
Experience Report:

Using RESOLVE/C++ for Commercial Software

Joseph E. Hollingsworth
Holly Software, Inc.

PO Box 480
Floyds Knobs, IN 47119 USA

+1 812 923 1927

jholly @ hollysoftware.com

Lori Blankenship
Holly Software, Inc.

PO Box 480
Floyds Knobs, IN 47119 USA

+1 812 923 1927

blankens @ cis.ohio-state.edu

Bruce W. We/de
Computer and Information Science

The Ohio State University
Columbus, OH 43210 USA

+1 614 292 1517

we/de @ cis.ohio-state.edu

ABSTRACT
Academic research sometimes suffers from the "ivory tower"
problem: ideas that sound good in theory do not necessarily work
well in practice. An example of research that potentially could
impact practice over the next few years is a novel set of compo-
nent-based software engineering design principles, known as the
RESOLVE discipline. This discipline has been taught to students
for several years [23], and previous papers (e.g., [24]) have re-
ported on student-sized software projects constructed using it.
Here, we report on a substantial commercial product family that
was engineered using the same principles - - an application that
we designed, built, and continue to maintain for profit, not as part
of a research project. We discuss the impact of adhering to a very
prescriptive set of design principles and explain our experience
with the resulting applications. Lessons learned should benefit
others who might be considering adopting such a component-
based software engineering discipline in the future.

Keywords
Component-based software engineering, design-by-contract, de-
sign discipline, generic, software reuse, swapping, template.

1. INTRODUCTION

The Reusable Software Research Group (RSRG), a university-
based group, has conducted research on the technical aspects of
component-based software engineering and reuse since the 1980's
[1, 6, 8, 14, 16, 22, 24]. One of us (JEH) contributed to the de-
velopment of RSRG's RESOLVE discipline for component-based
software engineering [6], and believing in its potential for im-
pacting software engineering practice, in the fall of 1993 began
developing a commercial application using the RESOLVE disci-
pline. Another (LB) joined this venture later. In addition to
commercial interests, we hoped to gauge how well research into
the technical design aspects of component-based software engi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on sewers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGSOFT 2000 (FSE-8) 11/00 San Diego, CA, USA
© 2000 ACM ISBN 1-58113-205-0/00/0011 ...$5.00

neering would hold up under real-world, commercial application
stresses. This experience report discusses lessons learned from
this effort.

The commercial product family discussed in this paper was devel-
oped for the Microsoft Windows environment using C++ and a
specialized version of the RESOLVE discipline known as the
RESOLVE/C++ discipline [14, 22, 23]. When we say "the sys-
tem" or "the application", we really mean a suite of related prod-
ucts consisting of a central application and several unbundled add-
oils. The central application and these add-ons have gone through
several upgrades and versions over the past seven years.

Application domain details are proprietary and irrelevant to the
rest of this report. But the product can be classified as an infor-
mation system that serves as a decision-making aid through the
use of a graphical user interface, real-time interaction with exter-
nal devices attached to the PC, and extensive reporting capabili-
ties. Users interact with data entry screens using a mouse and
keyboard, and can view and print report results and diagrams.
Over 100 reports are available through add-on capabilities.

This is not mission-critical software in the usual sense, but it is
considered very important to our clients. Although the application
does not fly planes or in any other way involve life-critical proc-
esses, it does confront most of the issues common to commercial
software systems in vertical markets and which are vital to its
commercial success. For example, because it involves interaction
with external devices, and there are domain-specific soft-real-time
requirements, response time is a coneeru. Other issues include the
usual data storage and portability issues, user friendliness, etc.

The application utilizes 250 components consisting of about
100,000 lines of C++ code. Since its introduction seven years ago,
the system has served over 2000 customers. They have generated
only two bug reports. The sources of and solutions to these prob-
lems, along with the solution to a performance concern, are dis-
cussed in Section 3.

Competitive systems have been built using Visual Basic and some
of the many common off-the-shelf components (COTS) available
for VB. Their clear weakness has been in matching their "system
image" to their users' existing mental models of the domain [11].
We were able to capture considerable domain knowledge (in over
200 of the 250 components in the system; see Section 4) and thus

11

bring the application closer to the user, rather than forcing the user
to come to the application. This meant that in addition to using
the RESOLVE/C++ COTS catalog, we had to design many new
domain-specific components; hence the need for a disciplined
approach to component design.

Section 2 briefly reviews RESOLVE-style software component
engineering as manifested in this application. Section 3 discusses
our experiences and lessons learned from using this design ap-
proach. Section 4 summarizes some metrics about the code, and
Section 5 presents our conclusions.

2. HOW WE DESIGNED THE SYSTEM
The system was designed by a team of four people. One (JEH)
was already an expert on the RESOLVE discipline and on
RESOLVE/C++. One (LB) learned both during the project. The
other two contributed domain knowledge and user interface design
expertise. The third author of this paper (BWW) and the rest of
the RESOLVE academic research group were not involved in the
project, even to provide technical support, but were kept apprised
of the project's status.

2.1. High-Level Design
The system's high-level design has the following features that
come from principles of the RESOLVE discipline:

• The unit of modularity is a generic component (i.e., a tem-
plate).

• The system is heavily (deeply) layered.

• Dynamically linked structures are layered on a single bottom-
level component that hides all pointers and references, so the
entire application uses "value semantics" for complex user-
defined types as well as for scalar types.

