
FirmXRay: Detecting Bluetooth Link Layer Vulnerabilities
From Bare-Metal Firmware

Haohuang Wen
wen.423@osu.edu

The Ohio State University

Zhiqiang Lin
zlin@cse.ohio-state.edu
The Ohio State University

Yinqian Zhang
yinqian@cse.ohio-state.edu
The Ohio State University

ABSTRACT
Today, Bluetooth 4.0, also known as Bluetooth Low Energy (BLE),
has been widely used in many IoT devices (e.g., smart locks, smart
sensors, and wearables). However, BLE devices could contain a
number of vulnerabilities at the BLE link layer during broadcasting,
pairing, and message transmission. To detect these vulnerabilities
directly from the bare-metal firmware, we present FirmXRay, the
first static binary analysis tool with a set of enabling techniques
including a novel base address identification algorithm for robust
firmware disassembling, precise data structure recognition, and
configuration value resolution. As a proof-of-concept, we focus on
the BLE firmware from two leading SoC vendors (i.e., Nordic and
Texas Instruments), and implement a prototype of FirmXRay atop
Ghidra. We have evaluated FirmXRay with 793 unique firmware
(corresponding to 538 unique devices) collected using a mobile app
based approach, and our experiment results show that 98.1% of
the devices have configured random static MAC addresses, 71.5%
Just Works pairing, and 98.5% insecure key exchanges. With these
vulnerabilities, we demonstrate identity tracking, spoofing, and
eavesdropping attacks on real-world BLE devices.

CCS CONCEPTS
• Security and privacy→ Software reverse engineering; Em-
bedded systems security; Mobile and wireless security.

KEYWORDS
Firmware analysis, Bluetooth Low Energy, Embedded system secu-
rity, Vulnerability discovery
ACM Reference Format:
Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. 2020. FirmXRay: De-
tecting Bluetooth Link Layer Vulnerabilities From Bare-Metal Firmware. In
2020 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’20), November 9–13, 2020, Virtual Event, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3372297.3423344

1 INTRODUCTION
Over the past several years, we have witnessed a rapid growth of
the Internet-of-Things (IoT), thanks to a variety of enabling tech-
nologies from sensors, micro-controllers, actuators, to mobile and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00
https://doi.org/10.1145/3372297.3423344

cloud computing. Among the deployed IoTs, the BLE-enabled ones
are ubiquitous and have been widely used in many applications (e.g.,
health care, retail, asset tracking [19], and recently contact trac-
ing [59]). The key reason for its success is its low technical barrier
from both hardware and software. Today, there are many System
on Chip (SoC) vendors such as Nordic [11] and Texas Instruments
(TI) [15], which provide both hardware chips and software devel-
opment kits (SDKs) for IoT developers. There are also numerous
software platforms (e.g., Android), frameworks (e.g., Google Home),
and clouds (e.g., AWS) that enable application programmers to easily
assemble hardware gadgets with software components. Therefore,
such a low technical barrier has attracted a huge number of devel-
opers, and together they have produced billions of BLE-IoT devices.

However, a secure BLE device needs proper hardware capability
(e.g., I/O), and also correct configuration for its broadcasting, pair-
ing, and message encryption. Otherwise, it could lead to a number
of vulnerabilities at the BLE link layer. For instance, a BLE device
can be vulnerable to identity tracking [27] and device fingerprint-
ing [63] [20] if developers configure MAC addresses and universally
unique identifiers (UUIDs) statically for broadcasting. Meanwhile, a
BLE device can be vulnerable to active man-in-the-middle (MITM)
attacks (e.g., spoofing) if it is configured to only support Just Works
pairing [41] [49]. In addition, passive MITM attacks (e.g., eavesdrop-
ping) are also possible if it fails to enforce the Low Energy Secure
Connections pairing [36] to secure the key exchange [44] [32].

While it is important for a BLE device to be secure against these
attacks, it is in fact hard to do so for several reasons. First, the
configurations are complicated. For instance, to use secure pairing
methods (e.g., passkey entry and OOB [16]) instead of Just Works,
developers have to clearly specify theMITMprotection requirement
and also the device I/O capability in the pairing feature packets.
Second, many security features also rely on capabilities provided by
device hardware. For example, to configure passkey entry pairing,
the device must have a keyboard or a touchable screen to let users
manually enter a passkey to authenticate the pairing device. Third,
some extra implementations are required. For example, to configure
periodically randomized MAC addresses, developers also need to
implement the exchange of Identity Resolving Key (IRK) [16].

Therefore, it is imperative to identify the aforementioned vulner-
abilities in BLE devices. There could be multiple approaches to do
so, such as packet analysis with real devices, or using companion
mobile apps. However, these approaches are either not scalable or
have only limited view. Fortunately, we notice that these vulnerabil-
ities can be directly identified from the low-level configurations in
the corresponding bare-metal firmware (i.e., firmware without OS
support, which is particularly popular for BLE due to its extremely
low energy requirement). While there is a large body of research
in firmware analysis for vulnerability discovery such as firmware

https://doi.org/10.1145/3372297.3423344
https://doi.org/10.1145/3372297.3423344

emulation [56] [23], fuzzing [47] [25] [60], rehosting [26] [31], and
static analysis [35] [33], nearly all of them focus on non-bare-metal
firmware (e.g., devices such as IoT routers and cameras [25] with
Linux kernels). Additionally, none of them systematically investi-
gates the vulnerabilities in bare-metal BLE-IoT devices.

To advance the state-of-the-art, we present FirmXRay, the first
static analysis tool to detect BLE link layer vulnerabilities from
configurations in the bare-metal firmware at scale. Specifically, we
have developed three techniques in FirmXRay. The first is Robust
Firmware Disassembling, which uses absolute pointers to model
base address constraints and infers the base address to disassem-
ble the firmware. The second is Precise Data Structure Recognition,
which leverages the static SDK function signatures to identify the
configurations from function parameters. The third is Configuration
Value Resolution to extract the configuration generation path and
resolve the configuration values. We have implemented FirmXRay
atop Ghidra [8], and target the firmware built with the SDKs from
Nordic or TI, the two leading global BLE SoC vendors [46].

To evaluate FirmXRay, we have to collect bare-metal firmware
at scale, which is challenging since IoT vendors seldom release the
device firmware publicly, and also there is no centralized platform
to collect them. Interestingly, we notice that bare-metal firmware
typically do not directly connect to the Internet through cellular
network or Wi-Fi, and thus they must rely on relays (e.g., mobile
apps) to transfer update packets wirelessly. Therefore, we design
a scalable mobile app based approach to collect the bare-metal
firmware. With this approach, we successfully downloaded 793
unique firmware corresponding to 538 unique devices.

Among these devices, FirmXRay discovered that 71.5% of them
adopt Just Works pairing that provides no protection against ac-
tive MITM attacks such as active eavesdropping and spoofing. In
addition, nearly all of them have configured random static MAC
addresses and insecure key exchanges, which allows tracking and
eavesdropping attacks that can leak user’s personal identity and
private data. Our results show that there is a wide spread of vulner-
abilities across various bare-metal BLE-IoT devices. To show the
security implications of the identified vulnerabilities, we demon-
strate three types of concrete attacks on 5 real-world BLE devices.
Contributions. Our paper makes the following contributions:
• We design the first automated static analysis tool FirmXRay to
detect BLE link layer vulnerabilities from the configurations of
bare-metal firmware with a novel algorithm to recognize the
base address, and then identify and resolve the configurations.

• We propose a mobile-app-based scalable approach to efficiently
collect bare-metal firmware images from only mobile apps, re-
sulting in 793 unique ones corresponding to 538 unique devices.

• We implement FirmXRay atop Ghidra, and evaluate it with 793
unique firmware, in which our tool discovered that 71.5% of the
devices use JustWorks pairing, and nearly all of them have config-
ured random static MAC addresses and insecure key exchanges.

2 BACKGROUND
2.1 Bare-metal Firmware
Bare-metal firmware is ubiquitous among various IoT embedded
devices such as smart sensors, smart toys, smart locks, and smart

Application BootloaderSDK APP
RAM

SDK
RAMData Gap Heap Stack

Read Only Memory (ROM) Random Access Memory (RAM)

ROM_BASE APP_ROM_BASE RAM_BASE APP_RAM_BASE
0x0 0x18000 0x20000000 0x20002000

Figure 1: Memory layout of bare-metal IoT devices.

lights, because of its low energy consumption and also the trade
off between price and performance. Since it directly runs on a logic
hardware without any operating systems, fundamentally it is barely
a binary blob that only contains the program code to manage the
device functionality using an infinite loop and interacts with other
software components through interrupts.

Nowadays, many manufactures, such as Nordic [11], TI [15], and
Dialog [6], have developed various Micro Controller Units (MCUs),
which are small and self-contained computers on micro chips to
support the bare-metal firmware. Meanwhile, they often adopt low-
energy technologies such as BLE, and low-end processors such
as ARM Cortex-M0. Moreover, to facilitate the development of
an embedded device, these manufactures also provide software
development kits (SDKs) that have integrated a number of basic
functionalities. Typical examples are SoftDevice [12] from Nordic
and BLE-Stack [2] from TI, which enable developers to implement
specific device logic such as BLE pairing and data exchange, atop
the programming interfaces provided in the SDK.
Memory layout of bare-metal firmware. The memory layout
of a typical bare-metal IoT device is presented in Figure 1 [10]. At
a high level, the layout consists of two main regions: (i) read only
memory (ROM) containing program code and persistent data, and
(ii) random access memory (RAM) holding run-time variables. The
ROM is located at the lower address space (e.g., 0x0) whereas the
RAM is at higher address space (e.g., 0x20000000), and there is a
gap between these twomemory regions. On the ROM side, there are
multiple isolated sections including the SDK provided code for the
precompiled vendor-specific functions, application code for device
logic, and bootloader for boot logic. On the RAM side, there are mul-
tiple RAM sections correspondingly for the application and SDK to
store static variables, as well as the stack and heap to store local and
dynamically allocated variables. For each section in the ROM and
RAM, it starts from an absolute base address, such as APP_ROM_BASE
for application, which can be customized before compilation.
Over-the-air upgrade of the firmware. While the bootloader
and the SDK are preloaded into the device memory and seldom get
changed overtime, there is a need for developers to upgrade the
application with new patches (e.g., when fixing vulnerabilities or
bugs). Since the application code does not rely on OS and is isolated
from other sections in the ROM, it is usually small in size (less than
one megabyte according to our observation), which thus allows the
upgrade procedure to directly replace the old application with a
new one. Additionally, since bare-metal devices often do not have
direct Internet access (e.g., cellular network or Wi-Fi), they rely on
other entities (e.g., smartphones) to serve as intermediate relays to
download the upgraded firmware from remote servers, and then
transfer the firmware to the devices. Such an upgrade process is
called over-the-air (OTA) upgrade because the transfer is through
wireless network such as Bluetooth. After receiving the upgraded

Application Layer

GAP GATT SMP ATT L2CAP

Link Layer

Physical Layer

Application

Host

Controller

HCI

Figure 2: Bluetooth Low Energy protocol stack.

firmware, the device reboots and the bootloader replaces the old
firmware with the latest one.

