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By observing a careful discipline you can convert RESOLVE realizations to (or directly
realize RESOLVE concepts in) Ada or C++, even though these languages do not mesh
well with the RESOLVE realization language [Part III] in several places.  In this paper
we show some examples of how this works.

Ada and C++, while superficially quite different from each other in many respects, are
about equally well-suited (perhaps we should say poorly-suited) substitutes for the
RESOLVE realization language.  Each language has a number of interesting features that
we simply do not use, because we do not know how to modularly reason about code that
uses these features and/or because we do not need to use them to imitate RESOLVE
realizations.  The RESOLVE/Ada and RESOLVE/C++ disciplines — strictly followed —
are therefore conservative: If you follow our advice then you should be able to reason
modularly about your programs; if not, then you still might be able to reason modularly if
you know what you are doing and why, and if you understand the pitfalls that can disturb
modularity and avoid them even while violating the discipline.

Given space constraints it is not possible to present the precise principles and conventions
of either discipline here.  However, the RESOLVE/Ada discipline is readily available
[Hollingsworth 92b]; its counterpart for C++ is currently under development.  As a
surrogate, in this paper we show some Ada and C++ code that you might write for several
of the examples in the companion papers [Parts II and III], to give the flavor of what is
involved.

1.  Ada Examples

An Ada generic package specification corresponds to a RESOLVE realization header
plus the concept it implements (including both conceptual and realization parameters),
and an Ada package body corresponds to a RESOLVE realization body.  There is, then,
one Ada generic package per realization, not one per concept as might be hoped.  The
reason is that the Ada component model is the traditional “one implementation per
specification”, which does not match the more flexible RESOLVE model [Part I].

Naming of Ada generic packages using both concept and realization names is a nuisance.
The concept name is generally more important than the realization name, so by
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convention we use the concept name followed by some short designator of the realization
(not the entire realization name).

Figures 1-5 illustrate how various RESOLVE examples [Parts II and III] look when
coded in Ada following the RESOLVE/Ada discipline.  One things stands out
immediately: the large volume of code, especially when compared to the RESOLVE and
C++ counterparts.  The two main reasons for this are that Ada currently does not have a
method for passing a package instance as a generic parameter, and that it does not support
automatic initialization and finalization of variables.  Apparently Ada9X will fix both
problems, but we have not yet investigated the impact of these changes on the details of
the RESOLVE/Ada discipline.

Some specific areas where Ada code written under the RESOLVE/Ada discipline is a bit
unusual are:

• Swap procedure — There is no “:=:” operator in Ada, so there is a Swap procedure
for every type.  (We use a tool called rapp, for RESOLVE/Ada preprocessor, that
allows us to write “:=:” as though it were an operator.  Rapp replaces each “:=:” by
the appropriate Swap call.  The Ada code in the examples does not use this or any
other feature of rapp.)

• Initialize and Finalize procedures — There is no automatic variable initialization
and finalization in Ada.  So for every variable you declare, there are calls to
Initialize and Finalize at the beginning and end of that variable’s scope.  Similarly,
there are calls to Initialize_Package and Finalize_Package (the Ada counterparts of
Initialize_Facility and Finalize_Facility) at the beginning and end of every package
instance’s scope.  (Rapp automatically inserts all initialization and finalization calls
for variables and package instances at the appropriate places.)

• Scalar types — Relatively seamless integration with the built-in scalar types is
provided through library packages called Standard_Boolean_Facility, etc.  These
packages permit a uniform treatment of built-in scalar types by exporting the
Initialize, Finalize, and Swap procedures that are needed when composing the
built-in scalar types with other ADTs.

• Record types — With one exception (see the private part in Figures 3-5), Ada’s
built-in records are not used.  RecordN_Template generic packages with
Swap_Field operations [Part III] are used instead.  (Rapp converts dot notation for
field extraction into appropriate Swap_Field calls.)