The RESOLVE discipline can be applied with any of a number of
vehicles to provide the basic computational infrastructure, e.g.,
with different programming languages such as Ada, Ada-95, C++,
Java, and/or with different component middleware, e.g., DLLs,
COM, CORBA, etc. (see also Section 3.5). We chose to use
DLLs for unbundled add-ons. We did not use COM when it be-
came available because it is unnecessary in our vertical market to
communicate with third-party applications where COM might be
more useful. There still seems to be no reason to use COM within
our application because the RESOLVE/C++ discipline provides
the requisite composition mechanism at that level.

2.1.1. Unit of Modularity: Generic Component
What is this composition mechanism? Only one is needed: tem-
plate instantiation. With RESOLVE/C++, the unit of modularity
is a generic component, i.e., a C++ class template. Except for
scalar types, every object is declared to be o f a type provided by
an instance of a class template. Thus, all components in the sys-
tem have a uniform look and feel to the programmer, which is one
of the goals of RESOLVE/C++.

2.1.2. Highly Layered System and Scaling Up
The main function declares an object from the component
MainWindow. MainWindow is layered on a number of differ-
ent objects: Input_Window, Report_Window, Report, etc. Each of
these objects is layered on other objects and so on down to the
smallest components in the system. From Main_Window down to
the deepest non-layered component is over 10 layers.

This approach to high level system design seems to have avoided
some of the problems faced by other approaches with respect to
scaling-up [17]. No special language constructs are needed to
build something bigger than a component, i.e., we have no need
for a subsystem construct. In this system, the Input_Window and
Report_Window components can be viewed as subsystems, if you
like. Components that appear higher in the hierarchy are just lay-
ered on components at lower layers. Those components are lay-
ered on components from lower layers. Eventually, i f one keeps
going down to the next lower layer, one finds components that are
implemented using raw C++ representations (e.g., pointers, arrays,
built-in ints, etc.). In a controlled setting, there was already evi-
dence to indicate that such a layering approach can lead to signifi-
cantly improved quality and lower development costs [24].

2.1.3. Dynamically Linked Structures are Layered
Since it is unknown ahead of time how much data is to be proc-
essed, most of the container components use dynamic storage
allocation to build dynamically linked structures. The traditional
way to implement this type of component is to represent it directly
using a data structure involving raw C++ pointers. An alternative
approach taken by RESOLVE is to use component layering so that
all components requiring standard linked structures are layered on
another component called Chain_Position [5]. Component layer-
ing is not novel, but the Chain_Position component is unusual, and
layering all of these other unbounded container components on it
is (we believe) new. The benefits are that Chain_Position encap-
sulates in one component all the raw C++ pointer tricks (e.g., effi-
cient free-storage management) commonly used for building
linked structures; and that it provides through its interface an ab-
stract mental model for client reasoning purposes. The imple-
menter of a component layered on Chain_Position uses this
abstract mental model for reasoning rather than reasoning in terms
of raw C++ pointers. Furthermore, the direct manipulation of raw
C++ pointers - - in our prior experience, one of the biggest sources
of program bugs - - is localized in the ChainPosi t ion component,
where there are fewer than 40 lines of executable code. This code
has been rigorously and thoroughly reviewed, and by virtue of the
heavy layering, it has been well-tested under fire.

To summarize, we benefit in three ways from this component:

1) The explicit manipulation of pointers is encapsulated in one
place, once and for all, and we can leverage off of that work
each time we layer a component on Chain_Position.

2) Storage management for linked structures is done here too, so
the integrity of dynamic storage allocation is relatively easy
to establish. Tricks of the trade that lead to order-of-
magnitude efficiency gains in storage management are all en-
capsulated here.

3) This approach supports modular (i.e., component-wise) rea-
soning [18, 21, 24] about system behavior, since all pointers
are hidden "under the hood" and there is no aliasing in any o f
the software we wrote except that which is carefully con-
trolled inside this component's implementation [3, 19].

2.2. Component-Level Design
Highlights of the system's component-level design are:

• All component design and use is based on design-by-contract,
an approach popularized by Bertrand Meyer.

• Movement of data is performed via swapping [3]. There is

12

very limited use of copying.

• Automatic use of constructors and destructors - - a s opposed
to explicit manual use of new and delete - - eliminates stor-
age leaks.

• Components are "fully parameterized" [1] to permit easy
reconfiguration and performance tuning.

• Special checking components were used during testing and
debugging to detect and track down defects in a component 's
client code [2]. Consequently, delivered code is not made
unnecessarily complex or slow by the addition of pre-
condition checking code inside the reusable components.

Each of these component-level decisions except the first - - which
is becoming standard practice at this point - - is discussed in the
sections that follow. These decisions come from a very specific
component-design discipline, which appears in [6].

2.2.1. Data Movement Using Swapping
It is widely agreed that the mere possibility of aliasing is among
the most important sources of difficulty in static program analysis,
and hence in programmer understanding of software system be-
havior. In their classic Geneva Convention on the Treatment o f
Aliasing [4], Hogg, Lea, et al. discuss various alias prevention
techniques, including this passage:

A more radical approach is that of [3], in which the tradi-
tional assignment operator that copies its right side to its
left is replaced by a swapping operator that exchanges the
bindings of its two sides. By avoiding reference copying,
aliasing is also avoided, and its problems disappear. Natu-
rally, the programmer must leam a different paradigm. It
is unclear whether this paradigm can mesh well with
mainstream object oriented programming techniques.

The jury is now in: our experience is that swapping meshes well
with most object-oriented programming techniques and can be
used in object-oriented languages such as C++. It also turns out
(see Appendix A) that the "different paradigm" that one must
learn to use swapping effectively is but a minor variant o f the
traditional imperative programming style.

