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Abstract

A large number of Bluetooth-based mobile apps have been developed recently
to help tracing close contacts of contagious COVID-19 individuals. These apps
make decisions based on whether two users are in close proximity (e.g., within
6 feet) according to the distance measured from the received signal strength
(RSSI) of Bluetooth. This paper provides a detailed study of the current practice
of RSSI -based distance measurements among contact tracing apps by analyzing
various factors that can affect the RSSI value and how each app has responded to
them. Our analysis shows that configurations for the signal transmission power
(TxPower) and broadcasting intervals that affect RSSI vary significantly across
different apps and a large portion of apps do not consider these affecting factors
at all, or with quite limited tuning.

1 Introduction

COVID-19 has created an unprecedented social and economic crisis across the
globe. As of this writing, there are more than 20 million infected patients. and
over 700 thousand deaths worldwide. Since COVID-19 will not disappear shortly,
practical techniques must be used to fight this pandemic before vaccines are
available. Contact tracing, i.e., identifying people who have been in close con-
tact with contagious individuals, has been such a practical technique for a long
time. However, existing contact tracing is manual, and is hard to scale to large
and rapidly moved populations. Further, manual tracing may result in delays,
which could limit its utility. Therefore, recently numerous digital contact tracing
systems have been developed and deployed across the globe, by using a variety
of sources including locations measured from cellular networks, WiFi hotspots,
or GPS, and cryptographic tokens exchanged via Bluetooth Low Energy (BLE).

Among the digital contact tracing systems, BLE has emerged as a promising
solution [21] due to its ubiquity (almost everyone holds a smartphone today),
availability (almost all smartphones have enabled Bluetooth by default), and
privacy preserving (e.g., no real location is involved). The idea of using BLE
for contact tracing is straightforward. When two users encounter, contact trac-
ing apps automatically exchange information with each other to record such a
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contact event for both users. A contact event, in general, includes cryptography
generated random tokens that represent users, timestamps for duration esti-
mation, and information for distance measurements. In particular, most BLE
contact tracing apps use the received signal strength indicator (RSSI) of the
Bluetooth for distance measurements. In addition, for COVID-19, a close con-
tact refers to a user who has been in within 6 feet range of a contagious individual
for more than 15 minutes according to the recent CDC guidelines [14]. As such,
the effectiveness of the Bluetooth-based contact tracing crucially depends on the
accuracy of the measured distance from RSSI .

Unfortunately, in practice, numerous factors can affect the RSSI that can
make the distance measurement inaccurate, such as the power of antenna used
for broadcasting (i.e., the TxPower) and the obstacles blocking transmission
paths. Moreover, Bluetooth-based proximity tracing can also raise false positives
because of the potential misinterpretation of various scenarios. For example, a
proximity tracing system may interpret two users have a contact even if they
are separated by a solid wall, where the risk of infection is much lower than the
risk indicated by the measured distance.

Therefore, it is imperative to study how current Bluetooth-based mobile con-
tact tracing systems perform the proximity measurement. To this end, we ex-
haustively collect 20 Bluetooth-based mobile contact tracing apps from various
public sources (e.g., [5, 22, 31]), systematically inspect the affecting factors that
impact the RSSI , and examine how each app calculates the proximity distance.
Our analysis results have revealed a number of findings:

– Advertising behaviors are highly customized by different mobile apps and the
combination of the level of TxPower and advertising interval is inconsistent
across mobile apps : our analysis have discovered 8 different combinations of
the advertising interval and the level of TxPower from 20 mobile apps (§3).

– A large portion of apps do not have an accurate and reliable measured dis-
tance from Bluetooth: (i) our analysis has identified that 4 apps just use
RSSI for distance measurement without any tuning, (ii) 60% of these apps
do not consider affecting factors from hardware specifications, and (iii) none
of them considers environmental factors (§4).

2 Background

2.1 BLE-based Contact Tracing

Bluetooth Low Energy (BLE) is a wireless communication technology that is
designed to provide basic Bluetooth functionality while consuming considerably
low amount of energy. Because of its low energy consumption and its wide avail-
ability in almost every smartphone, BLE is considered a promising solution for
mobile contact tracing [21].

