p1,q) < 60° or Z(po,p1,q) > 120°. If Z(po,p1,q) < 60° < 70°, edge
(p1,q) would not be added by Add_Corner Edges. If Z(po,p1,q) > 120°, then,
by Lemma 4, |(p1,p2)] < |(p1,q)|, contradicting the assumption that |[(p1,q)| <
|(p1,p2)|- Thus Add-Corner_Edges does not erroneously add any non-reconstruction
edges outside of Uyeg(rBy (ry — 25,).

Now let p; € P be some sample point in B, (r,/2) where ag > 150°. Let po and
p2 be the sample points adjacent to p; with (pg,p1) already marked as a reconstruc-
tion edge. As argued above, (p1,p2) passes all the tests in Shortest_Potential. As-
sume |(p1, )| < |(p1,p2) for some sample point ¢ € P. Since |(p1,p2)| < r4/2, length
|(p1,9)| < ry/2 and q lies in By (ry). Since af > 135°, either Z(po,p1,q) > 135°
or either Z(po,p1,q) < 45°. If Z(po,p1,q) < 45° < 70°, edge (p1,q) would not
be added by Add_Corner Edges. If Z(po,p1,q9) > 135°, then, by Lemma 21,
|(p1,p2)| < |(p1,q)|, contradicting the assumption that |(p1,q)| < |(p1,p2)|. Thus
Add_Corner_Edges does not erroneously add any non-reconstruction edges where
ag > 150°.

We claim that Add_Corner_Edges correctly reconstructs all the remaining edges
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in B, (r}, — §,) where al <150°. There are at most two edges in E, —E, and so at
most two edges which have not been found. These edges are incident on a vertex
which is adjacent to the corner. Since sample set P satisfies sampling condition Sg
within B, (39), these edges have length at most 39. By Lemma 15, they pass the
ratio test on their outer side for ratio 1/(2sin(a)).

If there is only one edge, (p,p’), which has not been found, then Short-
est_Potential will return that edge when called with parameter p and with parameter
p'. Either the angle at p or the angle at p' is at least 85° > 70°, and so (p,p') will
be found.

Assume there are two edges, (p,p’) and (p',p"”), which have not been found.
The angles at p and at p" must be at least 85° > 70°. If |(p,p")| < |(p,p)|, then
by Lemma 16 it will fail the ratio test on its outer side for ratio 1/(2sin(a)). By
Lemma 20, edge (p, p’') will make an angle at most 125° < 135° with one of the two
discovered reconstruction edges incident on p or p". Thus edge (p,p") will fail the
Shortest_Potential test and edges (p,p') and (p', p"") will be found.

The final procedure, Extend Smooth, is exactly Dey and Kumar’s algorithm.
It completes the reconstruction in the smooth portions of the curve and in By (r,)
where azj > 150°. By Lemma 3, the angle between two reconstruction edges (po, p1)
and (p1,p2) in the smooth portions of the curve is greater than 150° > 90°. In
By (ry) where o > 150°, this angle is at least ot > 135°. By Lemmas 4 and 21,
any other edge which makes an angle greater than 90° with (po,p1) will be longer
than (pl,pg). O

7. Running Time Analysis

Computing the Voronoi diagram of n sample points takes O(nlogn). Con-
struct_Nearest_Neighbors takes time proportional to the number of edges in the
Delaunay triangulation which is O(n). Extend_Smooth adds a vertex p to stack S
at most 3 times, once initially and once when each reconstruction edge incident on
p is identified. Thus Extend_Smooth runs in O(n) time.