2.2 Bluetooth Low Energy

BLEprotocol stack.The architecture of the BLE protocol stack [16]
is shown in Figure 2. At a high level, it is divided into three compo-
nents: application, host, and controller. At the bottom of the stack,
the link layer directly interacts with the physical layer, and is re-
sponsible for basic functions including advertising, connection, and
encryption. Meanwhile, the host communicates with the link layer
through the Host Controller Interface (HCI) and defines secure
device communication protocols such as Generic Attribute Profile
(GAP). At the top of the stack, the application layer leverages the
abstractions from the host to implement specific application logic.
BLE workflow. The general workflow of Bluetooth Low Energy
is presented in Figure 3, which illustrates how a central device (e.g.,
a smartphone) pairs with a peripheral device (e.g., a BLE smart
band), and exchanges data. At a high level, the workflow is broken
down into eight steps across three main stages: (I) Broadcast and
connection, (II) Pairing and bonding, and (III) Data Transmission.
The details of each stage are described as follows.
(I) Broadcast and connection. In this stage, the smartphone rec-
ognizes the broadcasting smart band and establishes a connection
with it. Initially, in order to indicate the willingness of connection,
the smart band needs to broadcast data packets to all nearby de-
vices, which include identifiable information such as Media Access
Control (MAC) address and universally unique identifiers (UUIDs).
A device that broadcasts information and waits for connection (❶)
is regarded as a peripheral, while the one scans the advertised BLE
packets (❷) from the peripherals and initiates the connection is
called a central. After the central initiates the connection request
(❸) to the peripheral, the connection is successfully established (❹).
(II) Pairing and bonding. The channel between the central and
peripheral often needs to be encrypted, and thus the pairing process
is for them to negotiate the cryptographic key. While broadcast and
connection is a mandatory stage for all BLE communications, the
pairing and bonding stage is optional. If none of the device requests
for pairing, the transferred data will be in plain text. Specifically,
the pairing process consists of the following three steps:
• Pairing feature exchange (❺). At first, the two devices ex-
change their pairing features so that an appropriate pairing
method (e.g., passkey entry) can be negotiated. The exchanged
features include their I/O capabilities, MITM requirement, BLE
version, etc. If MITM protection is needed and certain I/O require-
ments (e.g., having a keyboard or display) are satisfied, they will

(III) Data Transmission

(II) Pairing and Bonding

(I) Broadcast and Connection

Scan

Connection Request

Broadcast1

Peripheral Central

3

Connection Established4

2

Pairing Feature Exchange5

6 STK/LTK Generation (Legacy/LESC Pairing)

7

Read/Write Data8

Transport Specific Key Distribution

Figure 3: Bluetooth Low Energy workflow.

select a secure pairing method including passkey entry, numeric
comparison, and Out Of Band (OOB). Otherwise, they have to use
Just Works, which has the weakest security protection.

• LTK/STK generation (❻). After the pairing method is decided,
the two devices then negotiate the encryption key. This step
performs differently according to specific BLE versions. When
two devices are below BLE 4.2, they use BLE Legacy Pairing to
generate a temporary short term key (STK) to encrypt the long
term key (LTK), in which the STK is generated based on the
selected pairing method (e.g., requiring a user to manually enter
a 6-digit passkey) [16]. If the two devices support at least BLE
4.2, the LE Secure Connection (LESC) pairing can be used. Based
on the Elliptic-Curve Diffie–Hellman (ECDH) protocol, each of
them generates a public-private key pair and only exchanges the
public key, and then an LTK is directly calculated on both sides
to encrypt the session. Note that the selected pairing method is
used to authenticate the pairing process (e.g., asking the user to
enter a password). If bonding is specified, the negotiated key is
stored in non-volatile memory for future communications.

• Transport specific key distribution (❼). After the STK or
LTK has been generated, the transport specific keys are dis-
tributed from one entity to the other. The distributed keys in-
clude the LTK (in Legacy pairing), Identity Resolution Key (IRK),
Connection Signature Resolving Key (CSRK), and so on.

(III) Data Transmission.When the first two stages are completed,
the central and the peripheral start to communicate with each other
(❽). The communication is through reading or writing data on cer-
tain BLE attribute called characteristic. To be more specific, the BLE
stack maintains a set of hierarchical attributes including services,
characteristics, and descriptors [7], which are identified by UUIDs.

3 OVERVIEW
3.1 Threat Model, Scope, and Assumptions

Threat model. In this paper, we consider that nearby attackers
can compromise the devices by leveraging the vulnerabilities at the
BLE link layer. These attackers are capable of sniffing BLE packets
during broadcast and data transmission, and also performing MITM
attacks. These attacks can be launched by using a programmable

Read Only Memory Random Access Memory
1 243a8 mov r2, #0x0
2 243aa orr r2, #0x1
3 243ac and r2, #0xe1
4 243ae add r2, #0xc
5 243b0 and r2, #0xdf
6 243b2 ldr r1, [0x260c8]
7 243b4 str r2, [r1,#0x0]

// [0x20003268] = 0xD
...
8 25f44 ldr r2, [0x260c8]

// r2 = 0x20003268
9 25f46 mov r1, #0x0
10 25f48 svc 0x7f
// SD_BLE_GAP_SEC_PARAMS_REPLY
...
11 260c8 0x20003268

// ble_gap_sec_parms_t*

20003268 uint8 pairing_feature = 0xD

// BOND = 1, MITM = 0
// IO = 3, OOB = 0

20003269 uint8 min_key_size
20003270 uint8 max_key_size
20003271 ble_gap_sec_kdist_t kdist_own
20003275 ble_gap_sec_kdist_t kdist_peer

Struct ble_gap_sec_params_t

BOND MITM IO OOB

Figure 4: An example of a Just Works pairing vulnerability.

BLE development board such as a Nordic nRF52-DK [13] to build
a Bluetooth sniffer and MITM proxy.
Scope.While there are many attacks against BLE (e.g., [30, 34, 44,
48, 63]), we particularly focus on those caused by the vulnerabilities
at the BLE link layer, which is responsible for broadcast, pairing,
and encryption. To summarize, there are three types of such attacks:
(i) identity tracking, (ii) active MITM, and (iii) passive MITM.
(i) Identity tracking. This attack enables an attacker to keep track

of a victim’s identity based on the advertised information such
as MAC address from a BLE peripheral. While MAC address
is mandatory in each BLE packet, which makes identity track-
ing possible [27], it can be configured to be a static address
(e.g., public IEEE address [40]), or a randomly generated address
which keeps changing periodically (e.g., every 15 minutes [40]).
Therefore, in this case, how resilient the device against identity
tracking depends on the device configuration.

(ii) Active MITM. An active MITM attack allows intercepting (e.g.,
active eavesdropping) and modifying messages (e.g., spoofing).
In BLE, such a vulnerability can also be identified from configu-
rations. Specifically, among the four types of pairing, numeric
comparison and passkey entry are able to prevent active MITM at-
tacks since they rely on a third-party entity (e.g., a human being)
to authenticate the connection with a dedicated I/O (e.g., by man-
ually entering a passkey on the screen). Meanwhile, OOB can
mitigate this attack by narrowing down to an extremely short
connection distance. However, if the firmware fails to properly
configure with MITM protection, or lacks certain I/O capabilities
(which will still be reflected in the configurations), it has to use
Just Works pairing, which provides no protection against active
MITM attacks.

(iii) Passive MITM. Passive MITM attack allows an attacker to
read messages, such as passive eavesdropping. As in BLE, al-
though the communication traffic is encrypted after pairing, the
LTK can still be eavesdropped since the two devices have to first
establish a temporary encryption key negotiated in plain-text
when no public key cryptography is used. To mitigate this vul-
nerability, Bluetooth Special Interest Group (SIG) [3] has adopted
the Elliptic-Curve Diffie–Hellman (ECDH) protocol for key ex-
change since BLE 4.2 [16], which is known as the Low Energy
Secure Connection (LESC) pairing. However, such a protection
also relies on user configuration, because both the central and pe-
ripheral must explicitly request for LESC pairing, and meanwhile
have to invoke the ECDH key exchange [36].

Robust Firmware
Disassembling

Bare-metal
Firmware

Precise Data
Structure Recognition

Configuration
Value Resolution

Constraints𝑋 = 𝑎rgmax
!∈#

𝑁(𝑥)

Disassembler

Detection
Policies Vulnerabilities

Figure 5: Overview of FirmXRay.

Assumptions. We focus on the bare-metal firmware developed
based on the Nordic or TI SDKs, which are all ARM Cortex-M ar-
chitecture. We also assume that they are not obfuscated and no
address space layout randomization (ASLR) is deployed, and the
firmware are distributed via the relay of mobile apps (to achieve
the OTA upgrade).

3.2 Motivating Example
To clearly illustrate how the link layer vulnerabilities can be iden-
tified from configurations, and the corresponding technical chal-
lenges, we present a motivating example in Figure 4. The example
comes from an IoT wristband firmware developed based on the
Nordic SDK. In particular, starting from line 1, the firmware loads a
value 0x0 into register r2. Going through a series of operations in-
cluding logical or (orr), logical and (and), and arithmetic add (add)
(line 2-5), the value of r2 becomes 0xD. Next, this value is stored
into a specific location 0x20003268 (line 6-7), which refers to a
static data structure ble_gap_sec_params_t in RAM. Afterwards,
an address 0x20003268 is loaded into r2 (line 8), which essentially
makes r2 a pointer pointing to that data structure. Finally, a super-
visor call is invoked by an svc instruction [9] along with an svc
number 0x7f (line 10). After the svc is called, the SDK function
SD_BLE_GAP_SEC_PARAMS_REPLY is invoked, taking r0, r1, and r2
as parameters to reply the peer device with its pairing features.

The configuration pairing_feature is a uint8 integer located
at the starting address of the structure, where the pairing features
are represented by different bits of the integer. More specifically,
the first bit specifies whether bonding is performed, the second
indicates whether MITM protection is necessary, and the third to
the fifth bits represent the specific I/O capabilities, according to the
SDK specification [12]. As a result, the value 0xD can be interpreted
as a pairing configuration: the device requires bonding, no MITM
protection, and does not have I/O capabilities. Therefore, we can
conclude that the wristband contains a vulnerability that uses Just
Works to pair with a smartphone.

3.3 FirmXRay Overview
Based on the above motivating example, we can notice that in order
to identify the vulnerabilities, we must first correctly disassemble
the firmware to recognize the instructions and parameters, then
identify the configuration data structures, and finally compute the
configuration values. More specifically, we need:
• Robust Firmware Disassembling.While the firmware disas-
sembling in ARM (RISC) is relatively easy than x86 (CISC), we
still need to recognize the base address for the disassembling
since the firmware code we acquire start from customized bases.

Incorrect Base
0x0

05452 ldr r0, pc+0x72
05454 blx r0=>0x22A90
...
054c4 0x22A90
...

Function Foo()
07a90 push {r3, r4, r5, lr}

20452 ldr r0, pc+0x72
20454 blx r0=>0x22A90
...
204c4 0x22A90
...