• Limited private types — All types imported and exported by Ada generic packages
are limited private, so the compiler can enforce RESOLVE’s no-built-in-copying
and no-built-in-equality-testing restriction.

• Functions and procedures — Ada has an unfortunate rule that requires all
parameters to functions to have mode in, and this precludes many layered
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implementations that are coded in the RESOLVE style.  So all RESOLVE
operations are implemented as Ada procedures, never as functions.  For a
RESOLVE functional operation an extra parameter is added to convey the return
value.  The naming convention is as follows: for RESOLVE procedural operation
“P”, the Ada procedure is “P”; for RESOLVE functional operation “F” returning
type Boolean, the Ada procedure is “Test_If_F”; for RESOLVE functional
operation “F” returning any other type, the Ada procedure is “Get_F”.

• Parameter modes — All Ada parameters have mode in out, except for the
counterparts of RESOLVE preserves-mode parameters of the built-in scalar
types, which have mode in.

• Type parameters to generic packages — For every type that is imported/exported
by an Ada generic package, the corresponding Initialize, Finalize, and Swap
procedures are also imported/exported immediately after the type. (The use of box
notation “<>” in declaring the formal parameters makes instantiating a generic
package easy, since no actuals need to be passed explicitly for these procedures;
see the private part in Figure 5.)

• Facility parameters to generic packages — For every RESOLVE facility
parameter, the entire Ada interface is imported except Initialize_Package and
Finalize_Package.  Each type and procedure being imported is listed separately and
in the same order as listed in the generic package that exports them.  (The Ada type
name is sometimes slightly different from the corresponding RESOLVE type in
order to avoid conflicts with other imported or exported types; see Figure 3 for an
example.   Also note that box notation helps here even more than it does with
RESOLVE type parameters; see the private part in Figure 5.)

• Multiple implementations — The exports of an Ada package specification are
determined entirely from the RESOLVE concept interface, and never depend on
realization-related information.  The only differences between two Ada generic
package specifications for the same concept are in the generic package names, in
the context declarations (with/use clauses), and in the generic parameter lists where
realization parameters occur.
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Figure 1:  Ada Generic Package Specification for a Realization of Stack_Template

with Standard_Integer_Facility; use Standard_Integer_Facility;

generic

type Item is limited private; -- type Item
with procedure Initialize (

x: in out Item
) is <>;

with procedure Finalize (
x: in out Item

) is <>;
with procedure Swap (

x1: in out Item;
x2: in out Item

) is <>;

package Stack_Template_1 is

procedure Initialize_Package;
procedure Finalize_Package;

type Stack is limited private;
procedure Initialize (

s: in out Stack
);

procedure Finalize (
s: in out Stack

);
procedure Swap (

s1: in out Stack;
s2: in out Stack

);

procedure Push (
s: in out Stack;
x: in out Item

);
procedure Pop (

s: in out Stack;
x: in out Item

);
procedure Get_Length (

s: in out Stack;
result: in out Integer

);

private

-- Representation goes here

end Stack_Template_1;
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Figure 2:  Ada Generic Package for Realization “Obvious” for Stack_Top_Capability

generic

type Item is limited private; -- type Item
with procedure Initialize (

x: in out Item
) is <>;

with procedure Finalize (
x: in out Item

) is <>;
with procedure Swap (

x1: in out Item;
x2: in out Item

) is <>;

type Stack is limited private; -- facility Stack_Facility
with procedure Initialize (

s: in out Stack
) is <>;

with procedure Finalize (
s: in out Stack

) is <>;
with procedure Swap (

s1: in out Stack;
s2: in out Stack

) is <>;
with procedure Push (

s: in out Stack;
x: in out Item

) is <>;
with procedure Pop (

s: in out Stack;
x: in out Item

) is <>;
with procedure Get_Length (

s: in out Stack;
result: in out Integer

) is <>;

with procedure Get_Replica ( -- operation Replica
x: in out Item;
result: in out Item