Using BLE for contact tracing between smartphones is a complicated process.
First, a BLE-based contact tracing mobile app will need to be installed. Then,
the app will periodically generate a random token for each user as an identifier
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and constantly advertise this token (which works like a beacon) or BLE-contact
tracing service information (in which establishing connection to exchange in-
formation is required) to nearby smartphones. Meanwhile, the app also keeps
scanning for other smartphones. When two smartphone users encounter each
other, the apps on two phones will automatically exchange the necessary in-
formation to record this contact event, such as the timestamp, the identifier of
users, and most importantly, the data used for distance measurements [17]. In
addition, data can be exchanged via device connections or by directly reading
from the advertising packets. When a user is tested positive, the app will im-
mediately inform all other users who have close contact with this individual.
This exposure notification process is implemented differently according to the
different architectures, i.e., centralized and decentralized architecture.

– Centralized. In a centralized architecture, users receive exposure notifi-
cations from the server that remotely determines the risk of infection. In
particular, a centralized service will require users who have tested positive
to upload their recent contact events to the central server. Then the server
will analyze these events to identify all other users who have been exposed
to this individual, and notify each of them according to the user contact
information (e.g., cell phone number) that is usually collected at user reg-
istration. There are several privacy preserving protocols using this type of
architecture, such as BlueTrace [4] and ROBERT [24].

– Decentralized. In contrast, in a decentralized architecture, it is the client,
instead of the server, that determines its own risk of infection. Only the
contact events of the contagious users are shared on a public database, and
each client will synchronize its own data with the database periodically.
Whenever a synchronization is accomplished, the client app will locally check
its own contact events against the updated data to determine its own risk
of infection. Many privacy preserving contact tracing protocols such as DP-
3T [28] and Notification Exposure [3] use such a decentralized architecture.

2.2 Proximity Measurement in BLE-based Contact Tracing

RSSI-based Proximity Measurement. For two BLE devices, their proxim-
ity measurement depends on the received signal strength from each other, also
known as RSSI , which is proportional to the distance of signal transmission in
theory. However, in practice, RSSI can be impacted by many factors that may
result in inaccurate proximity measurements, and these factors can be classified
into internal factors and external factors.

(I) Internal Factors Affecting RSSI . Factors within a Bluetooth device in-
cluding the specifications of both hardware and software can influence the RSSI
value [9]. With respect to smartphones, the internal hardware factors are the
Bluetooth chipset and its antenna layout, and the key software factors include
both configurations of the operating system and the mobile app itself [6].
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– Factors from Hardware — chipset and antenna: A Bluetooth chipset
determines the maximum transmission power of the signal and maps the
received signal strength to RSSI values. Such mapping is highly customized
by manufacturers [9] that indicates the same signal can be interpreted as
heavily different RSSI values across different chipsets. Additionally, the an-
tenna layout, orientation, as well as the capability of data transmission can
dramatically affect the strength of emitting and receiving signals [7].

– Factors from Software — OS and App: Both Android and iOS can sig-
nificantly change the power consumption of BLE operations [6], e.g., low bat-
tery mode, that could impact the transmission power and the RSSI value. In
addition to the OS, mobile apps can use system APIs to configure its broad-
casting attributes, such as TxPower, broadcasting interval, and duration.
These attributes can also impact the reliability of RSSI values.

(II) External Factors Affecting RSSI . In addition to the internal factors,
factors outside the device can also influence the RSSI value. At a high level,
these factors can be classified into two categories: invisible radio waves and
visible physical objects.

– Invisible radio waves: Bluetooth signals can be interfered by other types
of radio waves. For example, if WiFi is mis-configured to use channels that
overlap with channels used in Bluetooth, both signals may interfere with
each other [12] that can make the obtained RSSI value less accurate.

– Visible physical obstacles: Obstacles on the transmission path can result
in fluctuated RSSI . In particular, different materials, such as woods, wa-
ter, and glass, as well as different textures on surface of objects can lead to
different levels of signal interference, such as absorption, interference, and
diffraction, that may make the RSSI unstable [11,12].

3 Analysis of BLE Software Configurations

In this section, we analyze the affecting factors of proximity accuracy from mobile
apps. Ideally, we would like to analyze all affecting factors listed in §2.2. However,
it is extremely challenging to analyze the affecting factors from the operating sys-
tem because of their different battery management strategies that rarely quanti-
tatively clarify the restrictions of BLE usage. Additionally, the affecting factors
from hardware specifications have been studied before in TraceTogether [20]. As
such, we focus on the available configurations in mobile apps that control either
the settings of advertising or the data included in advertising packets.

BLE Advertising Settings. The settings of advertising determine how a de-
vice broadcasts BLE advertising packets. In total, there are three configurable
behaviors (only in Android) that are relevant to proximity measurement.