Out of the approximately 250 components (classes, hence types in
C++) comprising this system, only seven permit using the assign-
ment operator. Assignment and its cousin, parameter passing by-
value, are prohibited for the others by making the C++ o p e r a t o r
= and the copy constructor private member functions of the class.
Instead of using assignment to move objects, the system uses
swapping [3]. Each RESOLVE/C++ eomponent is designed and
implemented so that it exports a swap operator. The built-in C++
scalar types (e.g., int, char, etc.) have been augmented with a swap
operator so that they seamlessly fit in with all the other
RESOLVE/C++ components.

The seven RESOLVE/C++ components in the system that permit
assignment perform deep copying of the value stored in the object
being assigned. These domain-specific objects turn out to be the
ones that store domain-specific data, which consist of small tuples
of integers. Therefore, assignment/copying of this data amounts to
copying one tuple of integers to another, which is a fairly inexpen-
sive operation.

To software engineers unfamiliar with the swapping paradigm, the
entire idea of getting rid of assignment seems to be a radical ap-
proach for the movement of data within a program. Moreover,

when we explain that an entire system can be implemented with
almost no use of assignment and copying, some say it cannot be
done, period. However, our application has been designed and
implemented based on the swapping paradigm, and it works fine.

A more detailed technical explanation of the rationale for the
swapping paradigm, and how it affects component and application
design, is contained in Appendix A.

2.2.2. Use of Constructor~Destructor
Each component defines a constructor and destructor for objects of
its type. From the client programmer's point of view, the con-
struetor provides the object with its initial conceptual value. In-
ternally, the constructor performs all necessary operations to
initialize the internal representation. The destructor is imple-
mented so that all resources allocated to the object are reclaimed.

One goal of any product that can run indefinitely is careful man-
agement of "recyclable" resources. Especially important is the
absence o f storage leaks. Because of the consistent use of the
constructor and destructor, and because raw pointer manipulation
is concentrated within the Chain_Position component, convincing
ourselves that there were no storage leaks was fairly easily
achieved using code walk-throughs and system monitoring during
early development.

2.2.3. Reduced Component Coupling Via Fully
Parameterized Components
In general, a component built following the RESOLVE/C++ dis-
cipline is generic, i.e., it is a C++ template. Template parameters
are of two kinds: coneeptual parameters and realization parameters
(see [6]). Conceptual parameters are familiar, e.g., for a generic
Queue component, the Item type enqueued and dequeued is a con-
ceptual parameter. This standard use of templates addresses the
problem of generalization.

Through the use of realization parameters, concrete-to-concrete
component coupling can be eliminated. For example, suppose a
Queue component is implemented by layering it on a List compo-
nent (instead of directly implementing a Queue object with raw
C++ pointers and nodes). By deciding to layer, we have made a
commitment to use a List in the Queue's representation, i.e., we
have bound Queue's implementation to the List abstraction. But
at the time we design and code this implementation of the Queue
component, we do not need to make a commitment to a particular
List implementation. That is, if we have multiple implementations
of the List abstraction, we can delay binding a Queue implemen-
tation to any particular one of those List implementations. The
traditional approach to layering not only binds the Queue code to
the abstract List behavior, it also binds it to a particular imple-
mentation of List by using #include to mention a specific pre-
existing List implementation. For example, the Standard Tem-
plate Library (STL) follows this traditional early-binding approach
[13].

The fully-parameterized approach in RESOLVE delays that bind-
ing by making the List implementation class a template parameter
to the Queue implementation, i.e., a realization parameter. By
doing this, we permit the client programmer of Queue to choose
which List implementation to supply as a template parameter to
Queue at template instantiation time - - not earlier, i.e., at compo-
nent design time. The details of how this is performed are out-
lined in [6, 8, 22, 23].

13

In this application, almost all components arc fully parameterized.
This allows the system developer to fine-tune the performance of
any fully-parametcrized component because the developer gets to
choose, at component instantiation time, which underlying imple-
mentations of other components a given component is layered on.
Fully-parameterized components solve the same problems as "ab-
stract factory" components used in some commonly-practiced
design patterns, but without introducing extraneous components
that complicate the programmer's life.

2.2.4. Non-defensive Components and Checking
Components
Anyone who designs a component to be reused must face the de-
fensiveness dilemma, which is simply, "should a component be
bulletproof?." Traditional wisdom says "yes", construct the com-
ponent so that it is bulletproof, i.e., be defensive in order to protect
the client from himself. Examples of this approach include com-
ponent implementations in [10, 12], among many others.

The RESOLVE discipline, on the other hand, says "no", do not
make the underlying component bulletproof. This is fully consis-
tent with design-by-contract and offers several benefits :

• The code that implements the component is more elegant and
easier to understand, and hence easier to get fight.

• The performance of the component 's operations is better,
because when an operation is bulletproof, significant time can
be spent checking to make sure that the operation was called
appropriately.

• Once this step has been taken, it is easy to use cleaner meth-
ods of providing this protection where it is desirable. In fact,
we have encapsulated defensiveness in another kind of
"wrapper" component called a checking component [2, 6].

To many software engineers, building components so that they are
non-defensive also seems to be a very radical approach. This is
not to say that there is no defensiveness in the system, because
there is. However, the RESOLVE design discipline recommends
that it appear in particular locations, so it is not spread throughout
the system or done on an ad hoc basis. Most of the defensiveness
appears in components that are responsible for interaction with the
end user. For example, when the system obtains input from the
end user, he or she is presented with a finite menu of choices in
which currently inappropriate choices are either dimmed or do not
appear. This approach has long been standard practice under some
user-interface guidelines, e.g., those for the Macintosh. It is be-
coming more commonplace with Windows applications, too, to
the point that it is now relatively rare to find an application pro-
gram that brings up an alert window with a message such as,
"Sorry, this command is not allowed now." So when we say com-
ponents are not designed to be defensive, we mean that operations'
implementations do not defend themselves against inappropriate
calls from other components within the system.