Function Foo()
22a90 push {r3, r4, r5, lr}

Correct Base
0x1B000

04e52 ldr r0, pc+0x146
04e54 ldmia r0=>0x23058, {r4, r5, r6}
...
04f98 0x23058
...
08058 ”KinsaHealth”

1fe52 ldr r0, pc+0x146
1fe54 ldmia r0, {r4, r5, r6}
...
1ff98 0x23058
...
23058 ”KinsaHealth”

00004 0x1B169
00008 0x1B183
...
00169 0xE7
...
00183 0xE7

1b004 0x1B169
1b008 0x1B183
...
1b169 0xE7
...
1b183 0xE7

(1) Absolute Function Pointer (2) Absolute String Pointer (3) Absolute Vector Table Entry

Figure 6: Effect of disassembling with different base addresses across absolute pointers.

• PreciseData StructureRecognition.After disassembling, Fir-
mXRay has to identify the configurations from the disassembled
code. However, as shown in Figure 4, configurations are often
embedded in complicated data structures, and the names of vari-
ables and functions, and their types, etc., of bare-metal firmware
are completely stripped.

• Configuration Value Resolution.As indicated in Figure 4, the
configurations are not directly hardcoded in the program, but
instead are generated through complicated computations such as
logical, arithmetic, and bit-wise operations. Hence, it is necessary
to design an algorithm to resolve the configuration values.
As such, we have designed three corresponding techniques, as

shown in Figure 5. FirmXRay first takes a bare-metal firmware
as input, and recognizes the base address using Robust Firmware
Disassembling (§4.1). Next, based on the disassembled firmware, it
identifies the configuration data structures using Precise Data Struc-
ture Recognition (§4.2). Finally, with the identified configurations,
FirmXRay resolves the concrete configuration values using Config-
uration Value Resolution and identifies the vulnerabilities with the
corresponding detection policies (§4.3).

4 DETAILED DESIGN
4.1 Robust Firmware Disassembling

Observations. When given a firmware image, FirmXRay first has
to recognize the base address for robust firmware disassembling.
To clearly illustrate the challenges, we present three simplified real-
world examples in Figure 6.We can notice that if the firmware is cor-
rectly rebased, as shown in the bottom half of Figure 6(1), the corre-
sponding instructions such as blxwould successfully recognize the
target function Foo through its absolute function pointer address at
0x22A90 pointed by a pointer at 0x204C4; otherwise, this absolute
address falls beyond the firmware address space as shown in the
top half of Figure 6(1). Similarly, the absolute string pointers in Fig-
ure 6(2) and the vector table entries in Figure 6(3) would also point to
wrong locations if their target addresses are not properly resolved.

As shown in the above three cases, if the firmware starts from
an incorrect base, the absolute pointers (e.g., the above pointers us-
ing absolute addresses) would be dereferenced at wrong locations,
which causes incorrect disassembly. The root cause is that the ad-
dresses of their targets (e.g., function entries, strings, interrupt num-
bers) shift along with the base address, while the absolute pointer
values remain unchanged. For example, the address of the target

function Foo shifts from 0x22A90 to 0x7A90when the base changes
from 0x1B000 to 0x0, while the absolute pointer address remains
0x22A90 regardless of the base. Therefore, we must recognize the
correct base that properly links these pointers to their right targets.

Although there exist a handful of efforts (i.e., [61] [50]) in base
address recognition, these approaches rely on a single type of clues
(namely the function prologues), which can lead to incorrect results
when there is insufficient number of such clues in the firmware,
as shown in our experiment (detailed in §5.2.1). As a result, we
propose a more systematic approach based on the observation that
the absolute pointers must point to certain instructions or variables
with respect to their types, and such point-to relations of absolute
pointers can provide strong clues to infer the base address. For in-
stance, as illustrated in Figure 6(1), a function pointer must point to
a valid function entry. If the firmware starts from an incorrect base,
this function pointer will point to a wrong location. Therefore, only
the correct base address can link an absolute pointer (e.g., a function
pointer) with the intended target (e.g., a function entry). Based on
this observation, we can model the base address recognition as a
point-to constraint solving problem of absolute pointers.
Our Approach. Consequently, we propose a two step approach to
recognize the base address. In particular, the first step is to extract all
absolute pointers from the firmware, and the second step is to asso-
ciate constraints between the absolute pointers and their intended
targets, and finally solve the constraints, from which to infer the
base address. The details of these two steps are described as follows.
Step-I: Absolute pointer recognition. Without the knowledge
of the base address, FirmXRay first loads the firmware with a 0x0
base address and disassembles the program instructions. The rea-
son for why a zero base works is that the ARM instructions are
always aligned with 2 or 4 bytes [9]. For disassembling, we apply a
linear sweep algorithm [45] to exhaustively disassemble all possible
instructions. To identify the absolute pointers, we can particularly
focus on all of the load instructions (i.e., ldr in ARM), since they
must be loaded into registers before being dereferenced. However,
not all the absolute pointers in the load instructions are useful as
many of them point to the RAM locations to deference run-time
values, which are not visible statically. Therefore, we must look for
absolute pointers that reference the static code or data. Fortunately,
as illustrated in Figure 6, there are three types of absolute pointers
that fall into this category: (i) absolute function pointers, (ii) abso-
lute string pointers, and (iii) vector table entries. These pointers
can also be easily distinguished with the pointers that deference

run-time values which are located at higher address space as shown
in Figure 1. In the following, we describe how we identify these
three types of pointers.
(i) Absolute function pointer. After being loaded via ldr, an ab-

solute function pointer will be dereferenced and go through the
blx instruction for function invocation, as shown in Figure 6(1).
As a result, FirmXRay identifies function pointers by checking
whether they are eventually taken by a blx or bx instruction.
We use PF to denote the set of absolute function pointers.

(ii) Absolute string pointer. Unlike absolute function pointers
that can be easily identified, it is actually hard to recognize
absolute string pointers because there is no instruction that
takes an explicit string as operand. We therefore have to rely on
other clues to identify them. One clue is the SDK functions that
take strings as parameters. By recognizing these functions, we
are able to identify the ones that use absolute string pointers.
We use PS to denote the set of absolute string pointers.

(iii) Vector table entry. We also identified a special type of bare-
metal unique absolute pointers, which reside in a vector table of
interrupt handlers. The entries in the vector table point to the
locations that store the specific interrupt numbers (e.g., 0xE7).
Since this vector table is located at APP_ROM_BASE, FirmXRay
scans the firmware from the base address to identify this vector
table, which has a strong signature (i.e., an array of absolute
addresses). We use PV to denote the set of vector table entries.
Additionally, FirmXRay also searches for necessary gadgets to

build up the constraints, including function entries, strings, and
interrupt numbers. The function entries are recognized through the
function prologues which are usually the instructions to push regis-
ter values onto the stack (e.g., PUSH, STMFD). Meanwhile, FirmXRay
recognizes the possible readable strings according to the printable
ASCII values and their ending null bytes. Finally, it recognizes the
interrupt numbers based on the manufacture-reserved values.
Step-II. ConstrainedBase addressmodeling and solving.Hav-
ing identified all absolute pointers and their possible targets, we
need to resolve the firmware base address based on the point-to
constraints of absolute pointers identified in PF , PS , and PV . It might
appear that we can resolve the firmware base address by using
just a single pointer in PF , or PS , or PV . For example, as illustrated
in the top half of Figure 6(1), by subtracting the absolute pointer
value (0x22A90) with the address of its intended target (0x7A90),
the base address is resolved as 0x1B000. However, it is actually
hard to resolve the base address by solely relying on just one (or a
few) absolute pointer. Back to our example, if we link the absolute
function pointer (e.g., 0x22A90) to another valid function entry (e.g.,
0x8A90), we can resolve a different base address (e.g., 0x1A000) that
satisfies the point-to constraint as well. Therefore, wemust combine
all the absolute pointers we identified to resolve the base address.

With these pointers, by looking at each individual one, we may
obtain multiple candidate base addresses, but there must be one
optimal base address that has the maximum number of matches of
the identified point-to constraints. For instance, the base address
0x1B000 satisfies the four constraints illustrated in Figure 6. In
general, assume there are N absolute pointers, there will be N con-
straints. Ideally, there exists one optimal base address that satisfies

all N constraints. However, this cannot be always true, since many
constraints cannot be resolved. For example, there exist a few func-
tion pointers that do not point to typical function prologues (e.g.,
push) but instead point to code snippets that start from various
instructions (e.g., ldr). Therefore, the optimal base address should
be the one that satisfies the most number of constraints. We thus
define a target function

N (x) = NF (x) + NS (x) + NV (x) (1)

to measure how many constraints a base address x can satisfy,
where NF (x), NS (x), NV (x) denote the number of satisfied con-
straints in PF , PS , and PV , respectively. With this target function,
we can traverse the address space R to find the optimal base address
X with the maximum function value, which can be formulated as

X = argmax
x ∈R

N (x) (2)

Intuitively, we can start from ROM_BASE and iterate through the
ROM to try all possible bases. However, we find that the search
space R can be optimized with a restricted boundary. Specifically,
we use the absolute addresses to infer the upper bound, which is
the smallest absolute pointer address. Therefore, we only need to
search R in the following range

R = {x | 0 < x < Amin } (3)

where Amin denotes the minimum absolute pointer address (e.g.,
0x1B169) among all the identified absolute pointers (e.g., 0x22A90,
0x23058, 0x1B169, 0x1B183). To search for X , we design a simple
probe-and-test algorithm. Starting from the lower bound of R, Fir-
mXRay iterates each candidate x in R and calculates N (x). Note
that we only need to probe those x with even values, since ARM
instructions are aligned with 2 or 4 bytes. To this end, we define

d(x,p) = p − x (4)

wherep ∈ PF ∪PS∪PV andd(x,p) denotes the concrete target mem-
ory address pointed by p with the given base address x . Then, for
each potential x and each absolute pointer p, FirmXRay performs
the following three checks:
(i) If p ∈ PF , FirmXRay checks if d(x,p) is a valid function entry. If

so, it increases NF (x) by 1.
(ii) If p ∈ PS , FirmXRay checks if d(x,p) is a valid string. If so, it

increases NS (x) by 1.
(iii) If p ∈ PV , FirmXRay examines whether d(x,p) is an interrupt

number. If so, NV (x) is added by 1.
After all of the candidate x have been probed and tested, Fir-

mXRay selects the x with the maximum N (x) value as the optimal
base address, and this x satisfies the most number of constraints.

4.2 Precise Data Structure Recognition
Given the disassembled firmware code, FirmXRay needs to rec-
ognize the configuration data structures. While there are many
techniques for reverse engineering data structures from stripped
binaries, they cannot be easily applied to our problem. For instance,
dynamic approaches such as Rewards [39] and Howard [51], are
not suitable for bare-metal firmware because they require vendor-
specific execution contexts such as hardware inputs for execution.
While TIE [38] does not require to run the firmware, it still falls

short because it attempts to recover all data structures using type
inference, while we only focus on those that must be taken as static
SDK function parameters.