– Level of advertising interval: The advertising interval is configurable in
Android apps and it is controlled by the mode of advertising. In total, there
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are three modes of advertising: (i) LOW_POWER (0) mode, which is the
default mode and broadcasts packets every 1 second; (ii) BALANCED (1)
mode, which broadcasts every 250 milliseconds; and (iii) LOW_LATENCY
(2) mode, which broadcasts every 100 milliseconds [2].

– Duration of advertising: While Android apps can constantly broadcast
advertising packets until being terminated, they are allowed to limit the
broadcasting duration (up to 3 minutes). The duration of broadcasting is
important for receivers to read a reliable signal as more samples for adjust-
ment are supposed to be received in a longer duration.

– Level of transmission power (TxPower): This attribute controls the
emission power of signals. In general, a stronger TxPower can increase the
stability of signal in transmission [11]. In Android, there are four levels of
TxPower: ULTRA_LOW (0), LOW (1), MEDIUM (2), and HIGH (3), where
the HIGH level provides the best range of signal visibility and the default
level is LOW [2].

Data Included in Advertising Packets. In addition to configuring broad-
casting behaviors, apps are also allowed to customize the data carried within
their advertising packets. Among a variety of data that can be included in ad-
vertising packets, we focus on the data for proximity measurement, i.e., the level
of TxPower. In addition, this value is crucial to accurately determine the dis-
tance between users since the same signal strength can be interpreted as different
RSSI values given different levels of TxPower [10]. In particular, the TxPower
value can be included in a separate filed or in a general field, which is integrated
with other information.

– TxPower included in the separated field: Both Android and iOS allow
mobile apps to include the level of TxPower in a separate field in advertising
packets but with different policies. Specifically, iOS apps are required to
include this value in advertising packets and Android apps can choose whether
to include this value or not.

– TxPower included in integration: Other than being included in adver-
tising packet separately, the level of TxPower can also be integrated with
other information and stored in general data fields, i.e., the field of manu-
facture data and service data. In addition, while both fields are allowed for
customization in Android, only service data can be customized in iOS.

Results. From 20 apps in our dataset, there are 12 apps that intend to broad-
cast infinitely until being enforced to close, while 8 have not specified their
broadcasting duration. Given the default setting of this attribute is infinity [2],
as presented in Table 1, all these apps will constantly broadcast advertising
packets. In addition, we have identified that 10 apps have included TxPower
separately in advertising packets, 5 apps are set to not carry this value in an
individual field, and 5 apps have not specified this property. Moreover, neither
the manufacturer nor service data fields in the latter 10 apps include TxPower.
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Advertising (Adv.) Settings Adv. Data
App Name TxPower Mode Duration Separated Integrated
COVIDSafe HIGH LOW_LATENCY ∞ 4 -
Stopp Corona HIGH LOW_LATENCY ∞ 4 -
BeAware MEDIUM LOW_POWER ∞ 7 7

CoronApp HIGH LOW_POWER ∞ 4 -
eRouska MEDIUM LOW_POWER ∞ - 7

StopCovid LOW BALANCED ∞ 4 -
Aarogya Setu ULTRA_LOW LOW_POWER ∞ - 7

MyTrace LOW BALANCED ∞ 7 7

StopKorona HIGH BALANCED ∞ - 7

Smittestopp MEDIUM LOW_POWER ∞ 4 -
Ehteraz MEDIUM BALANCED ∞ 7 7

TraceTogether HIGH LOW_LATENCY ∞ 4 -
Mor Chana MEDIUM LOW_POWER ∞ - 7

Hayat Eve Sigar LOW BALANCED ∞ 4 -
NHS COVID-19 App MEDIUM LOW_POWER ∞ 4 -
Healthy Together ULTRA_LOW LOW_POWER ∞ 4 -
Bluezone LOW LOW_LATENCY ∞ 7 7

CovidSafePaths HIGH LOW_LATENCY ∞ 4 -
Coalition Network HIGH LOW_LATENCY ∞ - 7

Covid Community Alert HIGH BALANCED ∞ 7 7

Table 1: BLE Advertising Configurations in Mobile Apps (Note that ∞
represents infinity).

Observation 1 All apps in our analysis intend to broadcast advertising packets
constantly without time limit and half of them have not included the level of
TxPower in advertising packets.