For an operation exported by a component that has no precondi-
tion (i.e., one that can be called under any circumstances) this non-
defensiveness has no bearing. It is only for an operation that has a
precondition that being non-defensive comes into play. For such
an operation, it must be possible for the client programmer to find
out what the precondition is, and to be able to check whether it
holds~ Otherwise, the client programmer cannot hope to guarantee
that all preconditions are met prior to calling any operation. For
example, a precondition for the Dequene operation of a Queue

component might state that a Queue object must not be empty
upon calling the Dequeue operation. In order to check this pre-
condition, RESOLVE design principles require that the Queue
component must export an operation that permits the client pro-
gram to check the precondition, e.g., a Size or Is_Empty operation.

Continuing with the Queue example, we can construct a checking
version of the Queue component called, say, Queue_Checking.
Queue_Checking is a fully-parameterized generic component that
is layered on the Queue component. Qucue_Checking's syntactic
interface is exactly the same as Queue's (except for the name).
During development of a system, i.e., during testing and debug-
ging, a client programmer needing a Queue type instantiates
Queue_Checking instead o f Queue. Queue Checking is imple-
mented so that when the client program calls an operation that has
a precondition (e.g., Dequeue), it first checks to see if the size of
the queue is greater than zero. If it is, then Queue Checking
merely calls through to the Dequeue operation from the Queue
component at the next lower layer. If the size of the queue is zero,
then Queue_Checking takes action to notify the programmer (or
tester) that a precondition was violated. A violation of a precon-
dition by a client program is viewed as an erroneous client pro-
gram. We want to expose and eliminate these defects as soon as
possible during development and/or testing. Checking compo-
nents can be more sophisticated than the "one-way" checking
components that we used; see [2] for more information.

The beauty of this approach is that when testing has been com-
pleted, the checking version of a component can be replaced by
the non-checking version and the program should behave exactly
as it did with the checking version, except that it will have better
performance. The replacement of the checking version by a non-
checking version requires no more than a change in the instance
declaration section of the system, i.e., no other change in the
source code is required. Furthermore, the checking version for a
particular abstract component (e.g., a Queue component) can be
used with any implementation of it, so long as all Queue imple-
mentations satisfy the same abstract interface (which they will
assuming you follow the RESOLVE component discipline).

3. W H A T WE EXPERIENCED

3.1. Defects
Throughout the several-year lifetime of the original application
and several upgrades, there have been only two cases where post-
release defects have been reported:

• One array was declared too small by one column. Under
certain unusual user input conditions, the reports generated
by the software were missing one piece of information. It
took approximately 20 minutes to track down this defect and
change the array size to correct it.

• Output to some printers was problematic. This was not really
a defect in the software itself; but a problem with our under-
standing of how to interact with the operating system when
printing. By consulting various resources, eventually we
were able to determine the (effectively undocumented) pre-
conditions that had to be satisfied in order to successfully
send output to any printer.

We once accidentally delivered an upgrade to some customers that
was missing a required DLL, and needless to say this generated
several calls. But we do not consider that to be a software defect
because the error was not in the application itself, like the other

14

two problems noted above.

If our testing regime had been especially rigorous compared to
normal practice - - which it was not (see Section 3.3) - - this ex-
cellent defect record might be attributable to other factors than our
strict observance of the RESOLVE/C++ discipline. But we know
of nothing else that can explain it.

3.2. Performance Problems
Common wisdom often suggests that heavily layered applications
with deep nesting of operation calls might have performance
problems. We did not experience this at all. However, a different
and more interesting performance issue was encountered. On
older equipment, the software at times would take an unacceptably
long time to start up. Through careful analysis and monitoring, we
determined that most of this time was being spent initializing the
objects in the system.

We had observed a similar problem in student-size projects de-
signed using the swapping paradigm, and adopted a similar solu-
tion. We simply replaced the implementations of some key
abstract components with new implementations based on lazy
initialization. Objeets whose representation data structures are
never needed are simply never allocated or initialized, and those
whose representation data structures are needed have their initiali-
zation times amortized over the different user commands that
cause them to be needed. Since the system was heavily layered,
we needed to introduce this technique only in a very few low-level
components. This achieved the desired performance improvement
in startup time with no user-perceptible penalty during later op-
eration.

3.3. Testing and Debugging
Section 2.2.4 introduced the notion of non-defensive components
and their corresponding checking versions. We found out during
the development of this system just how helpful checking compo-
nents can be. To use a checking component requires one addi-
tional component instantiation at the point where you create the
instance of the non-defensive component. We used these check-
ing components during unit development, unit testing, system
integration, and system testing. At the end of system testing and
prior to release, we removed the checking components from the
system, reeompiled, performed additional system testing ("just in
case") and then released the system, with no change in system
behavior, except that its performance improved a bit.

Recall that the sole purpose of a checking component is to cheek
that when a client calls one of the non-defensive component's
operations (e.g., Op_l), that its precondition is satisfied at the time
of the call. If the precondition is satisfied, the checking compo-
nent calls through to the non-defensive component's Op_l to get
the requested work performed. If it is not satisfied, then the
checking component notifies the developer/tester with a meaning-
ful message, and halts the application. This approach detected
almost all of the client's original defects during unit testing and
system integration. Very few defects were revealed during system
testing, and only two were detected post-release.