Extend_Pole_Pole may add a vertex many times to the stack since it adds all the
neighbors of p; and p» to the stack when it identifies p; and p- as a reconstruction
edge. If p is a neighbor of p;, then we can charge this addition of p to the stack
to edge (p,p1). Since only two edges incident on p; are identified as reconstructed
edges, edge (p,p1) is only charged twice. Point p is also added on the stack when
each reconstruction edge incident on p is identified and it is initially placed in the
stack. Thus if m is the number of Delaunay edges, then point p is added to the
stack at most 2m + 3n € O(n) times. Note that this analysis and the previous anal-
ysis of Extend_Smooth is independent of whether Sharp_Reconstruction correctly
reconstructs the curves.

At each iteration, Extend _Pole_Pole may call Shortest_Potential. A naive imple-
mentation of Shortest_Potential might check all the edges incident on p;. However,
such a check may take Q(n) time giving an Q(n?) worst case running time. In-
stead, one should presort the edges incident on a given vertex by length and keep
an index of the current shortest potential edge. As each edge (p,p') is marked as
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Connect_Nearest_Neighbors2(T, «)
/* Connect nearest neighbors */

1. for each vertex p; of 7 do

2. p2 < Nearest-Neighbor(p );
3. if (p1,p2).Jong nonrecon = false then
4. if both d(p1) and d(p2) form an angle at least 45° with edge (p1, p2)
then
5. if Z(d(p1),d(p2)) < 60°, then
6. Mark (p1,p2) as a reconstruction edge;
7. else if Z(d(p1),d(p2)) < 120° and (p1,p2) passes the ratio
test on both sides for ratio 1, then
8. Mark (p1,p2) as a reconstruction edge;
9. else if (p1,p2) passes the ratio test on both sides for ratio
1/(2sin(a)), then
10. Mark (p1,p2) as a reconstruction edge;
11. endif
12. endfor

Figure 30: Modified connect nearest neighbors algorithm.

a reconstruction edge, check whether (p,p') causes any of the edges incident on p
and on p' to no longer be a potential edge. Mark such edges as non-reconstruction
edges and update the shortest potential edges of their endpoints, if necessary. A
non-reconstruction edge is adjacent to four reconstruction edges so it is processed
at most four times. By keeping the incident edges in sorted order, one never need
revisit any edges shorter than the current shortest potential edge in updating the
shortest potential edge. The presorting takes O(nlogn) while the rest of the pro-
cessing takes O(n) time. Thus Extend_Pole_Pole can be implemented to run in
O(nlogn). Add_Corner_Edges is simply a modification of Extend_Pole Pole and
also runs in O(nlogn) time. Thus Sharp_Reconstruction runs in O(nlogn) time.

8. Implementation

We have presented an algorithm which corrected reconstructs a family of closed
curves under appropriate sampling conditions. However, sampling conditions may
be violated and the curves may not be closed. In this section we discuss practical
modifications to our algorithm which improve its performance under these condi-
tions. We are careful that these modifications retain the reconstruction guarantees
of the original algorithm.

Procedure Connect_Nearest_Neighbors connects nearest neighbors whose pole di-
rections are approximately the same. The pole test prevents the algorithm from con-
necting non-adjacent nearest neighbors in the neighborhood of a corner. (See Fig-
ure 1.) However, if an edge passes the ratio test on both sides for ratio 1/(2sin(a)),
then, by Lemma 16, it cannot connect such non-adjacent nearest neighbors. Thus
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we modify Connect_Nearest_Neighbors to also connect nearest neighbors which pass
the ratio test for ratio 1/(2sin(a)) on both sides.

The ratio test for ratio 1/(2sin(c)) depends on the minimum corner angle a.. For
a = 10°, this ratio is approximately three which makes the ratio test fairly difficult
to pass. The following lemma shows that if the angle between pole directions is at
most 120°, then “short” non-reconstruction cross edges will fail the ratio test for
ratio 1.

Lemma 22 Let p and p' be sample points from sample set P on two different legs
of T NBy(ry). If ¢ € P is a sample point lying between p and p' on T NB, (ry) and
[(p,p)| < |(p,q)| and Z(d(p),d(p")) < 120°, then line segment (p,p') fails the ratio
test on its outer side for ratio 1.