As a result, we develop our own customized static analysis. Our
key insight is that no matter where these data structures are defined
in the memory, they will finally be taken as parameters by the SDK
functions, because the firmware needs to invoke these precompiled
functions to configure the device hardware. For example, in Figure 4,
the structure pointer is taken as a parameter (stored in a register r2)
by function SD_BLE_GAP_SEC_PARAMS_REPLY to set up the pairing
feature. As such, FirmXRay first identifies the SDK functions, and
further recognizes the configurations through function parameters.

To identify the SDK functions, FirmXRay requires vendor-specific
knowledge to establish signatures of the function invocation points,
and these knowledge were gathered manually from the SDK speci-
fications prior to the analysis. In particular, the Nordic and TI SDKs
use special mechanisms to invoke these functions. Nordic uses su-
pervisor calls (i.e., svc) [14] where each function is associated with a
corresponding svc number (e.g., 0x7F for SD_BLE_GAP_SEC_PARAMS
_REPLY as shown in Figure 4). TI uses ICall [5] to invoke SDK func-
tions, and each function is dispatched by the ICall interface with
a specific command, which allows us to identify them precisely.
Based on these knowledge, FirmXRay scans through the disas-
sembled code to recognize these SDK functions, and identifies the
configuration data structures from their parameters.

4.3 Configuration Value Resolution
Having identified the configuration data structures, we design the
following three-step analysis to resolve the configuration values:
Step-I. Configuration path extraction. In this step, our goal is
to extract the program path with the instructions involved in the
configuration value generation, and we adopt a backward program
slicing [54] algorithm. At a high level, FirmXRay starts from the
SDK function invocation points identified in §4.2 and backward
traverses the program control flow graph G to record all instruc-
tions (e.g., the orr, and, and add instructions in Figure 4) that are
necessary for computing the configuration value. At first, the al-
gorithm takes the following inputs: a function invocation point A
(e.g., an svc instruction), the current function block B, a dependent
variable (e.g., registers and memory locations) set D, and the cur-
rent configuration path s . It backward iterates the instructions in B
starting from A. For each instruction i in B, if it modifies the value
of any target variables in D, the algorithm adds all other variables
in i to D, removes the target variables, and records the instruction
i in s . In particular, to determine whether i should be involved as
part of the program path, the algorithm focuses on three types of
dependencies, including register to register, register to memory,
and memory to register. Note that unlike x86 instructions, ARM
does not have dependencies between memories. As such, FirmXRay
focuses on two types of data dependencies:
• Register to Register dependence. It is quite common when
the value of a register depends on another register. For instance,
in instruction add r1 r2 r3, the value of r1 depends on r2 and
r3. Therefore, if r1 is in D, we append this instruction to s , and
add r2 and r3 to D as the new dependent variables.

Policy SDK Function Name Reg. DescriptionIndex

SD_BLE_GAP_ADDR_SET 0 Configure the MAC address
SD_BLE_GAP_APPEARANCE_SET 0 Set device description

(i)
SD_BLE_GATTS_SERVICE_ADD 0, 1 Add a BLE GATT service
SD_BLE_GATTS_CHARACTERISTIC_ADD 2 Add a BLE GATT characteristic
SD_BLE_UUID_VS_ADD 0 Specify the UUID base
GAP_ConfigDeviceAddr* 0 Setup the address type
GATTServApp_RegisterService* 0 Register BLE GATT service

(ii)

SD_BLE_GAP_SEC_PARAMS_REPLY 2 Reply peripheral pairing features
SD_BLE_GAP_AUTH 1 Reply central pairing features
SD_BLE_GAP_AUTH_KEY_REPLY 1, 2 Reply with an authentication key
SD_BLE_GATTS_CHARACTERISTIC_ADD 2 Add a BLE GATT characteristic
GAPBondMgr_SetParameter* 2 Setup pairing parameters
GATTServApp_RegisterService* 0 Register BLE GATT service

(iii) SD_BLE_GAP_LESC_DHKEY_REPLY 0 Reply with a DH key
GAPBondMgr_SetParameter* 2 Setup pairing parameters

Table 1: Targeted SDK functions in our detection policies
(Note: functions w/ * are for TI, and otherwise for Nordic).

• Memory toRegister (or vice versa) dependence. This is when
the register value depends on certain memory location. For in-
stance, in ldr r2 [0x260c8], r2 loads the value by dereferenc-
ingmemory location 0x260c8. Therefore, if r2 is inD, FirmXRay
records this instruction to s , and also adds 0x260c8 to D.
Finally, when a fixed point is reached where the slicer state re-

mains unchanged (e.g.,D becomes empty), the algorithm adds s to S
and returns. Otherwise, the algorithm continues to jump to previous
blocks by first setting up a new context (i.e., creating new copies of
D and s) for each path, and then recursively invoking itself in each of
the previous block b inG . Ultimately, the algorithm produces S con-
taining a set of configuration value generation paths that eventually
generate the target values. Note that to prevent branch explosion,
we have limited the length of the configuration path of our static
analysis with a threshold approach as in other works (e.g., [55] [42]).
Step-II. Configuration value generation.Based on the extracted
configuration value generation paths, FirmXRay then statically ex-
ecutes each instruction in a forward order to generate the concrete
values of our targets. Specifically, FirmXRay first creates an exe-
cution context for each path, including the registers (e.g., r1-r12,
sp) and memory (e.g., RAM and stack). Next, it forward executes
each instruction in order and modifies the context accordingly (e.g.,
updating values in registers and memory) based on the instruction
semantics defined in the official documentation [9]. However, the
execution of a configuration path may have dependencies on other
paths (e.g., initialization of global variables), which indicates that
we must execute them in a correct order. As a result, FirmXRay
maintains a queue for all the configuration paths, and each executed
path will be removed from the queue. When FirmXRay encounters
a path that should be executed after others, it removes the path
from the head of the queue and pushes it to the end. If the queue
becomes empty, which means all the paths have been statically
executed, FirmXRay retrieves the concrete values of our targets
from the corresponding execution context and outputs the results.
Step-III. Vulnerability detection. When the configuration val-
ues are resolved, the final step is to identify the vulnerabilities
from them. Since the configurations are identified through SDK
function parameters, FirmXRay requires SDK-specific knowledge
to recognize the configuration semantics. In particular, for each
vendor, FirmXRay focuses on the SDK functions listed in the sec-
ond column of Table 1, and their descriptions and parameters of
our interest are also described in the table. Based on these SDK

functions, we further define three detection policies to detect the
vulnerabilities that lead to the attacks mentioned in §3.1.
(i) Identity tracking vulnerability detection. At a high level,

there are two types of identity that can be tracked: static MAC ad-
dress [27] and static UUIDs [63] [20]. Therefore, we have two cor-
responding policies. The first is through static MAC address iden-
tification by checking the MAC address types through APIs such
as SD_BLE_GAP_ADDR_SET for Nordic and GAP_ConfigDeviceAd
dr for TI. According to the BLE specification [16], the MAC ad-
dress can be configured as three types: (1) public address that
never changes, (2) random static address that may change only
when reboot, and (3) private address that change periodically
(e.g., every 15 minutes). Although a random static address may al-
ter after a device power cycle, it is still not resilient to tracking be-
cause (i) BLE devices seldom power off since they are supposed to
run for a long time due to the low energy cost (e.g., sensors), (ii) as
revealed in previous research [27], many random static addresses
remain unchanged even after reboot on some devices such as
fitness trackers. As a result, if the firmware uses public address
or random static address, it is vulnerable to identity tracking.

The second policy to detect identity tracking is to check
whether there are static UUIDs specified in the firmware. Simi-
larly, we target corresponding APIs that take static UUIDs as pa-
rameters to identify them, such as SD_BLE_GATTS_SERVICE_ADD
for Nordic and GATTServApp_RegisterService for TI.

(ii) Active MITM vulnerability detection. As mentioned in §3.1,
the insecure pairing method such as Just Works can lead to
active MITM attacks. Fundamentally, the pairing method is
negotiated when two devices exchange the pairing features.
Therefore, we focus on APIs that specify the pairing feature,
such as SD_BLE_GAP_SEC_PARAMS_REPLY and GAPBondMgr_Set
Parameter. If no MITM protection or no I/O capability is speci-
fied, the device has to use Just Works pairing. In addition, the cor-
rect implementation of the secure pairing method (e.g., passkey
entry and OOB) may require the invocation of other procedures,
such as exchanging an authentication key with the SD_BLE_GAP_
AUTH_KEY_REPLY API for Nordic. If the corresponding APIs are
not invoked, the pairing will be downgraded to Just Works.

The MITM vulnerability can also be revealed in the secu-
rity permissions of characteristics, which is the second layer
of protection against active MITM attacks. Note that for each
characteristic, there are three levels of security permissions:
no protection, encrypted read/write, and authenticated read-
/write [49]. For instance, a developer may specify authenticated
read and write to ensure that the characteristic can be read
and written only when the authentication is in place. Our de-
tection focuses on APIs that specify these permissions, such
as SD_BLE_GATTS_CHARACTERISTIC_ADD for Nordic and GATT
ServApp_RegisterService for TI.

(iii) PassiveMITM vulnerability detection. Recall in §3.1, failed
to enforce the LESC pairing can lead to passive MITM attacks.
To detect this vulnerability, we check if the LESC configura-
tion is enabled using API GAPBondMgr_SetParameter for TI, or
whether the ECDH key exchange is invoked during pairing using
API SD_BLE_GAP_LESC_DHKEY_REPLY for Nordic.

Category
Total Statistics Vulnerabilities

F # D Avg. Size Median IT AM PM

(KB) Time (m) # F # D # F # D # F # D

Nordic-based Firmware

Wearable 204 138 98.2 42.8 204 138 171 112 203 137
Others 76 22 223.5 48.8 76 22 63 14 75 21
Sensor 67 51 80.9 9.5 67 51 51 37 66 50
Tag (Tracker) 58 41 84.2 164.3 58 41 45 29 57 40
Robot 41 21 117.7 37.2 41 21 35 18 25 20
Medical Devices 41 21 138.6 82.3 41 21 22 10 37 20
Bike Accessory 41 35 92.3 21.1 41 35 36 30 41 35
Car Accessory 25 21 75.6 250.3 21 17 20 17 25 21
Smart Light 21 19 81.2 179.1 20 18 16 14 21 19
Switch 20 11 72.8 111.8 20 11 11 8 20 11
Smart Home 20 18 63.0 10.3 20 18 10 10 20 18
Smart Eyeglasses 19 7 58.1 56.4 19 7 19 7 19 7
Thermometer 16 13 54.2 27.9 16 13 10 9 16 13
Smart Lock 15 9 67.0 1.6 15 9 8 5 14 8
Beacon 13 12 61.4 0.9 13 12 9 8 12 11
Firearm Accessory 11 5 87.7 150.1 11 5 7 4 11 5
Agricultural Equip. 10 10 142.8 29.6 5 5 9 9 10 10
Battery 9 9 34.3 1.9 9 9 7 7 9 9
Game Accessory 9 9 67.4 12.5 9 9 8 8 9 9
Keyboard 7 5 63.4 21.6 7 5 7 5 7 5
Mouse 6 6 58.2 20.9 6 6 5 5 6 6
Printer 6 2 24.1 3.5 6 2 6 2 6 2
Surf Board 6 6 71.9 655.9 6 6 2 2 6 6
Sports Accessory 4 4 88.9 136.7 4 4 3 3 4 4
Smart Toy 4 4 58.0 1.8 4 4 3 3 4 4
Smart Clothes 3 2 57.6 7.6 3 2 3 2 3 2
Sailing Accessory 3 2 73.5 256.1 3 2 2 1 3 2
Diving Accessory 3 1 19.6 2.2 3 1 3 1 3 1
Network Device 3 3 74.2 261.3 3 3 2 2 3 3
Camera 3 3 143.0 0.1 3 3 0 0 3 3
Alarm 2 2 41.7 23.7 2 2 2 2 2 2
Headphone 2 1 122.7 40.1 2 1 0 0 2 1