We also found that it can be helpful to allow checking components
to have multiple implementations. For example, an implementa-
tion can be specially-crafted to work with a particular develop-
ment environment's symbolic debugger. (We have changed IDEs
during the past seven years.) If a precondition is not satisfied,
then if the IDE supports it control can be passed to its symbolic

debugger, permitting the software developer to examine various
object values, the state of the call stack, etc. This can greatly aid
the developer in identifying the source of the error and the location
of the defective code.

3.4. Compilation Problems
One of the problems faced by users of C++ templates is the
method by which they are handled by the compiler and linker. It
would be helpful to have an easy way for instances of a template
to be separately compiled, and not have to be recompiled when
changes are made to other unrelated parts of the system. It ap-
pears that the need for separately compiled instances was not
given enough attention when templates were added to C++, even
though this problem had been addressed by other languages of the
day, in particular, Ada. If one is not careful about the actual file
organization of a template, then it becomes difficult, if not impos-
sible, to have separately compiled instances.

An instance of a template may be needed in multiple locations of a
system for type checking purposes only, while the code for the
instance needs to only be generated once. C++ compilers and
linkers have handled the generation of code so that it gets gener-
ated only once, but that does not eliminate the problem of the
compiler having to parse the same code multiple times. Multiple
passes of the compiler over the same code will happen if one puts
the class specification and the member function bodies all in one
include file. We have examined several STL libraries available
over the Interact and have found that component-specification and
member function bodies are collocated in one file [13]. We have
not been able to find any published reports concerning a different
organization of the files comprising such components.

Our method of organizing template source code supports type
checking anywhere the component instance is used, without forc-
ing the compiler to make multiple passes through component's
member function bodies. The compiler makes only one pass
through a component's member function bodies when it is asked
to generate code for that component instance. This has saved
literally hours of compile time throughout the lifetime of the pro-
ject. The organization puts the class template specification in a
file with extension .HS (S for Specification). No member function
code is present in the .HS file. Member function bodies are put in
a separate .HC (C for Code/implementation) file (see Figure 1).
Neither of these files mentions the other.

.HS file .HC file

Template
Specification

File

Template
Member
Function
Code File

Figure 1

Instantiation of the component is done in a third .H file by using
#±nclude of the .HS file only. This instantiation is created to
support type checking in other parts of the system (see Figure 2).
No object code is generated because only the .HS (template Speci-
fication) file was included, not the .HC (member function Code
file). Furthermore, if the C++ environment being used supports
precompiled headers, the .H file described here will end up being

15

compiled into the precompiled header file, saving even more on
compile time.

.H file .HS file
!include X.H

Client
File

~ #include X.HS~ Template l
Instantiation /

Fi le /

Template
Specification

File

Figure 2

Finally a .CPP file is created that # i n c l u d e s the .HS and .HC
files and declares an instance of the component using C++'s ex-
plicit template instantiation construct (see Figure 3). The compiler
generates an object code file for the component's member func-
tions.

Note that this file organization is simply a mechanism that im-
proves compilation performance, and is orthogonal to component
design issues such as those addressed by us and by other research-
ers (e.g., [15]). All our component designs were done by follow-
ing the RESOLVE discipline and principles.

.CPP file .HS file

linclude X.HS|
linclude X.HC k

Explicit I \
Template J \

Instantiation I \
File J ~

I nsta n,.,ce I
Object Code

File

Template
Specification

File

.HC file

Template
Member
Function
Code File

Figure 3

3.5. Compilers/Linkers and Templates
Initially this project for Windows was started using Ada83. Un-
fortunately, the Ada compilers available at that time (1993-1994)
for the PC Windows environment could only handle trivial uses of
Ada generics. This forced the switch to C++. Since then, Ada
compilers have become more sophisticated and Ada95 has been
released. We have not tested more recent compilers to see
whether the project could now be done using Ada.

Although this was not true at first, C++ compilers handle most
uses of templates pretty smoothly at this point, probably because
they are effectively required to do so in order to support the STL.
But some linkers still do not handle template instances very well

because of naming problems. Fully parameterized components are
templates with (in general) many template parameters. The
lengths of instance names - - as known to C++ and to the linker - -
grow exponentially with the level of nesting of template instantia-
tion. In a deeply-layered system like ours, this causes the names
that must be recognized by the linker to exceed some artificially-
imposed limit that apparently works fine in the presence of shal-
low layering and/or few template parameters. Working around
this kind of annoyance cost us many hours.

3.6. Evolving the System
At the outset of the project, we wondered, "How well will the
RESOLVE discipline support the evolution of the system?" Our
experience with one case of performance tuning, which is one
aspect of system evolution, was discussed in Section 3.2, and this
definitely was made easier because of the RESOLVE-based sys-
tem architecture.

The addition of new functionality, another aspect of evolution,
was also supported well because the system possessed the modular
reasoning property and was highly layered (see Sections 2.1.2 and
2.1.3). We found that a software developer joining the project
after initial release, as well as veteran project developers, were
able to "jump right in the middle" of a module and quickly under-
stand the context - - which is explicitly and intentionally restricted
to be small by the RESOLVE discipline. They could almost im-
mediately begin to design and implement the changes required to
bring about the new functionality. Testing and debugging of new
functionality was enhanced during this phase through the use of
the discipline's checking components (see Section 3.3).

The key feature supporting easy evolution was our confidence that
the modular reasoning property would hold. When replacing one
component with another, we knew that simply observing the disci-
pline would prevent back-door interactions that were unexpected,
so we did not waste time looking for them in the code or later
testing for their absence. As a result of this confidence, we felt no
need to do systematic regression testing at the system level after
changes, which saved us an enormous amount of time and money.
We did only systematic unit testing of enhancements.