As a corollary, reconstruction edges can be detected by a combination of the

pole and ratio test.
Lemma 23 Let P be a sample set of curve T' which satisfies sampling condi-
tion Ra(dy) in By(ry). If p' € P is a nearest neighbor of p € By(ry, — d,) and
Z(d(p),d(p")) < 120° and (p,p') passes the ratio test for ratio 1 on both sides, then
edge (p,p') is a correct reconstruction edge of T.

The proof idea is that if p and p' are in the neighborhood of corner g and
Z(d(p),d(p')) < 120°, then the angle at g must be at least 30°. Using this lower
bound on the angle at g, any “short” non-reconstruction cross edge in the neigh-
borhood of g must fail the ratio test on its outer side for ratio 1. We modify
Connect_Nearest_Neighbors to also connect nearest neighbors whose pole directions
lie within 120° of each other and which pass the ratio test for ratio 1 on both sides.

An isolated point from “noise” can confuse Connect_Nearest_Neighbors since
it will try to connect such a point to a true sample point on the surface. We
reduce interference from such isolated points, by adding a requirement in Con-
nect_Nearest_Neighbors that the pole directions be almost perpendicular to the
reconstruction edge. The final version is in Figure 30.

If p is the nearest neighbor of p’ and p” is the closest point to p’ such that
Z(p,p',p") > 90°, then (p',p") is a good reconstruction candidate. Such edges are
added by Dey and Kumar’s curve reconstruction algorithm [9] for smooth closed
curves. We would like to also add such edges after applying the same tests we use
for nearest neighbors. However, such tests may fail to detect non-reconstruction
edges if point p’ is adjacent to a sharp corner or adjacent to the endpoint of a
curve. We add an additional requirement that (p’,p”) not be “too long” compared
to (p,p'). We require that (p/,p") is at most twice the length of (p,p’) which seems
appropriately conservative. This test is dependent on the sampling distribution
but it does not invalidate any guarantees our algorithm makes under appropriate
sampling. The new procedure is called Connect_Close. (See Figure 31.)

Undersampling at the corners can cause a true reconstruction edge to fail the
ratio test for ratio 1/(2sin(a)) in procedure Shortest_Potential. We modify this
test in a number of ways. First, we apply a weak ratio test with ratio 0.5. If the
angle with the current reconstruction edge is less than 90° or if the potential edge
is incident on two reconstruction edges and the angle with both is less than 135°,
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Connect_Close(T, «)
/* Connect close neighbors */

1. for each vertex p; of 7 do
2. po < Nearest-Neighbor(p; );
pa + Closest point to p; such that Z(po, p1,p2) > 90°;
if (p1,p2).Jong nonrecon = false then
if |(p1,p2)| < 2|(po,p1)| then
if both d(p;) and d(p,) form an angle at least 45° with edge
(p1,p2) then
if Z(d(p1),d(p2)) < 60°, then
Mark (p1,p2) as a reconstruction edge;

9. else if Z(d(p1),d(p2)) < 120° and (p1, p2) passes the
ratio test on both sides for ratio 1, then

o ok w

®© N

10. Mark (p1,p2) as a reconstruction edge;

11. else if (p1, p2) passes the ratio test on both sides for
ratio 1/(2sin(a)), then

12. Mark (p1,p2) as a reconstruction edge;

13. endif

Figure 31: Connect close neighbors.