TI-based Firmware

Sensor 19 19 132.9 0.2 19 19 0 0 19 19
Smart Lock 2 2 46.3 0.1 2 2 1 1 2 2
Smart Toy 2 2 47.8 0.1 2 2 0 0 2 2
Medical Devices 1 1 70.2 0.1 1 1 0 0 1 1
Others 1 1 76.7 0.2 1 1 0 0 1 1
Total 793 538 102.7 21.9 783 528 596 385 767 530

Table 2: Experiment results across firmware categories. (F:
Firmware, D: Device, IT: Identity Tracking, AM: Active
MITM, PM: Passive MITM)

5 EVALUATION
Wehave implemented a prototype of FirmXRay1 based onGhidra [8]
with more than 5K lines of our own code. While there are a great
number of MCUmanufactures, our implementation particularly tar-
gets the bare-metal firmware developed based on the Nordic or TI
SDK. In this section, we present our evaluation results. We first de-
scribe the experiment setup in §5.1. Then, we provide the detailed ex-
periment results in §5.2, followed by the attack case studies in §5.3.

5.1 Experiment Setup

Bare-metal firmware collection. To evaluate FirmXRay, we first
need to collect the bare-metal firmware. Intuitively, we can either
crawl firmware through the manufacturer’s websites or dump them
from the actual device hardware. However, such approaches are
not scalable for two reasons. First, developers seldom make the
device firmware publicly available. Second, it will be costly to buy
all these devices. Therefore, we must look for cost-effective and
scalable approaches. To this end, as indicated in §2.1, bare-metal
firmware are usually transferred from mobile apps to devices for
over-the-air upgrade, and thus the apps should at least have the

1The source code is available at https://github.com/OSUSecLab/FirmXRay.

https://github.com/OSUSecLab/FirmXRay

Pointer Type # True Positive (%) # False Positive (%)

Absolute Function Pointer 40 (95.2%) 2 (4.8%)
Absolute String Pointer 14 (33.3%) 28 (66.7%)
Vector Table Entry 40 (95.2%) 2 (4.8%)
Three Sets Combined 42 (100%) 0 (0)

Table 3: Base address recognition w/ one set of pointers.

capability to download them, which consequently enables us to
develop a mobile app based approach to collect firmware by reverse
engineering its download logic. Also surprisingly, we noticed many
apps actually did not implement such logic, but instead they even
directly leverage the mobile app update mechanism from app stores
to upgrade the firmware by embedding the firmware image inside
the app package.

As a result, we developed a simple script to automatically unpack
the mobile apps to extract the bare-metal firmware at scale. In
particular, we first crawled about 2 million free apps from Google
Play in February 2020 as our dataset.We further selected those using
BLE by scanning relevant APIs such as startScan, and ultimately
obtained 135, 486 apps in total. From these BLE apps, we directly
unpacked the APKs and extracted the Nordic and TI firmware, since
they have distinct signatures, which can be easily distinguished (e.g.,
magic bytes in the firmware header). Ultimately, we successfully
obtained 793 such unique bare-metal firmware (768 from Nordic
and 25 from TI). Note that one app may contain multiple firmware
because (1) one device may have different versions of firmware (e.g.,
different versions of a medical device firmware extracted from the
same ShockLink app), or (2) one appmay havemultiple device of the
same category (e.g., two types of thermometer from the Kinsa app).
We further group different versions of the same device together,
and find that the 793 firmware represent 538 unique devices.
Firmware categorization. To better understand the security im-
plications across firmware, we would like to first categorize them.
While it is challenging to directly infer their categories from the
firmware code, we notice there are two sources that can help: (i)
the parameters of the SDK function SD_BLE_GAP_APPEARANCE_SET
from Nodic that specifies the device types (e.g., sensor, keyboard,
etc., and there are 50 such types), and (ii) the mobile app description
associated with the firmware. Therefore, we use the following ap-
proach to infer the firmware categories: if SD_BLE_GAP_APPEARANCE
_SET API is available in the firmware code, we directly obtain the
device type; otherwise we manually infer the device category based
on the app description. With this approach, we eventually identified
108 firmware categories (note that the extra category beyond what
is defined by the API comes from our manual analysis of the app
description). The categories with at least two devices are in the first
column of Table 2, and we can notice that the top 5 most popular
categories are (1) wearable (e.g., smart band and smart watch), (2)
sensor (e.g., speed and humidity sensor), (3) tag (e.g., device tracker),
(4) robot (e.g., robot dog), and (5) medical device (e.g., blood pressure
monitor). For the category (e.g., drone, sim charger, smart luggage)
that has only one device, we aggregate them in the Others category
shown in the 2nd row of Table 2.
Experiment environment. Our analysis was performed on a
Linux sever equipped with twelve Intel Core i7-8700 (3.20 GHz)
CPUs and 32 GB RAM, running Ubuntu 18.04.2 LTS.

0x
0

0x
30

00
0x

60
00

0x
90

00
0x

c0
00

0x
f0

00
0x

12
00

0
0x

15
00

0
0x

18
00

0
0x

1b
00

0
0x

1e
00

0
0x

21
00

0
0x

24
00

0
0x

27
00

0
0x

2a
00

0
0x

2d
00

0

Base Address

0

5

10

15

20

25

30

35

N(
x)

(a) A Nordic firmware.

0x
0

0x
60

00
0x

c0
00

0x
12

00
0

0x
18

00
0

0x
1e

00
0

0x
24

00
0

0x
2a

00
0

0x
30

00
0

0x
36

00
0

0x
3c

00
0

Base Address

0

100

200

300

400

N(
x)

(b) 793 Nordic firmware

0x
0

0x
40

00
0x

80
00

0x
c0

00
0x

10
00

0
0x

14
00

0
0x

18
00

0
0x

1c
00

0
0x

20
00

0
0x

24
00

0
0x

28
00

0
0x

2c
00

0
0x

30
00

0
0x

34
00

0
0x

38
00

0

Base Address

0

5

10

15

20

25

30

35

N(
x)

(c) A TI firmware.

0x
0

0x
40

00

0x
80

00

0x
c0

00

0x
10

00
0

0x
14

00
0

0x
18

00
0

0x
1c

00
0

Base Address

20

40

60

80

100

N(
x)

(d) 25 TI firmware

Figure 7: Distribution of target function value N (x) across:
(a)(c) candidate base addresses of a single firmware, and
(b)(d) recognized base addresses among all firmware.

5.2 Experiment Results
Among the 538 unique devices (from 793 firmware), FirmXRay
has identified 528 (98.1%) of them configured with random static
MAC addresses, 385 (71.5%) Just Works pairing, and 530 (98.5%)
insecure key exchange using Legacy pairing. The detailed statistics
of the vulnerabilities across firmware categories are shown in the
6th - 11th columns of Table 2. In the following, we zoom in how
FirmXRay reaches these results. In particular, we first describe
the effectiveness of firmware base address recognition in §5.2.1,
followed by the results of the three types of vulnerabilities identified
in §5.2.2, §5.2.3, and §5.2.4, respectively.

5.2.1 Effectiveness of Base Address Recognition. To validate the ef-
fectiveness of our base addresses recognition, we need to first search
for the ground truth of the base addresses. Interestingly, we notice
that there are 42 firmware exposing their SDK versions (e.g., S110,
S130) in their file names, which enables identifying their base ad-
dresses according to the SDK specifications. Among these firmware,
we found FirmXRay correctly recovered all the base addresses without
any false positives. We further demonstrate the advantage of combin-
ing three sets of pointers, by using only one of the three sets to infer
the base address. The detailed experimental results are presented in
Table 3, which shows the number of firmware that are (in)correctly
recovered with base addresses among the 42 ground truth samples.
As shown, using only a single set of pointers will all result in false
positives ranging from 4.8% to 66.7%. We further investigated these
cases, and found that the failure is due to the lack of enough ab-
solute pointers. For instance, the nrf52810_xxaa.bin firmware only
contains 7 absolute function pointers, while there are usually tens
of such pointers in other firmware. Therefore, we have to combine
all three sets of pointers together to reduce false positives.

Firmware Name Mobile App Category # Device

cogobeacon com.aegismobility.guardian Car Accessory 4
sd_bl fr.solem.solemwf Agricultural Equip. 2
LRFL_nRF52 fr.solem.solemwf Agricultural Equip. 2
orb one.shade.app Smart Light 1
sd_bl com.rainbird Agricultural Equip. 1

Table 4: Firmware using private MAC address.

To further understand why our algorithm works, we plot the
distribution of the target function valuesN (x) across different candi-
date base addresses in Figure 7a and Figure 7c using two firmware
samples from Nordic and TI, respectively. As shown, the target
function value at the recovered base address (e.g., N (x)=35) is the
maximum one, and this peak effect exists in all the firmware we
tested. Next, we present the distribution of the recovered base ad-
dresses and their N (x) values across all the firmware in Figure 7b
and Figure 7d for Nordic and TI firmware, respectively. It can be in-
ferred that the base addresses range from 0x0 to 0x3C000, showing
that they are actually highly diversified across firmware, and the dis-
tribution of N (x) is significantly different between the two vendors.

5.2.2 Identity Tracking Vulnerability Identification. According to
the detection policies described in §4.3, there are two ways to iden-
tify identity tracking vulnerabilities: one is through detecting static
MAC address, and the other is through detecting static UUIDs.
Static MAC address identification. Among these 538 devices,
FirmXRay discovers that nearly all of them (98.1%) have configured
random static addresses that do not change periodically. For the
rest 10 (1.9%) devices, their MAC addresses are configured to be
private that change periodically, which are shown in Table 4. We
can notice that these devices belong to car accessories, agricultural
equipment, and smart lights. Note that some of the devices have
the same firmware name such as cogobeacon.
Static UUID identification. As shown in Table 5, FirmXRay has
discovered 1, 807 service UUIDs and 1, 699 characteristic UUIDs,
from 651 (82.1%) firmware (for the rest 17.9% firmware, they do
not have static UUIDs as the corresponding APIs are not invoked).
To understand why there are so many static UUIDs, we look into
the firmware code to see how these UUIDs are defined, e.g., by
SIG standard or by each manufacture. Based on the parameters of
the APIs in Table 1, we are able to identify the UUID types. For
the service UUIDs, they can be divided into three types: primary
type (standardized), secondary type (vendor-specific), and invalid
type. Most of the UUIDs (98.5%) are primary type, but a very small
portion of them (1.5%) are defined as invalid by the developers
(which is likely caused by programmer’s mistakes). As for the char-
acteristic UUIDs, 64.8% of them are customized (vendor-specific),
and 20.1% are standardized by Bluetooth SIG [1], while the rest
15.1% are unknown. These results imply that most of the firmware
manufactures tend to use customized static UUIDs.