4. METRICS
We did not routinely collect effort data, etc., because this was a
commercial venture by a small firm, not a research project. How-
ever, we can easily count the artifacts created and used, and clas-
sify them along a few key dimensions:

• Total number of components (i.e., templates) in the system:
about 250.

• Number of components implemented using raw C++ (e.g.,
using pointers) or making direct calls to the Windows oper-
ating system: about 25.

• Number of layered components: about 225. (By layered, we
mean components that were not implemented by using raw
C++ or by making calls to the operating system, but were im-
plemented on top of other components.)

• Number of "horizontal", i.e., general-purpose and potentially
cross-application components: 10. These include mainstays
from the RESOLVE/C++ COTS catalog, such as List, Stack,
Queue, Partial Map, etc. One component of particular inter-
est and utility is Sorting Machine [20]. Each of these corn-

16

ponents is instantiated multiple times with different template
parameters.

• Number of horizontal MS Windows components: 17. These
components wrap up MS Windows objects, e.g.,
Push_Button, Check_Box, Menu, etc. Like those mentioned
in the previous bullet item, these components have been re-
used in other Windows applications. Because their compo-
nent-level design is based on the RESOLVE/C++ discipline,
larger interesting and more useful components can be con-
strutted by composition. For example, if a dialog contains
multiple check boxes, one can easily create a list of check
boxes by supplying the CheckBox component as a template
parameter to the List component. Then the dialog code can
iterate through the list of Check Boxes to dim/undim,
check/uneheck, etc.

• Number of domain-specific components: about 220. As
noted before, these components contain the domain knowl-
edge and present users with a familiar system conceptual
model that helps distinguish the product from its competitors.

5. CONCLUSIONS

Our primary conclusions about using the RESOLVE/C++ disci-
pline for a commercial software project are as follows:

• The swapping paradigm [3] works. It made it not only possi-
ble, but remarkably easy, to address the data movement di-
lemma in a way that preserved modular reasoning without
sacrificing performance. Copying was only occasionally re-
quired in our application - - and we think this would be the
rule in many applications. But when copying was required
we always did deep copying. We attribute the clean bug re-
port history of this product family to the relatively simple
reasoning about behavior that resulted from this single most-
important design decision.

• Lazy initialization is probably mandatory when using the
swapping paradigm. The only fundamentally new program-
ming idiom needed with the swapping paradigm involves
"catalyst" objects that serve as temporary holding places for
data values that are "in transit". These objects generally
don't need to have their representations initialized (although
conceptually they must appear to be initialized, for reasoning
purposes).

• Hiding pointers and references [5] works. Except when im-
plementing cosntructors and destructors for classes that wrap
Windows functionality that we had to use (e.g., buttons,
printers, etc.), we never worried about storage management.
Yet we experienced no storage leaks or other common
pointer problems, even during development. Compared to
other systems we have been involved with, where there were
visible pointers/references and aliases almost everywhere,
this application has been far easier to maintain.

• Checking components [2] work. Unit testing and system
integration with checking components in place dramatically
reduced the effort needed for system testing and debugging
compared to a more traditional approach.

• Fully parameterized components were less important than we
thought they might be. In principle, they allow certain kinds
of changes to be made easily. For example, substituting lazy
initialization for eager initialization in a few components

solved a performance problem with relatively little trouble.
However, the headaches we faced because of the desire for
separate compilation of templates, and especially because of
linkers that have trouble with deeply-nested template in-
stances, in most cases more than offset the advantages of
making components fully parameterized. Moreover, few
components had multiple implementations. So, we probably
wouldn't do that again.

6. ACKNOWLEDGEMENTS

Many colleagues, especially Steve Edwards and Sergey Zhupanov,
contributed to the RESOLVE/C++ discipline that we used. We
also gratefully acknowledge the reviewers for many helpful sug-
gestions that improved the paper.

7. REFERENCES

[1] Bucci, P., Hollingsworth, J.E., Krone, J., and Weide, B.W.,
"Implementing Components in RESOLVE", Software Engi-
neering Notes, Vol. 19, No. 4, October 1994, pp. 40 - 51.

[2] Edwards, S.H., Weide, B.W., Hollingsworth, J.E., "A
Framework for Detecting Interface Violations in Compo-
nent-Based Software", Fifth International Conference on
Software Reuse, IEEE CS Press, June 1998, pp. 46-55.

[3] Harms, D.E., and Weide, B.W., "Copying and Swapping:
Influences on the Design of Resuable Components", IEEE
Transactions on Software Engineering, Vol. 17, No. 5, May
1991, pp. 424-435.

[4] Hogg, J., Lea, D., Holt, R., Wills, A., and de Champeaux,
D. "The Geneva Convention on the Treatment of Object
Aliasing", OOPS Messenger, April 1992. Available at
http://gee.cs.oswego.edu/dl/aliasing/aliasing.html.

[5] Hollingsworth, J.E. and Weide, B.W., "Engineering 'Un-
bounded' Reusable Ada Generics", Proceedings of l Oth An-
nual National Conference on Ada Technology, Arlington,
VA, February 1992, pp. 82-97.

[6] Hollingsworth, J.E., Software Component Design-for-
Reuse: A Language Independent Discipline Applied to Ada,
Ph.D. thesis, Dept. of Computer & Information Science,
The Ohio State University, Columbus, OH, 1992. Available
at http://www.cis.ohio-state, edu/rsrg/.

[7] Hollingsworth, J.E. "Uncontrolled Reference Semantics
Thwart Local Certifiability", Proceedings of the Sixth An-
nual Workshop on Software Reuse, November 1993. Avail-
able at: http://www.umcs.maine.edu/Nftp/wisr/wisr.html.