Shortest _Potential2(T, p, a)
/* return shortest potential edge incident on p */

1. (go,q1) ¢ shortest edge incident on p such that for each endpoint g; of e:
e At most one edge incident on ¢; is marked as a reconstruction edge;
e If ¢; is incident on a reconstruction edge (g;,q), and Z(q1_;,q:,q) < 30°,
then Z(d(g1-;),d(q)) > 90°;
/* Note ¢;_; is the other endpoint of e */

o If ¢; is incident on a reconstruction edge (¢;,q) and Z(q1-4,4i,q) < 135°
then Vor_Del Ratio(T, q, gi, g1—:) > 0.5;

e If g; is incident on a reconstruction edge (g;,q) and Z(q1_;,¢;,q) < 90° OR
if ¢; and ¢q; _; are incident on reconstruction edges (g;, ¢) and (g;, ¢') respec-
tively and Z(g1-i,¢i,q) < 135° and Z(g;,q1-4,¢") < 135° then

~ Vor Del Ratio(T, g, gi, q1-i) > 1;

— if Z(d(g:),d(q1-:)) < 120° AND
either Z(d(g;),n) > 120° or Z(d(gi1—;),n) > 120°, then
Vor_Del_Ratio(T, g, ¢, g1—i) > 25%@«);

2. return((qo, q1));

Figure 32: Modified criteria for shortest potential edges.
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Verify Edge2(7, po, p1, p2)
/* verify that (p;,ps) is a reconstruction edge */
/* edge (po,p1) is an identified reconstruction edge */

—

if (p1,p2).long nonrecon = false then

2 if Z(po,p1,p2) > 120° then

3 if Z(d(p1),d(p2)) < 60° then

4 return (true); /* verified reconstruction edge */

5. n <+ normal to (p1,p2) on same side of curve (pg,p1,p2) as d(p1);

6. if (Z(d(p1),d(p2)) < 120°) and (£(n,d(p2)) < 120°) then

7 if Vor_Del_Ratio(7, po, p1, p2) > 1 then

8. return (true); /* verified reconstruction edge */
9. endif

10. return ( false ); /* unable to verify reconstruction edge */

Figure 33: Modified edge verification.

then we apply a stronger ratio test with ratio 1.0. Finally, if the angle with the
current reconstruction edge is less than 120° and some angle between the two pole
directions and the edge outer normal is greater than 120°, then we apply the full
ratio test with ratio 1/(2sin(«)). (See Figure 32.) Lemma 22 can be used to justify
this combination pole and ratio test.

Procedure Verify_Edge (Figure 8) uses the ratio test with ratio 1/(2sin(a)).
However, by applying Lemma 22, we can actually justify reducing that ratio to 1.
(See Figure 33.)

Open curves present a challenge for our algorithm. The problem is that Ex-
tend_Pole_Pole or Add_Corner_Edge can misinterpret a curve endpoint as the leg of
some curve near a corner and add a long edge from that endpoint. There is little
we can do about this in Extend_Pole_Pole. However, a corner edge should be signif-
icantly shorter than any Delaunay edges which point away from the corner. We can
check this condition whenever we attempt to add an edge in Add-Corner_Edges.

The Voronoi-Delaunay ratio test is based on the minimum corner angle a. If
this angle « is small, then Extend_Pole_Pole and Add_Corner_Edges may fail to
add edges near undersampled corners. To try and retrieve these edges, we rerun
Extend_Pole_Pole and Add_Corner_Edges with a replaced by 30°. Properly sampled
corners will already have been reconstructed and will be unaffected by this attempt.

We modify Extend_Smooth in a number of ways to handle undersampling. In-
stead of searching over all neighbors, we only consider neighbors which are not
already incident on two reconstruction edges and which make an angle of at least
120° with the current reconstruction edge. We find the closest such neighbor and
check that it makes an angle of at least 150° with the current reconstruction edge
to guarantee that we are reconstructing the smooth portion of the curve.