5.2.3 Active MITM Vulnerability Identification. To understand how
pairing and bonding are performed among devices, we first present
the results of the pairing mode, as shown from the 2nd row to 5th
row of Table 6. For a particular device, it can be configured to be
only (1) a peripheral (e.g., smart band), (2) only a central (e.g., robot
dog), (3) either a peripheral or a central (e.g., smart home switch),
and (4) neither of them (e.g., beacon). As presented in Table 6, it is

Item # %

Service 1, 807 100
Type

Primary service UUID 1, 779 98.5
Invalid service UUID 28 1.5

Characteristic 1, 699 100
Type

Standard characteristic UUID 341 20.1
Customized characteristic UUID 1, 101 64.8
Unknown characteristic UUID 257 15.1

Read Permission
Characteristic w/ No Protection 1, 631 96.0
Characteristic w/ Encrypted Read 59 3.5
Characteristic w/ Authenticated Read 9 0.5

Write Permission
Characteristic w/ No Protection 1, 655 97.4
Characteristic w/ Encrypted Write 37 2.2
Characteristic w/ Authenticated Write 7 0.4

Table 5: Identified UUIDs and characteristic permissions.

quite common for the device to be of peripheral-only mode (47.4%)
since many devices rely on mobile apps to discover and connect
with them. Developers also tend to configure them to support both
peripheral and central mode (34.5%), but rarely specify central-
only mode (1.1%). Interestingly, we find there are 16.9% of devices
that do not invoke any of these pairing functions, and the reasons
may be two-folds. First, they are non-connectable beacons [24],
which keep broadcasting information but never connect to the
surrounding devices. Second, a number of devices directly skip
the pairing procedure to favor user convenience. With respect to
bonding (the 6th row), FirmXRay discovers that 48.9% of devices
perform bonding to maintain the session key after pairing. For the
rest 41.1%, they need to restart the pairing process with the peer
device in future connections, which may expand the attack surface
for eavesdropping of the encryption key during pairing.

Next, we present the details of how FirmXRay identifies vulnera-
bilities based on Just Works pairing and characteristic permissions.
Just Works pairing identification. As presented in the 8th row
of Table 6, 59.1% of devices directly specify Just Works pairing since
they do not explicitly declare MITM protection or I/O capabilities.
Among those that do not use Just Works pairing, FirmXRay has
identified two types of pairing methods: passkey entry and OOB. We
find that none of the devices in our study supports numeric com-
parison. Interestingly, although there are 67 (12.5%) Nordic-based
devices that support passkey entry or OOB pairing, their implemen-
tations are actually flawed, which means they will be eventually
downgraded to Just Works pairing. These 67 devices can be broken
down into 37 and 30 devices that have incorrectly implemented
the passkey entry and OOB pairing, respectively, as shown in the
9th and 10th rows of Table 6. The reason is that their firmware fail
to invoke the SD_BLE_GAP_AUTH_KEY_REPLY API to reply the peer
device with an authenticated key, which is a mandatory step for
correct implementations [12]. Therefore, by adding the 318 devices
that directly specify Just Works pairing with those having flawed
implementations, we have 385 (71.5%) devices use Just Works pair-
ing. These devices essentially do not provide any protection against
active MITM attacks at the BLE link layer.

In contrast, we find that only 30 devices have correctly imple-
mented passkey entry or OOB pairing. We further investigate their
categories, and it turns out they are smart keyboards, smart debit

Item N T Total %

Total Device 513 25 538 100
Pairing Mode

Peripheral only 230 25 255 47.4
Central only 6 0 6 1.1
Peripheral and central 186 0 186 34.5
No pairing 91 0 91 16.9

Device w/ bonding 250 13 263 48.9
Device w/ active MITM vulnerability 384 1 385 71.5

Device w/ Just Works pairing only 317 1 318 59.1
Device w/ flawed passkey entry implementation 37 0 37 6.9
Device w/ flawed OOB implementation 30 0 30 5.6

Device w/ secure pairing 6 24 30 3.8
Device w/ correct passkey entry implementation 3 24 27 3.4
Device w/ correct OOB implementation 3 0 3 0.4

Table 6: Pairing configurations of devices (N:Nordic, T:TI).

cards, wearable, and so on. In addition, it is more common for TI
firmware to configure secure pairing methods such as passkey entry,
as indicated in the last two rows of Table 6. Overall, our results
reveal that most of the BLE devices tend to use only Just Works
pairing, which is possibly due to the lack of hardware capability or
the misconfiguration from the developers.
Characteristic permission analysis. In addition to the pairing
configurations, the characteristic permission can also reveal the
active MITM vulnerability. As shown in Table 5, we further analyze
the security permissions of the 1, 699 BLE characteristics, which
come from the Nordic-based firmware (we did not identify them
from any TI firmware because them do not invoke corresponding
APIs to configure these permissions). The results are broken down
into read and write permissions, respectively. To our surprise, we
discover that the vast majority (over 96%) of the characteristics speci-
fies the lowest security level of permissions, showing that they can be
arbitrarily read or written by peer devices without any encryption
and authentication. This further implies that they can be directly
exploited once the firmware is compromised by MITM attacks.
In contrast, only very few number of the characteristics require
encryption or authentication before read (4.0%) and write (2.6%).
These characteristics usually come from the security-sensitive de-
vices such as smart locks, smart home switches, andmedical devices.

5.2.4 Passive MITMVulnerability Identification. The passiveMITM
vulnerability is determined by whether the firmware has enforced
LESC pairing to secure the key exchange, as described in the detec-
tion policy in §4.3. Among the 538 devices, FirmXRay discovers that
98.5% of them fail to do so, as reported in the last row of Table 2. As
such, these devices can be vulnerable to passive MITM attacks if there
is no application-layer encryption, allowing any attackers to eaves-
drop the encryption key and read sensitive device data. In contrast,
only 8 (1.5%) devices have eliminated this vulnerability by enforc-
ing the LESC pairing. The detailed descriptions of these devices are
shown in Table 7. Among them, there are many firmware versions
mapped to the same device such as DogBodyBoard and CPRmeter.

5.3 Attack Case Studies
To exploit the three types of vulnerabilities identified, we corre-
spondingly design three types of attacks with real devices. Due
to limited budget, we purchased 5 vulnerable devices as shown in
Table 8. We have three criteria when choosing the devices: (1) the

Firmware Name Mobile App Category # Version

DogBodyBoard com.wowwee.chip Robot 16
BW_Pro com.ecomm.smart_panel Tag 1
Smart_Handle com.exitec.smartlock Smart Lock 1
Sma05 com.smalife.watch Wearable 1
CPRmeter com.laerdal.cprmeter2 Medical Device 4
WiJumpLE com.wesssrl.wijumple Sensor 1
nRF Beacon no.nordicsemi.android.nrfbeacon Beacon 1
Hoot Bank com.qvivr.hoot Debit Card 1

Table 7: Firmware that enforce LESC pairing.

device needs to be in the top categories in Table 2, (2) the device
should not be too costly (we therefore excluded medical device
and robot), and (3) the device should simultaneously contain the
three vulnerabilities identified (to maximize the coverage of the
vulnerabilities). Based on the functionality of these devices, we
design three types of attacks: user tracking, unauthorized control,
and sensitive data eavesdropping. To launch these attacks, we built
an attack device based on a Nordic NRF52-DK board [13].
A1. User tracking. Vulnerable BLE devices carried along with
users are desired targets for tracking attacks, and we have three
such devices: Nuband, Chipolo, and XOSS. Although BLE devices
stop broadcasting after they are connected, we demonstrated our
attack still succeeded in the following two scenarios. The first sce-
nario is when companion apps are closed in both Android and iOS,
and then the device disconnects with the app and starts to broadcast
its MAC address. The second scenario is in iOS when the compan-
ion app enters the background, it in fact terminates the connection
due to the limited Bluetooth capability in background [4], and the
device also starts broadcasting.
A2. Unauthorized control. For devices that use Just Works pair-
ing, they can be vulnerable to active MITM attacks such as spoofing.
We demonstrated this attack with a smart home button pusher,
which is usually placed on electronic switches for remote control,
such as lights, coffee machines, and even more safety-critical ones
such as door locks. However, since the device has to use Just Works
pairing, it does not provide any authentication to recognize unau-
thorized users, and thus we successfully sent spoofed commands
to remotely control the lights in our test.
A3. Sensitive data eavesdropping. Among the 5 devices, many
of them, e.g., Nuband, Kinsa Smart, and XOSS, carry sensitive user
data (e.g., steps, temperature, and travel distance). We demonstrated
that it is possible to perform eavesdropping attack to obtain the
LTK to decrypt the BLE data. Specifically, we first listened to all
messages during the pairing process, and applied an offline brute-
force searching to find the appropriate TK to calculate the LTK,
which took only a few seconds. Note that in Just Works pairing, the
attack is much easier since the TK is a hardcoded 0-string [32].

6 DISCUSSION

False positives (FP) and false negatives (FN) of FirmXRay. In
theory, FP can exist due to the incorrect disassembling, which can
be caused by a lack of sufficient absolute pointers in firmware, re-
sulting in less number of constraints to differentiate the optimal
base address with others. However, as demonstrated in our evalua-
tion, FirmXRay correctly recovered all the base addresses according
to our ground truth evaluation. Similarly, the incorrect base address

Device Name Category Vulnerabilities Attacks

IT AM PM A1 A2 A3

Nuband Activ+ Wearable ✓ ✓ ✓ ✓ ✓
Kinsa Smart Thermometer ✓ ✓ ✓ ✓
Chipolo ONE Tag ✓ ✓ ✓ ✓
SwitchBot Button Pusher Smart Home ✓ ✓ ✓ ✓
XOSS Cycling Computer Sensor ✓ ✓ ✓ ✓ ✓

Table 8: Vulnerable BLE devices and attack case studies.

may also cause FN, since incomplete disassembled code may be
produced that does not cover the desired configurations. Other
sources of FP or FN could come from the fundamental limitations
of program analysis, such as branch explosion [55] [42].
On the exploitability of the vulnerabilities. While FirmXRay
has identified three types of vulnerabilities from firmware, not all
of them can be exploited. For instance, stationary devices such as
smart home devices are not subject to identity tracking even though
they use random static MAC addresses identified by FirmXRay. In
addition, many devices may have additional layer of security to mit-
igate active and passive MITM attacks, such as authentication and
encryption in application layer. However, through the case studies
of the 5 devices, we have not witnessed such a case among them.
Disclosure of findings. In June 2020, we disclosed our vulnera-
bility findings to all device vendors (in total 205) through emails.
As of the time of this writing, 12 vendors have acknowledged our
findings and taken our suggestions into account, such as Wattbike,
INPEAK, SRM, WOOLF, goTenna, and Chipolo.
Root causes of the vulnerabilities. We believe there are two
main root causes for the identified vulnerabilities. The first is the
lack of hardware capabilities. For instance, a device without I/O
capability is very likely to be configured as no I/O. The second is
the misconfiguration by the developers of the firmware. For exam-
ple, a device with sufficient I/O support is misconfigured as no I/O.
There are multiple reasons for developers to misconfigure firmware.
First, according to our engagement with vendors, many of them
were actually aware of the security problems (e.g., using Just Works
pairing), but they still prefer simpler implementation to favor user
experience. Second, there are also limitations of the BLE module on
smartphones, which make some implementations (e.g., randomized
MAC address) challenging in practice. For instance, the iOS has
limited the BLE capability for app developers [4].
Future work. First, as described in §5.1, we directly unpacked the
mobile app APKs to extract the embedded firmware. Thus, there
may also exist other firmware we cannot obtain, such as those
downloaded from servers. Second, while we have demonstrated
FirmXRay for Nordic and TI, FirmXRay can also be adapted to
other SDKs and architectures. Third, FirmXRay faces a challenge
of confirming the vulnerabilities due to the static analysis, and we
also plan to enable emulation and dynamic analysis on bare-metal
IoT firmware to confirm our results.