) is <>;

package Stack_Top_Capability_1 is

procedure Initialize_Package;
procedure Finalize_Package;
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procedure Get_Top (
s: in out Stack;
x: in out Item

);

end Stack_Top_Capability_1;

---------------------------------------------------------------------

package body Stack_Top_Capability_1 is

procedure Initialize_Package is
begin

null;
end Initialize_Package;

procedure Finalize_Package is
begin

null;
end Finalize_Package;

procedure Get_Top (
s: in out Stack;
x: in out Item

) is
x_copy: Item;

begin
Initialize (x_copy);

Pop (s, x);
Get_Replica (x, x_copy);
Push (s, x_copy);

Finalize (x_copy);
end Get_Top;

end Stack_Top_Capability_1;
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Figure 3:  Ada Generic Package for Realization “Bundled” for

Replicable_Stack_Template

with Standard_Integer_Facility; use Standard_Integer_Facility;

generic

type Item is limited private; -- type Item
with procedure Initialize (

x: in out Item
) is <>;

with procedure Finalize (
x: in out Item

) is <>;
with procedure Swap (

x1: in out Item;
x2: in out Item

) is <>;

type Stack1 is limited private; -- facility Stack_Facility
with procedure Initialize (

s: in out Stack1
) is <>;

with procedure Finalize (
s: in out Stack1

) is <>;
with procedure Swap (

s1: in out Stack1;
s2: in out Stack1

) is <>;
with procedure Push (

s: in out Stack1;
x: in out Item

) is <>;
-- Similarly for Pop, Get_Length

with procedure Get_Replica ( -- facility
x: in out Stack1; -- Stack_Replica_Facility
result: in out Stack1

) is <>;

package Replicable_Stack_Template_1 is

procedure Initialize_Package;
procedure Finalize_Package;

type Stack is limited private;
procedure Initialize (

s: in out Stack
);

procedure Finalize (
s: in out Stack

);
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procedure Swap (
s1: in out Stack;
s2: in out Stack

);

procedure Push (
s: in out Stack;
x: in out Item

);
-- Similarly for Pop, Get_Length, Get_Replica

private

type Stack is
record

rep: Stack1;
end record;

end Replicable_Stack_Template_1;

---------------------------------------------------------------------

package body Replicable_Stack_Template_1 is

procedure Initialize_Package is
begin

null;
end Initialize_Package;

procedure Finalize_Package is
begin

null;
end Finalize_Package;

procedure Initialize (
s: in out Stack

) is
begin

Initialize (s.rep);
end Initialize;

procedure Finalize (
s: in out Stack

) is
begin

Finalize (s.rep);
end Finalize;

procedure Swap (
s1: in out Stack;
s2: in out Stack

) is
begin

Swap (s1.rep, s2.rep);
end Swap;
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procedure Push (
s: in out Stack;
x: in out Item

) is
begin

Push (s.rep, x);
end Push;

-- Similarly for Pop, Get_Length, Get_Replica

end Replicable_Stack_Template_1;

Figure 4:  Ada Generic Package for Realization “Unordered_Stack” for

Partial_Map_Template

with Standard_Boolean_Facility; use Standard_Boolean_Facility;
with Standard_Integer_Facility; use Standard_Integer_Facility;

generic

type D_Item is limited private; -- type D_Item
with procedure Initialize (

x: in out D_Item
) is <>;

with procedure Finalize (
x: in out D_Item

) is <>;
with procedure Swap (

x1: in out D_Item;
x2: in out D_Item

) is <>;

type R_Item is limited private; -- type R_Item
with procedure Initialize (

x: in out R_Item
) is <>;

with procedure Finalize (
x: in out R_Item

) is <>;
with procedure Swap (

x1: in out R_Item;
x2: in out R_Item

) is <>;

type Record2 is limited private; -- facility D_R_Pair_Facility
with procedure Initialize (

r: in out Record2
) is <>;

with procedure Finalize (
r: in out Record2

) is <>;
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with procedure Swap (
r1: in out Record2;
r2: in out Record2