As a final post processing step, we check our reconstruction for inappropriate
“long” edges. These are edges whose distance to the nearest curve endpoint is
smaller than half their length. We also reapply the Check_Corner_Edge test to any
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Check_Corner_Edge(T, po, p1)
/* check that edge (po,p1) is “short” */
1. fori =0to 1do

2. if p; is incident on a reconstruction edge (p;, ) other than (pg, p1) then
3. Qi + Pi;

4. 4 + g

5. else

6. 4 < Pr1—i5

7. g; + Pi;

8. endif

9. endfor

10. return (Check_Corner_Edge_Alg(T, po, p1, 90, 94, 91, 41));

Check_Corner_Edge_Alg(T, po, p1, 9o, 95, 91, 41))

/* check that edge (po,p1) is “short” */

/* (0,44) and (q1,qy) are first edges on the curve legs */

/* Directions (gj — go) and (g¢; — ¢1) point away from the corner */
1. fori =0to 1do

2. for each Delaunay edge (g, p;) do

if Z(qo, q},q) > 70° and Z(q1,4qi,q) > 70° then

if |(po, p1)| > 2|(¢, pi)| then
return (false);

S o @

endif
7. return ( true );

Figure 34: Check corner edge.
Add_Corner_Edges2(T, «)
/* Add edges adjacent to a corner */
1. Add all vertices to stack S;
2. while S # 0 do
3. p1 < S.-Pop();

4. if p; is incident on exactly one reconstruction edge (po,p1) then
5. (p1,p2) « Shortest_Potential(T, p1, a);
6. if (p1,p2).long nonrecon = false then
7. if Z(po,p1,p2) > 70° then
8. if Check_Corner_Edge(T, p1, p2) then
9. Mark (p1,p2) as a reconstruction edge;
10. Add p, and all neighbors of p; and p» to stack

S;
11. endwhile

Figure 35: Modified add corner edges algorithm.

39



Extend_Smooth2(7)
/* Add remaining edges in smooth portions of the curve */
1. for each vertex p; of 7 do

2. p2 <+ Nearest-Neighbor(p, );
3. if p; and p, are not incident on any reconstruction edges, then
4. Mark (p1,p2) as a reconstruction edge;
5. endif
6. endfor
7. Add all vertices to stack S;
8. while S # 0 do
9. p1 < S.Pop();
10. if p; is incident on exactly one reconstruction edge (po,p1) then
11. (p1,p2) + shortest edge incident on p; such that Z(po,p1,p2) >
120° and pe9 is incident on fewer than two reconstruction edges;
12. if (p1,p2).long nonrecon = false then
13. if Z(po,p1,p2) > 150 then
14. Mark (p1,p2) as a reconstruction edge;
15. Add p» to stack S;
16. endif

17. endwhile

Figure 36: Modified extend smooth portions of the curve.

Flag Long Nonrecon(T)
/* Flag any long non-reconstruction edges */
1. for each edge reconstruction edge (po,p1) do
2. for each edge Delaunay edge (g,p;) do
3. if ¢ not incident on two reconstruction edges and
|(g,pj)] < |(po,p1)|/2 then
(po, p1)-long_ nonrecon « true;
endfor
if (po, p1) makes a reconstruction angle less than 105° then
if Check_Corner_Edge(7, (po,p1)) = false then
(po, p1)-long nonrecon « true;

© N o

endfor

Figure 37: Identify and flag long non-reconstruction edges.
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GathanG(P, n,a,m)

/* P is a set of n sample points */

/* a is a strict lower bound on the minimum corner angle */
/* m is the number of iterations permitted */

1. Construct the Delaunay triangulation, 7, of P;
for each edge e of T do
e.long nonrecon ¢« false;
endfor
repeat
GathanG_Alg(T, a);
Flag Long Nonrecon(T);

® N o LN

for m iterations or until no additional edges are flagged as long non-
reconstruction edges;

GathanG_Alg(T, a)
/* T is the Delaunay triangulation of the sample points */
/* a is a strict lower bound on the minimum corner angle */