7 RELATEDWORK

Firmware analysis. Over the past decade, firmware has been an
attractive target for security analysis. With static analysis, FIE [28]
detects memory-safety bugs in micro-controllers, FirmUSB [35]

and ProXray [33] vet the embedded USB devices, FirmAlice [47] un-
covers authentication bypassing vulnerabilities, and Karonte [42]
detects insecure interactions between multiple embedded firmware
binaries. With dynamic analysis, Avatar [56] forwards I/O assess
from emulators to real embedded devices, FirmDyn [23] employs
full system emulation for scalable and automatic analysis of Linux
binaries, Firm-AFL [60] combines system-mode and user-mode em-
ulations for high-throughput firmware fuzzing, P2IM [31] automati-
cally models the I/O behaviours of peripherals to achieve hardware-
independent firmware testing;HALucinator [26] relies on replacing
high-level hardware abstraction layer functions to achieve firmware
re-hosting. Once firmware is able to be executed, a common tech-
nique to find vulnerabilities is fuzzing, such as IoTFuzzer [25] for
IoT devices and PeriScope [52] for Linux kernel peripherals.
BLE security.There have been numerous efforts in BLE attacks and
defenses, including the discovery of vulnerable pairing (e.g., [43, 44,
57]) and BLE packets eavesdropping [44]. Recently, there were also
identity tracking attacks that leverage the static MAC address [27],
signal strength [29], and advertised information [37], and static
UUIDs [63] [20]. To mitigate these privacy attacks, Fawaz et al.
proposed BLE-Guardian [30], a channel-level protection to allow
only authorized peripherals to connect with the protected device.
Most recently, a handful of other research focus on other types of
attacks, such as cross-app co-located attacks [48] and downgrade
attacks [58].
Misconfiguration detection.Misconfiguration has been a prob-
lem in IoT platforms [17] and cloud services [62] [18]. In particular,
as summarized by Alrawi et al., many devices use insecure default
configurations [17]. In addition, some devices have also been re-
vealed to have misconfigurations, such as smart lock [53], smart
speaker [22], and smart light [21], which have led to serious se-
curity concerns such as insecure access control. Compared with
these works, FirmXRay represents a scalable and binary code only
approach to uncover vulnerabilities reflected in the configurations
from bare-metal firmware.

8 CONCLUSION
We have presented FirmXRay, the first automated static binary anal-
ysis tool to detect BLE link layer vulnerabilities from bare-metal
firmware. It features a novel algorithm to systematically recognize
firmware base address for robust disassembling, then precisely iden-
tifies configurations from SDK functions, and finally resolves con-
figuration values to detect the vulnerabilities. The prototype of Fir-
mXRay has been implemented atop Ghidra. To evaluate FirmXRay,
we developed a mobile app based approach to collect bare-metal
firmware at scale, which resulted in 793 unique ones corresponding
to 538 devices. Among them, FirmXRay discovered that 71.5% of
these devices only use Just Works pairing, and nearly all of them
have configured random static MAC addresses and insecure key ex-
changes. We have demonstrated concrete attacks with 5 real-world
BLE devices, which not only undermine user privacy but also safety.

ACKNOWLEDGMENT
Wewould like to thank the anonymous reviewers for their construc-
tive feedback. This research was supported in part by NSF 1750809
and 1834215, DARPA N6600120C4020, and ONR N00014-17-1-2995.

REFERENCES
[1] 16 bit uuids for members. https://www.bluetooth.com/specifications/assigned-

numbers/16-bit-uuids-for-members/. (Accessed on 09/20/2020).
[2] Ble-stack bluetooth low energy. https://www.ti.com/tool/BLE-STACK. (Accessed

on 09/20/2020).
[3] Bluetooth sig, inc. https://www.bluetooth.com/. (Accessed on 09/20/2020).
[4] Core bluetooth background processing for ios apps. https://developer.apple.

com/library/archive/documentation/NetworkingInternetWeb/Conceptual/
CoreBluetooth_concepts/CoreBluetoothBackgroundProcessingForIOSApps/
PerformingTasksWhileYourAppIsInTheBackground.html. (Accessed on
09/20/2020).

[5] Developing a bluetooth low energy application. http://software-
dl.ti.com/simplelink/esd/simplelink_cc13x0_sdk/2.20.00.38/exports/docs/
blestack/software-developers-guide/ble-stack-2.x/index.html. (Accessed on
09/20/2020).

[6] Dialog semiconductor. https://www.dialog-semiconductor.com. (Accessed on
09/20/2020).

[7] Gatt overview. https://developer.android.com/reference/android/bluetooth/
BluetoothGatt. (Accessed on 09/20/2020).

[8] Ghidra. https://ghidra-sre.org/. (Accessed on 09/20/2020).
[9] Instruction sets - arm developers. https://developer.arm.com/architectures/

instruction-sets. (Accessed on 09/20/2020).
[10] Memory layout. https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.

nordic.infocenter.sdk5.v11.0.0%2Fbledfu_memory.html. (Accessed on
09/20/2020).

[11] Nordic semiconductor. https://www.nordicsemi.com. (Accessed on 09/20/2020).
[12] Nordic semiconductor infocenter. https://infocenter.nordicsemi.com/topic/

struct_nrf52/struct/nrf52_softdevices.html?cp=4_5. (Accessed on 09/20/2020).
[13] nrf52 dk - development kit for bluetooth low energy and bluetooth mesh. https:

//www.nordicsemi.com/Software-and-Tools/Development-Kits/nRF52-DK. (Ac-
cessed on 09/20/2020).

[14] Supervisor call interface. https://infocenter.nordicsemi.com/index.jsp?topic=
%2Fcom.nordic.infocenter.sdk5.v14.1.0%2Flib_svc.html. (Accessed on 09/20/2020).

[15] Texas instruments. http://www.ti.com. (Accessed on 09/20/2020).
[16] Bluetooth specification version 4.2. https://www.bluetooth.org/DocMan/

handlers/DownloadDoc.ashx?doc_id=286439, 2014.
[17] Omar Alrawi, Chaz Lever, Manos Antonakakis, and FabianMonrose. Sok: Security

evaluation of home-based iot deployments. In 40th IEEE Symposium on Security
and Privacy (SP), pages 1362–1380, May 2019.

[18] Omar Alrawi, Chaoshun Zuo, Ruian Duan, Ranjita Kasturi, Zhiqiang Lin, and
Brendan Saltaformaggio. The betrayal at cloud city: An empirical analysis of
cloud-based mobile backends. In 28th USENIX Security Symposium (USENIX
Security 19), pages 551–566, Santa Clara, CA, August 2019.

[19] Igor Bisio, Andrea Sciarrone, and Sandro Zappatore. A new asset tracking
architecture integrating rfid, bluetooth low energy tags and ad hoc smartphone
applications. Pervasive and Mobile Computing, 31:79–93, 2016.

[20] Guillaume Celosia and Mathieu Cunche. Fingerprinting bluetooth-low-energy
devices based on the generic attribute profile. In Proceedings of the 2nd Interna-
tional ACM Workshop on Security and Privacy for the Internet-of-Things, pages
24–31, 2019.

[21] Alex Chapman. Hacking into internet connected light bulbs. https://www.
contextis.com/us/blog/hacking-into-internet-connected-light-bulbs, 2014.

[22] Alex Chapman. Alexa, are you listening? https://www.contextis.com/us/blog/
hacking-into-internet-connected-light-bulbs, 2017.

[23] Daming D Chen, Maverick Woo, David Brumley, and Manuel Egele. Towards
automated dynamic analysis for linux-based embedded firmware. In 2016 Network
and Distributed Systems Security Symposium (NDSS), volume 16, pages 1–16, 2016.

[24] Dongyao Chen, Kang G Shin, Yurong Jiang, and Kyu-Han Kim. Locating and
tracking ble beacons with smartphones. In Proceedings of the 13th International
Conference on emerging Networking EXperiments and Technologies, pages 263–275,
2017.

[25] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin,
XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan
Zhang. Iotfuzzer: Discovering memory corruptions in iot through app-based
fuzzing. In Proceedings of the 25th Annual Network and Distributed System Security
Symposium (NDSS 18), San Diego, CA, February 2018.

[26] Abraham Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen, David
Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias Payer.
Halucinator: Firmware re-hosting through abstraction layer emulation. In Pro-
ceedings of the 29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, 2020.

[27] Aveek K Das, Parth H Pathak, Chen-Nee Chuah, and Prasant Mohapatra. Un-
covering privacy leakage in ble network traffic of wearable fitness trackers. In
Proceedings of the 17th International Workshop on Mobile Computing Systems and
Applications, pages 99–104, 2016.

[28] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and Somesh Jha. {FIE}
on firmware: Finding vulnerabilities in embedded systems using symbolic execu-
tion. In 22nd USENIX Security Symposium (USENIX Security 13), pages 463–478,
2013.

[29] Ramsey Faragher and Robert Harle. Location fingerprinting with bluetooth low
energy beacons. IEEE journal on Selected Areas in Communications, 33(11):2418–
2428, 2015.

[30] Kassem Fawaz, Kyu-Han Kim, and Kang G Shin. Protecting privacy of ble device
users. In 25th USENIX Security Symposium (USENIX Security 16), pages 1205–1221,
2016.

[31] Bo Feng, AlejandroMera, and Long Lu. P2im: Scalable and hardware-independent
firmware testing via automatic peripheral interface modeling. In Proceedings of
the 29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
2020.

[32] Daniel Filizzola, Sean Fraser, and Nikita Samsonau. Security analysis of bluetooth
technology. 2018.

[33] Farhaan Fowze, Dave Jing Tian, Grant Hernandez, Kevin Butler, and Tuba Yavuz.
Proxray: Protocol model learning and guided firmware analysis. IEEE Transactions
on Software Engineering, 2019.