) is <>;
with procedure Swap_Field1 (

r: in out Record2;
x: in out D_Item

) is <>;
with procedure Swap_Field2 (

r: in out Record2;
x: in out R_Item

) is <>;

type Stack is limited private; -- facility Stack_Facility
with procedure Initialize (

s: in out Stack
) is <>;

with procedure Finalize (
s: in out Stack

) is <>;
with procedure Swap (

s1: in out Stack;
s2: in out Stack

) is <>;
with procedure Push (

s: in out Stack;
x: in out Record2

) is <>;
-- Similarly for Pop, Get_Length

with procedure Test_If_Are_Equal ( -- operation Are_Equal
d1: in out D_Item;
d2: in out D_Item;
result: in out Boolean

) is <>;

package Partial_Map_Template_1 is

procedure Initialize_Package;
procedure Finalize_Package;

type Partial_Map is limited private;
procedure Initialize (

m: in out Partial_Map
);

procedure Finalize (
m: in out Partial_Map

);
procedure Swap (

m1: in out Partial_Map;
m2: in out Partial_Map

);
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procedure Define (
m: in out Partial_Map;
d: in out D_Item;
r: in out R_Item

);
-- Similarly for Undefine, Undefine_Any_One, Test_If_Is_Defined,
-- Get_Size

private

type Partial_Map is
record

rep: Stack;
end record;

end Partial_Map_Template_1;

---------------------------------------------------------------------

package body Partial_Map_Template_1 is

type D_R_Pair is new Record2;

procedure Swap_Domain_Value (
p: in out D_R_Pair;
d: in out D_Item

) renames Swap_Field1;

procedure Swap_Range_Value (
p: in out D_R_Pair;
r: in out R_Item

) renames Swap_Field2;

procedure Pop_Until_Passed (
s1: in out Stack;
s2: in out Stack;
d: in out D_Item

) is
begin

-- Code for Pop_Until_Passed
end Pop_Until_Passed;

procedure Combine (
s1: in out Stack;
s2: in out Stack

) is
begin

-- Code for Combine body
end Combine;

procedure Initialize_Package is
begin

null;
end Initialize_Package;
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procedure Undefine (
m: in out Partial_Map;
d: in out D_Item;
d_copy: in out D_Item;
r: in out R_Item

) is
catalyst: Stack;
p: D_R_Pair;

begin
Initialize (catalyst);
Initialize (p);

Pop_Until_Passed (m.rep, catalyst, d);
Pop (catalyst, p);
Swap_Domain_Value (p, d_copy);
Swap_Range_Value (p, r);
Combine (m.rep, catalyst);

Finalize (p);
Finalize (catalyst);

end Undefine;

-- Similarly for Finalize_Package, Initialize, Finalize, Swap,
-- Define, Undefine_Any_One, Test_If_Is_Defined, and Get_Size

end Partial_Map_Template_1;

Figure 5:  Ada Generic Package for Realization “Unordered_Stack_Fixed” for

Partial_Map_Template

with Standard_Boolean_Facility; use Standard_Boolean_Facility;
with Standard_Integer_Facility; use Standard_Integer_Facility;
with Record2_Template;
with Stack_Template_1;
with Partial_Map_Template_1;

generic

type D_Item is limited private; -- type D_Item
with procedure Initialize (

x: in out D_Item
) is <>;

with procedure Finalize (
x: in out D_Item

) is <>;
with procedure Swap (

x1: in out D_Item;
x2: in out D_Item

) is <>;

type R_Item is limited private; -- type R_Item
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with procedure Initialize (
x: in out R_Item

) is <>;
with procedure Finalize (

x: in out R_Item
) is <>;

with procedure Swap (
x1: in out R_Item;
x2: in out R_Item

) is <>;

with procedure Test_If_Are_Equal ( -- operation Are_Equal
d1: in out D_Item;
d2: in out D_Item;
result: in out Boolean