1. Connect_Nearest_Neighbors2(7); /* Connect nearest neighbors */
2. Connect_Close(T, a); /* Connect close neighbors */
3. Extend_Pole_Pole(T, a); /* Extend using pole-pole and angle tests */
4. Add_Corner Edges2(T, a); /* Add edges adjacent to corners */
5. Extend_Pole_Pole(T, 30°); /* Extend using pole-pole and angle tests */
6. Add_Corner_Edges2(T, 30°); /* Add edges adjacent to corners */
7. Extend_Smooth2(7); /* Extend to smooth portions of the curve */

Figure 38: Curve reconstruction algorithm.

curve next to a corner. If we find a long edge which fails these tests then we flag
it as a long non-reconstruction edge and rerun our curve reconstruction from the
start. In each procedure, we check whether an edge is so flagged directly before
adding it to our set of reconstruction edges.

In most of our examples, this final post processing step is not needed. In the
other examples, our algorithm correctly reconstructed the curve in the second iter-
ation.

We claim although do not prove that none of these modifications invalidate
the reconstruction guarantee in Theorem 1. The final version of our algorithm we
call GathanG for Gathan with guarantees since it is a “guaranteed” version of our
heuristic Gathan described in [8]. An implementation can be downloaded from
/ /www.cis.ohio-state.edu/graphics.

9. Results

We present the results of running GathanG on a number of sample data sets
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Fig. 39. Voronoi diagram, pole directions and reconstruction of MPI data
set [13].

Fig. 40. Voronoi diagram, pole directions and reconstruction of tulip data set?
(79 sample points.)
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Fig. 41. Voronoi diagram, pole directions and reconstruction of star data set?,
10 spikes, 300 sample points.

Fig. 42. Voronoi diagram, pole directions and reconstruction of mushroom
data set8.
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Fig. 43. Reconstruction of mushroom data set® after only 1 iteration.

Crust.

GathanG reconstruction.
Figure 44: Voronoi diagram, pole directions and GathanG and crust reconstruction

of star.
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Angle a = 10°. Angle a = 20°.

Figure 45: Voronoi diagram, pole directions and reconstruction of sharp star with
different angle parameters.

from the literature as well as some new data sets. We set the angular lower bound
a to 10° on all these runs. Figures 39 and 40 appeared in[ 13] and [2], respectively.
The reconstruction in each was calculated in a single iteration. The sample points in
Figure 41 were generated using Althaus and Mehlhorn’s software described in [2].
The reconstruction was also calculated in a single iteration. Figure 42 appeared
in [8] and required two iterations of the algorithm. After a single iteration there is
an erroneous long edge connecting the endpoint of one of the curves to a corner of
the other (Figure 43.) This erroneous edge is detected and avoided in the second
iteration.

Figure 44 contains the output of GathanG and CRUST on a star data set of our
own construction. Our algorithm completed in a single iteration. Note that while
the star is fairly uniformly sampled, the nearest neighbors are often not adjacent
in the correct reconstruction. Figure 45 contains a sharper star data set, again of
our construction. With the angular lower bound a set to 10°, GathanG correctly
reconstructs the curve in a single iteration. However, if a is set to 20°, then it is
no longer a lower bound on the corner angles, and GathanG truncates the arms of
the star.

10. Conclusion

We presented an O(n logn) algorithm which guarantees reconstruction of a fam-
ily of closed curves under appropriate sampling conditions. We also described an
implementation of this algorithm which performs well even when sampling condi-
tions are violated or the curves are open. Our algorithm is asymptotically faster
than Ramos and Funke’s algorithm in [13] and it does not require a bound on the
angle Z(p1, ¢, p2) between ¢ and the adjacent sample points p; and ps. On the other
hand, Ramos and Funke give reconstruction guarantees even when the curves are
open and we do not.
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Our algorithm is also asymptotically faster than the linear programming algo-
rithm by Althaus and Mehlhorn [1]. Their algorithm cannot handle open curves.

Motivation for our work in 2d curve reconstruction was to generate ideas for
3d surface reconstruction. Nearest neighbors, the ratio test and pole directions are
used in 3d surface reconstruction algorithm described in [7].
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