[34] Carles Gomez, Joaquim Oller, and Josep Paradells. Overview and evaluation of
bluetooth low energy: An emerging low-power wireless technology. Sensors,
12(9):11734–11753, 2012.

[35] Grant Hernandez, Farhaan Fowze, Dave Tian, Tuba Yavuz, and Kevin RB But-
ler. Firmusb: Vetting usb device firmware using domain informed symbolic
execution. In Proceedings of the 24th ACM SIGSAC Conference on Computer and
Communications Security, pages 2245–2262, 2017.

[36] Kai Ren. Bluetooth pairing part 4: Le secure connections - numeric comparison.
https://blog.bluetooth.com/bluetooth-pairing-part-4, 2017.

[37] Aleksandra Korolova and Vinod Sharma. Cross-app tracking via nearby bluetooth
low energy devices. In Proceedings of the Eighth ACM Conference on Data and
Application Security and Privacy, pages 43–52, 2018.

[38] JongHyup Lee, Thanassis Avgerinos, and David Brumley. Tie: Principled reverse
engineering of types in binary programs. In 18th Network and Distributed Systems
Security Symposium (NDSS), 2011.

[39] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatic reverse engineering
of data structures from binary execution. In Proceedings of the 17th Annual
Network and Distributed System Security Symposium (NDSS’10), San Diego, CA,
February 2010.

[40] Jeremy Martin, Douglas Alpuche, Kristina Bodeman, Lamont Brown, Ellis Fenske,
Lucas Foppe, Travis Mayberry, Erik Rye, Brandon Sipes, and Sam Teplov. Handoff
all your privacy–a review of apple’s bluetooth low energy continuity protocol.
Proceedings on Privacy Enhancing Technologies, 2019(4):34–53, 2019.

[41] Sode Pallavi and V Anantha Narayanan. An overview of practical attacks on
ble based iot devices and their security. In 2019 5th International Conference on
Advanced Computing & Communication Systems (ICACCS), pages 694–698, 2019.

[42] Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spensky, Andrea Continella,
Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. Karonte: Detecting
insecuremulti-binary interactions in embedded firmware. In 41st IEEE Symposium
on Security and Privacy (SP), pages 431–448.

[43] Tomas Rosa. Bypassing passkey authentication in bluetooth low energy. IACR
Cryptology ePrint Archive, 2013:309, 2013.

[44] Mike Ryan. Bluetooth: With low energy comes low security. In Presented as part
of the 7th USENIX Workshop on Offensive Technologies, 2013.

[45] Benjamin Schwarz, Saumya Debray, and Gregory Andrews. Disassembly of
executable code revisited. In Ninth Working Conference on Reverse Engineering,
2002. Proceedings., pages 45–54. IEEE, 2002.

[46] Nordic Semiconductor. Quarterly presentation q4 2019. https:
//www.nordicsemi.com/-/media/Investor-Relations-and-QA/Quarterly-
Presentations/2019/Q4_Quarterly_presentation_2019.pdf?la=en&hash=
EE265776035B52B96B1BE14541877A97500CD05B, 2019.

[47] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. Firmalice-automatic detection of authentication bypass vulner-
abilities in binary firmware. In 22nd Network and Distributed Systems Security
Symposium (NDSS), 2015.

[48] Pallavi Sivakumaran and Jorge Blasco. A study of the feasibility of co-located
app attacks against ble and a large-scale analysis of the current application-layer
security landscape. In 28th USENIX Security Symposium, pages 1–18, 2019.

[49] Pallavi Sivakumaran and Jorge Blasco Alis. A low energy profile: Analysing
characteristic security on ble peripherals. In Proceedings of the Eighth ACM
Conference on Data and Application Security and Privacy, pages 152–154, 2018.

[50] Igor Skochinsky. Intro to embedded reverse engineering for pc reversers. In
REcon conference, Montreal, Canada, 2010.

[51] Asia Slowinska, Traian Stancescu, and Herbert Bos. Howard: A dynamic exca-
vator for reverse engineering data structures. In 18th Network and Distributed
Systems Security Symposium (NDSS), 2011.

[52] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na, Stijn
Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert, and Michael

https://www.bluetooth.com/specifications/assigned-numbers/16-bit-uuids-for-members/
https://www.bluetooth.com/specifications/assigned-numbers/16-bit-uuids-for-members/
https://www.ti.com/tool/BLE-STACK
https://www.bluetooth.com/
https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothBackgroundProcessingForIOSApps/PerformingTasksWhileYourAppIsInTheBackground.html
https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothBackgroundProcessingForIOSApps/PerformingTasksWhileYourAppIsInTheBackground.html
https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothBackgroundProcessingForIOSApps/PerformingTasksWhileYourAppIsInTheBackground.html
https://developer.apple.com/library/archive/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothBackgroundProcessingForIOSApps/PerformingTasksWhileYourAppIsInTheBackground.html
http://software-dl.ti.com/simplelink/esd/simplelink_cc13x0_sdk/2.20.00.38/exports/docs/blestack/software-developers-guide/ble-stack-2.x/index.html
http://software-dl.ti.com/simplelink/esd/simplelink_cc13x0_sdk/2.20.00.38/exports/docs/blestack/software-developers-guide/ble-stack-2.x/index.html
http://software-dl.ti.com/simplelink/esd/simplelink_cc13x0_sdk/2.20.00.38/exports/docs/blestack/software-developers-guide/ble-stack-2.x/index.html
https://www.dialog-semiconductor.com
https://developer.android.com/reference/android/bluetooth/BluetoothGatt
https://developer.android.com/reference/android/bluetooth/BluetoothGatt
https://ghidra-sre.org/
https://developer.arm.com/architectures/instruction-sets
https://developer.arm.com/architectures/instruction-sets
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v11.0.0%2Fbledfu_memory.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v11.0.0%2Fbledfu_memory.html
https://www.nordicsemi.com
https://infocenter.nordicsemi.com/topic/struct_nrf52/struct/nrf52_softdevices.html?cp=4_5
https://infocenter.nordicsemi.com/topic/struct_nrf52/struct/nrf52_softdevices.html?cp=4_5
https://www.nordicsemi.com/Software-and-Tools/Development-Kits/nRF52-DK
https://www.nordicsemi.com/Software-and-Tools/Development-Kits/nRF52-DK
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v14.1.0%2Flib_svc.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v14.1.0%2Flib_svc.html
http://www.ti.com
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439
https://www.contextis.com/us/blog/hacking-into-internet-connected-light-bulbs
https://www.contextis.com/us/blog/hacking-into-internet-connected-light-bulbs
https://www.contextis.com/us/blog/hacking-into-internet-connected-light-bulbs
https://www.contextis.com/us/blog/hacking-into-internet-connected-light-bulbs
https://blog.bluetooth.com/bluetooth-pairing-part-4
https://www.nordicsemi.com/-/media/Investor-Relations-and-QA/Quarterly-Presentations/2019/Q4_Quarterly_presentation_2019.pdf?la=en&hash=EE265776035B52B96B1BE14541877A97500CD05B
https://www.nordicsemi.com/-/media/Investor-Relations-and-QA/Quarterly-Presentations/2019/Q4_Quarterly_presentation_2019.pdf?la=en&hash=EE265776035B52B96B1BE14541877A97500CD05B
https://www.nordicsemi.com/-/media/Investor-Relations-and-QA/Quarterly-Presentations/2019/Q4_Quarterly_presentation_2019.pdf?la=en&hash=EE265776035B52B96B1BE14541877A97500CD05B
https://www.nordicsemi.com/-/media/Investor-Relations-and-QA/Quarterly-Presentations/2019/Q4_Quarterly_presentation_2019.pdf?la=en&hash=EE265776035B52B96B1BE14541877A97500CD05B

Franz. Periscope: An effective probing and fuzzing framework for the hardware-
os boundary. In 26th Network and Distributed Systems Security Symposium (NDSS),
pages 1–15. Internet Society, 2019.

[53] Blase Ur, Jaeyeon Jung, and Stuart Schechter. The current state of access control
for smart devices in homes. InWorkshop on Home Usable Privacy and Security
(HUPS), volume 29, pages 209–218. HUPS 2014, 2013.

[54] Mark Weiser. Program slicing. IEEE Transactions on software engineering, (4):352–
357, 1984.

[55] Yan Xiong, Cheng Su, Wenchao Huang, Fuyou Miao, Wansen Wang, and Hengyi
Ouyang. Smartverif: Push the limit of automation capability of verifying security
protocols by dynamic strategies. In 29th USENIX Security Symposium (USENIX
Security 20), pages 253–270, 2020.

[56] Jonas Zaddach, Luca Bruno, Aurelien Francillon, Davide Balzarotti, et al. Avatar: A
framework to support dynamic security analysis of embedded systems’ firmwares.
In 21st Network and Distributed Systems Security Symposium (NDSS), volume 14,
pages 1–16, 2014.

[57] Wondimu K Zegeye. Exploiting bluetooth low energy pairing vulnerability in
telemedicine. International Foundation for Telemetering, 2015.

[58] Yue Zhang, JianWeng, Rajib Dey, Yier Jin, Zhiqiang Lin, and Xinwen Fu. Breaking
secure pairing of bluetooth low energy using downgrade attacks. In 29th USENIX
Security Symposium (USENIX Security 20), pages 37–54, 2020.

[59] Qingchuan Zhao, Haohuang Wen, Zhiqiang Lin, Dong Xuan, and Ness Shroff.
On the accuracy of measured proximity of bluetooth-based contact tracing apps.
In International Conference on Security and Privacy in Communication Networks,
2020.

[60] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and
Limin Sun. Firm-afl: high-throughput greybox fuzzing of iot firmware via aug-
mented process emulation. In 28th USENIX Security Symposium (USENIX Security
19), pages 1099–1114, 2019.

[61] Ruijin Zhu, Yu-an Tan, Quanxin Zhang, Fei Wu, Jun Zheng, and Yuan Xue.
Determining image base of firmware files for arm devices. IEICE TRANSACTIONS
on Information and Systems, 99(2):351–359, 2016.

[62] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. Why does your data leak?
uncovering the data leakage in cloud from mobile apps. In 40th IEEE Symposium
on Security and Privacy (SP), pages 1296–1310, May 2019.

[63] Chaoshun Zuo, Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. Automatic
fingerprinting of vulnerable ble iot devices with static uuids from mobile apps. In
Proceedings of the 26th ACM SIGSAC Conference on Computer and Communications
Security, pages 1469–1483, November 2019.

	Abstract
	1 Introduction
	2 Background
	2.1 Bare-metal Firmware
	2.2 Bluetooth Low Energy

	3 Overview
	3.1 Threat Model, Scope, and Assumptions
	3.2 Motivating Example
	3.3 FirmXRay Overview

	4 Detailed Design
	4.1 Robust Firmware Disassembling
	4.2 Precise Data Structure Recognition
	4.3 Configuration Value Resolution

	5 Evaluation
	5.1 Experiment Setup
	5.2 Experiment Results
	5.3 Attack Case Studies

	6 Discussion
	7 Related Work
	8 Conclusion
	References