In terms of advertising interval, we have identified three apps — BeAware,
eRouska, and Aarogya Setu — that have not explicitly specified their advertising
interval (the default value is lower power mode [2] , while the remaining 17 apps
have specified this attribute. Among these 17 apps, there are 6 apps that are
set to broadcast advertising packet with minimum intervals, 6 apps that use the
balanced mode, and 5 apps that apply the low power mode. Moreover, BeAware,
eRouska, and Mor Chana are the only 3 apps that do not explicitly specify their
level of TxPower in broadcasting (the default value medium will be used in this
case). For the remaining 17 apps that specify the TxPower, there are 8 apps that
specify the highest transmission power, 3 apps that specify it to be medium, 4
apps that set themselves as low level, and 2 apps that apply the lowest level.

Surprisingly, from Table 1, we also observed that the combination of the
level of TxPower and advertising interval is inconsistent across different apps.
In particular, (i) among 8 apps that use the high level of TxPower, there are 5
apps that broadcast with the minimum interval, 2 apps with medium interval,
and 1 app with the maximum interval; (ii) among 6 apps using the medium
level of TxPower, we have identified that 5 apps are set with the maximum
broadcasting interval and 1 apps is set with medium interval; (iii) for the 4 apps
using low TxPower, 3 of them broadcast with medium interval and 1 app with
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the maximum interval; and (iv) the remaining 2 apps share the same combination
of the lowest level of TxPower and the maximum interval.

In general, the combination of TxPower and advertising interval can impact
the accuracy of RSSI value read at receivers [11]. However, in practice, we have
not observed a consensus view toward this combination across contact tracing
apps. Additionally, the magnitude of the impact on the RSSI value from different
combinations remains unclear.

Observation 2 The combination of the level of TxPower and advertising inter-
val is inconsistent across contact tracing apps. Meanwhile, the impact on distance
measurement from different combinations is also unclear.

4 Analysis of Proximity Measurement Approaches

After analyzing the BLE software configurations, we next understand how each
app measures the proximity. To this end, we first recognize which type of data
is collected in §4.1, and then uncover how the collected data is used in the
proximity measurement in §4.2.

4.1 Data Collected for Proximity Measurement

The first step to understand how each app measures the distance is to recog-
nize which type of relevant data would be collected. Unfortunately, proximity
measurements are rarely mentioned or vaguely expressed in the documentation
(e.g., app description and privacy policy) of an app. As such, we need to analyze
the code of an app to understand the semantics of its collected data. However,
identifying which one is used for proximity measurement is challenging since mul-
tiple types of data are processed within an app. Fortunately, we have observed a
special feature in BLE-based contact tracing services that can narrow down the
scope. That is, the contact events will be temporarily stored locally and all neces-
sary data of each event will be stored together as an entry in a database or a local
file. Therefore, we focus on the database or file operations, e.g., read and write,
of an app to uncover which type of data is collected for proximity measurement.

Results. We have uncovered the data collected for proximity measurement from
16 apps (note that the rest 4 uses native code and reflection to collect data, and
we leave them in future work) and present them in Table 2. In addition, we have
classified the uncovered data into the following three categories.

– RSSI : Our analysis reveals that all 16 apps collect RSSI value. In addition,
4 of them collect this value exclusively and the remaining apps collect other
types of data such as TxPower as well.

– Affecting Factors: Our analysis has identified that 9 apps collect the level
of TxPower and 5 apps gather phone models. Specifically, among these 5
apps, 3 of them collect phone models of senders and receivers, which are
required by BlueTrace protocol [4], and 2 apps only collect its own (receiver)
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Affecting Factors
App Name RSSI Software Hardware Others
COVIDSafe  Level of TxPower modelP; modelC
CoronApp  Level of TxPower modelP; modelC
eRouska  
StopCovid  BuildNumber; Version

Manufacturer; Model

Aarogya Setu  Level of TxPower GPS
StopKorona  
Smittestopp  Level of TxPower GPS, Altitude

Speed, Accuracy

Ehteraz  GPS
TraceTogether  Level of TxPower modelP; modelC
Mor Chana  
NHS COVID-19 App  Level of TxPower
Healthy Together  Level of TxPower
Bluezone  Level of TxPower
CovidSafePaths  Level of TxPower
Covid Community Alert  BuildNumber; Version

Manufacturer; Model
Coalition Network  

Table 2: Data Collected for Distance Measurement (Note that  repre-
sents collection).

phone model, which is needed by the AltBeacon library [1] for distance cal-
culation.

– Other Distance Measurements: There are 3 apps even collecting GPS
coordinates for distance measurement. In particular, unlike Ehteraz and Aaro-
gya Setu that only collect GPS coordinates, Smittestopp also collects altitude,
speed, and their degrees of accuracy.