[8] Hollingsworth, J.E., Sreerama, S., Weide, B.W., and Zhu-
panov, S., "RESOLVE Components in Ada and C++",
Software Engineering Notes, Vol. 19, No. 4, October 1994,
pp. 52-63.

[9] Hollingsworth, J.E., and Weide, B.W., "Micro-Architecture
vs. Macro-Architecture", Proceedings of the Seventh Annual
Workshop on Software Reuse, August 1995. Available at:
http ://www.umcs.maine.edu/-ftp/wisr/wisr.html.

[10] Murray, R.B., C++ Strategies and Tactics, Addison-
Wesley, Reading, MA, 1993.

[11] Norman, D.A., The Design of Everyday Things, Currency

17

Doubleday, New York, 1988.

[12] Sengupta, S., and Korobkin, C.P., C++: Object-Oriented
Data Structures, Springer-Verlag, New York, 1994.

[13] STL - - Hewlett-Packard's downloadable Standard Tem-
plate Library, from ftp://butler.hpl.hp.com/stl; SGI's STL - -
Silicon Graphics Computer Systems, Inc, downloadable
STL, from http://www.sgi.com/Technology/STL; Rogue
Wave Software, Inc., on-line documentation, from
http ://www.roguewave.com/support/doc s/stdre f/index.e fm.

[14] Sitaraman, M., and Weide, B.W., eds., "Component-Based
Software Using RESOLVE", Software Engineering Notes,
Vol. 19, No. 4, October 1994, pp. 21-67.

[15] van Hilst, M, and Notkin, D., "Decoupling Change from
Design", ACMSIGSOFT "96, ACM Press, 1996, pp. 58-69.

[16] Weide, B.W., Ogden, W.F., and Zweben, S.H., "Reusable
Software Components", in M. C. Yovits, editor, Advances
in Computers, Vol. 33, Academic Press, 1991, pp. 1-65.

[17] Weide, B.W., and Hollingsworth, J.E., "Sealability of Reuse
Technology to Large Systems Requires Local Certifiabil-
ity", Proceedings of the Fifth Annual Workshop on Software
Reuse, October 1992.

[18] Weide, B., and Hollingsworth, J. On Local Certifiability of
Software Components, OSU-CISRC-1/94-TR04, Dept. of
Computer and Information Science, Ohio State Univ., Co-
lumbus, OH, January, 1994.

[19] Weide, B.W., Edwards, S.H., Harms, D.E. and Lamb, D.A.,
"Design and Specification of Iterators Using the Swapping
Paradigm", IEEE Transactions on Software Engineering,
Vol. 20, No. 8, August 1994, pp. 631-643.

[20] Weide, B.W., Ogden, W.F. and Sitaraman, M. "Recasting
Algorithms to Encourage Reuse", IEEE Software, Vol. 11,
No. 5, September 1994, pp. 80-88.

[21] Weide, B.W., HoUingsworth, J.E. and Heym, W.D., "Re-
verse Engineering of Legacy Code Exposed", Proceedings
17th International Conference on Software Engineering,
ACM Press, April 1995, pp. 327-331.

[22] Weide, B.W., Software Component Engineering, OSU
Reprographics, Columbus, OH, 1997.

[23] Weide, B.W., and Long, T.J. Software Component Engi-
neer ing Course Sequence Home Page, from
http://www.cis.ohio-state.edu/~weide/see/now.

[24] Zweben, S.H., Edwards, S.H., Hollingsworth, J.E., and
Weide, B.W., "The Effects of Layering and Encapsulation
on Software Development Cost and Quality," IEEE Trans-
actions on Software Engineering, Vol. 21, No. 3, March
1995, pp. 200-208.

APPENDIX: THE SWAPPING P A R A D I G M

A key part of the RESOLVE discipline is what we call the swap-
ping paradigm. How to achieve "movement" of data values be-
tween variables is a technical problem that needs to be faced by all
imperative-language software engineering disciplines that concern
themselves with component-level design details. Because there is
no way to avoid this problem, and because traditional approaches

to dealing with it make trade-offs that introduce serious technical
difficulties, we call it the data movement dilemma.

To explain why there is a dilemma, we start with a simple ques-
tion: How do you make some variable (say, x) get the value of
another variable (say, y)? For example, suppose x and y are vari-
-ables of type Integer, a type whose mathematical model is a
mathematical integer. We want to think of the value ofx as being
something like 17 (i.e., not as a string of 32 bits), and the value of
y as being something like 42. The obvious answer to the question
is that we use an assignment statement, like this:

x = y;

This works fine for Fortran and C programs and for C++ programs
with no user-defined types. A problem arises, though, in modem
object-oriented software systems. What ifx andy are variables of
a type T, where T's mathematical model is relatively complex and
its representation is therefore potentially large? Suppose, for ex-
ample, that T is Set <Integer>; we wish to think of the value ofx
as being something like {1, 34, 16, 13} and the value ofy as being
something like {2, -9, 45, 67, 15, 16, 942, 0}. There are now two
options, neither of which is especially attractive:

• Consider the assignment operator and copy constructor for
Set to perform "deep" copy, so that after the assignment
statement we can think of both x and y as having the same ab-
street value. Logically, x and y must behave independently,
too, so changes to x do not side-effect the value ofy and vice
versa. This can be terribly inefficient, because without using
fancy data-structure-specific tricks that frequently do not ap-
ply, both the assignment operator and copy constructor take
time linear in the size o fy ' s representation. Big sets simply
take a long time to copy and hence to assign.

• Do not view x and y as having values that are mathematical
sets of mathematical integers, but consider their values to be
pointers or references to sets of integers. This fixes the effi-
ciency problem but at the cost of a distressing non-uniformity
in reasoning about program behavior: some variables denote
values and others denote references. It also means that the
assignment operator and copy constructor create aliases,
which complicates reasoning about program behavior.