Based on the uncovered data collection from these apps, it would be chal-
lenging to obtain an accurate distance. That is, only 5 apps have considered the
affecting factors from hardware specifications but the number of specifications is
limited. Moreover, 3 apps only use RSSI for distance calculation without consid-
ering the level of TxPower, and none of them considers external affecting factors
from the environment, such as having a phone in a pocket.

Observation 3 Data collection for proximity measurement is inconsistent across
different contact tracing apps. Unfortunately, only a few of them consider the
affecting factors from hardware specifications, e.g., phone models, some apps do
not consider the affecting factors from software configurations, e.g., TxPower,
and there is no evidence indicating that external affecting factors have been con-
sidered.
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4.2 Data Used in Distance Calculation

In addition to understanding the types of data collected for distance measure-
ment, we also seek to know how such data is exactly used. In this regard, directly
checking the formula used for distance calculation is a reliable solution. Because
the distance measurement is based on RSSI , the formula must use this value in
the calculation. As such, we can track the dataflow of RSSI value within mobile
apps to discover the formula. We follow such an approach in our analysis.

Results. Uncovering this formula from contact tracing apps is challenging. First,
in a centralized service, the formula is supposed to exist on the server side whose
code is inaccessible to us. Additionally, in a decentralized service, it is also non-
trivial to uncover the distance calculation formula from mobile apps because of a
variety of obfuscations on the code (e.g., 4 out 6 decentralized apps in our dataset
use obfuscation), from variable and method renaming to using reflections. In the
end, with our best effort, we have uncovered the distance calculation formula
from three apps. Interestingly, they use the same distance measurement model
as the following:

(
RSSI

TxPower
)
Coef1

× Coef2 + Coef3

where the three coefficients are used to tune the accuracy for different hardware
specifications. Among the apps we analyzed, StopCovid and Covid Community Alert
use the AltBeacon library [1] for proximity measurement whose coefficients for
4 phone models are available online1.

Observation 4 Different contact tracing apps may use the same formula to
measure the proximity. However, their tuning is quite limited to only a few
phone models or without tuning at all.

5 Discussion

From our analysis, a large portion of BLE-based contact tracing apps do not
have an accurate and reliable proximity measurement from Bluetooth. A prac-
tical and effective solution to improve the accuracy could be tuning RSSI for
different phone models, because different models provide a variety of BLE hard-
ware specifications and their impacts on the robustness of the RSSI values are
significant. Fortunately, some groups (e.g., OpenTrace [6] have started conduct-
ing experiments and collecting data for this tuning. However, only a limited
number of phone models have been involved. More efforts are needed to cover
more phone models.

Additionally, we have identified a variety of advertising behaviors with dif-
ferent combinations of the advertising interval and the power of transmission.
Unfortunately, it is unclear whether these different behaviors can impact the
1 https://s3.amazonaws.com/android-beacon-library/android-distance.json

https://s3.amazonaws.com/android-beacon-library/android-distance.json
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RSSI value as well as their corresponding magnitude of influence. Further stud-
ies in this direction could help identify an effective BLE advertising behavior
that improves the robustness of RSSI values.

6 Related Work

Recently, there are multiple privacy-preserving contact tracing protocols having
been proposed. Some of them [4, 8] are centralized and some [3, 15, 19, 23, 28]
are decentralized. Accordingly, there is also a body of research [13] analyzing
the potential privacy issues in these protocols. In addition, many studies have
focused on the analysis of COVID-19 themed apps. For instance, several stud-
ies [16,29] focus on privacy issues of one specific contact tracing app (e.g., Trace-
Together [16]), and the rest (e.g., [18,25,27,30]) present empirical analysis with
these apps. Similarly, there are also many efforts (e.g., [26, 32]) that focus on
security issues in BLE mobile apps in general. Unlike these efforts that aim at
analyzing privacy and security issues, we focus on the accuracy of proximity
measurement in contact tracing apps.

7 Conclusion

To fight COVID-19 pandemic, a large number of BLE proximity tracing apps
have been developed and deployed. These apps use the received signal strength
indicator, RSSI , to measure the proximity between two smartphones. However,
multiple factors can impact the RSSI value that makes the proximity measure-
ment challenging. In this paper, we provide a detailed study on the accuracy of
RSSI -based proximity measurements that are applied in 20 BLE-based contact
tracing apps. Our study has revealed that different apps configure a variety of
BLE broadcasting behaviors and only a small portion of them have tuned RSSI
to improve the accuracy of measured proximity.
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