The latter approach has been codified into some modem lan-
gnages, notably Java. We observe, however, that it is actually far
worse than the former from the software engineering standpoint.
One reason is that the programmer now must be aware that vari-
ables of some types have ordinary values while variables of other
types hold object references (it's the objects that have the values).
For template components this creates a special problem. Inside a
component that is parameterized by a type Item, there is no way to
know before instantiation time whether an assignment of one Item
to another will assign a value or an object reference. Of course,
this can be "fixed" as it is in Java: introduce otherwise-redundant
object types such as Integer to shadow value types such as int. We
can then require that all actual template parameters be object
types. This is not a language-enforced rule in C++, however, so
some discipline is required to make it a reality there.

A more serious problem is that the "reference semantics" approach
makes aliases run rampant, and aliasing breaks modular reasoning
[7]. As noted in Sections 3.3 and 3.6, the ability to do modular
reasoning - - and to know that we could rely on it - - was ex-

18

tremely valuable to us in terms of both minimizing testing effort
and in terms of the resulting product quality.

Figure 4 summarizes the data movement dilemma faced by some-
one who wants efficient software about whose behavior it is easy
to reason. The conclusion seems to be that this is only attainable
by sticking to built-in scalar types - - not incidentally, the only
types available when the assignment operator was introduced into
programming languages - - or, at best, by inventing only new
user-defined types that admit "small" representations.

What does "x = y;" do?

makes a deep c o p / "NNN~pies a reference

How big is y's representation? tfr.~

Figure 4

Rather than confronting the dilemma directly, we revisit the origi-
nal question and consider alternatives to the assignment statement
as the "obvious" answer to the question: How do you make some
variable (say, x) get the value o f another variable (say, y)? There
is no inherent requirement that the value o f y must not change as a
result of the data movement process. Realizing this opens the
door to many other possibilities. The new value o f x must be the
old value of y, but the new value o fy might be:

• the old value o f y (to get this behavior we just use assign-
ment, which works well i fy ' s representation is small); or

• undefined; or

• a defmed, but arbitrary and unknown value of its type; or

• some particular value of its type, e.g., an initial value; or

• the old value ofx.

It is beyond the scope of this paper to analyze the pros and cons of
all the possibilities beyond the first one, which is unsatisfactory as
a general approach to data movement. Suffice to say that leaving
y undefined complicates reasoning, although not nearly as much as
allowing aliasing; and that leaving y with either an arbitrary or a
distinguished value of its type is actually quite a reasonable thing
to do. However, we have found that the last approach - - swap-
p ing the values of x and y - - is both efficient and safe with re-
spect to modular reasoning, and it results in remarkably few
changes to how most programmers write imperative code [3].

You need to get used to a few new idioms when adopting the
swapping paradigm, e.g., for iterating through a collection [19].
The biggest effect of the swapping paradigm, however, is on the
design of component interfaces. Consider, for example, a Queue
component with operations Enqueue, Dequeue, and Length. What
should Enquene(x) do to the value of x? The analysis of this

question parallels the analysis of the data movement dilemma as
the question was phrased above. The conclusion of such an analy-
sis is that Enqueue should consume x, i.e., it should leave x with
an initial value of its type.

How can this be accomplished? A raw C++ implementation of the
Queue component declares a new variable of the parametric type
Item in the body of Enqueue, e.g., the "data" field in a new "node"
that is to be inserted in a linked list of nodes. This variable is then
swapped with x. Swapping simultaneously puts the old value of x
into the Quene's representation data structure, where it needs to
be; and sets the new value o f x to the initial value for its type that
was originally in the data field of the node.

In an implementation o f the Queue component that is layered on
top o f a List implementation, the Enqueue operation simply Inserts
x at the appropriate place into the List that represents the Queue.
If the Insert operation for List also is designed using the swapping
paradigm, so it consumes its argument's value just like Enqueue
does, then this call does exactly what is needed.

In other words, in both these situations, the code that one would
have written if using assignment for data movement is changed in
just one respect: assignment o f x to its place in the Queue's repre-
sentation is replaced by swapping x with its place in the Queue's
representation.

Our experience is that a group of components such as those in the
RESOLVE/C++ COTS catalog [23] can be designed according to
the swapping paradigm to work together in such a way that pro-
gramming within the RESOLVE discipline is substantially identi-
cal to programming with assignment statements. But the resulting
components offer efficiency and/or reasoning advantages over
similar components designed in a traditional fashion.

We should be clear that we still use the assignment operator with
built-in scalar types. There is nothing wrong with the following
statement from either the efficiency or reasoning standpoints, as-
suming that x and y are variables of some built-in scalar type:

X = y;

The possibly surprising empirical observation that has been sub-
stantiated by our application development is that there is rarely a
need for such a statement when x and y have user-defined types.

The primary advantages o f using the swapping paradigm are, then:

• All variables have value semantics, which allows the modular
reasoning that is impossible if reference semantics creep in.

• All pointers and references are hidden deep within the bowels
o f a few low-level components and are invisible to a client
programmer layering new code on top of them.

• I f these low-level components have no storage leaks, then
client programs have no storage leaks, and client program-
mers do not have to worry about where to invoke new and
delete because they simply never invoke them.

• The swapping paradigm is easy for imperative-language pro-
grammers to learn and apply.

Other questions often asked about the interactions between the
swapping paradigm and other programming language and software
engineering issues, such as the role o f function operations, as-
signment of function results to variables, parameter passing, etc.,
are discussed in [3].

19