) is <>;

package Partial_Map_Template_2 is

procedure Initialize_Package;
procedure Finalize_Package;

type Partial_Map is limited private;
procedure Initialize (

m: in out Partial_Map
);

procedure Finalize (
m: in out Partial_Map

);
procedure Swap (

m1: in out Partial_Map;
m2: in out Partial_Map

);

procedure Define (
m: in out Partial_Map;
d: in out D_Item;
r: in out R_Item

);
-- Similarly for Undefine, Undefine_Any_One, Test_If_Is_Defined,
-- Get_Size

private

package D_R_Pair_Facility is new
Record2_Template (

Item1 => D_Item,
Item2 => R_Item

);
use D_R_Pair_Facility;

package Stack_Facility is new
Stack_Template_1 (

Item => Record2
);

use Stack_Facility;
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package Partial_Map_Facility is new
Partial_Map_Template_1 (

D_Item => D_Item,
R_Item => R_Item,
Record2 => Record2,
Stack => Stack

);

type Partial_Map is
record

rep: Partial_Map_Facility.Partial_Map;
end record;

end Partial_Map_Template_2;

---------------------------------------------------------------------

package body Partial_Map_Template_2 is

procedure Initialize_Package is
begin

D_R_Pair_Facility.Initialize_Package;
Stack_Facility.Initialize_Package;
Partial_Map_Facility.Initialize_Package;

end Initialize_Package;

procedure Finalize_Package is
begin

Partial_Map_Facility.Finalize_Package;
Stack_Facility.Finalize_Package;
D_R_Pair_Facility.Finalize_Package;

end Finalize_Package;

procedure Initialize (
m: in out Partial_Map

) is
begin

Partial_Map_Facility.Initialize (m.rep);
end Initialize;

procedure Undefine (
m: in out Partial_Map;
d: in out D_Item;
d_copy: in out D_Item;
r: in out R_Item

) is
begin

Partial_Map_Facility.Undefine (m.rep, d, d_copy, r);
end Undefine;

-- Similarly for Finalize, Swap, Define, Undefine_Any_One,
-- Test_If_Is_Defined, and Get_Size

end Partial_Map_Template_2;
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2.  C++ Principles

The RESOLVE/C++ discipline illustrated in this section is newer and less-tested than the
RESOLVE/Ada discipline, in no small part because of the unavailability (until recently)
of compilers that properly handle “templates” — the C++ mechanism for generic
parameters.  We have explored several variants of the particular discipline illustrated
here, in which we use the traditional imperative language style for operation invocation
(e.g., Push (s, x)) as opposed to the pseudo-monadic object-oriented programming style
(e.g., s.Push (x)).  We hope that those who expect C++ code to use the latter style are not
blinded to the benefits of the discipline by this apparent faux pas.  The variants that use
more typical C++ style are alive and well and still under investigation.

A C++ class template corresponds to a RESOLVE realization header plus the concept it
implements (including both conceptual and realization parameters), and the code for the
class methods corresponds to a RESOLVE realization body.  The reason for this is that
unless you use inheritance in the “abstract base class” style (we do not in the discipline
illustrated here) the C++ component model is the same as Ada’s traditional “one
implementation per specification”.

There are two primary sources of difficulty in developing a RESOLVE/C++ discipline.
The first problem — which fortunately is fairly rare — deals with concepts that export
multiple types.  We handle this using the “friend” construct, but none of the examples
here illustrates this.  The second problem is that, in effect, an ordinary C++ template class
(a class obtained by instantiating a C++ class template) defines both a facility and a type.
So we adopt conventions that help maintain the distinction between facility and type
where possible.

First, we define some pseudo-keywords: FACILITY_AND_TYPE (for “typedef”),
FACILITY (for “typedef”), and OBJECT (for “ ”).  These help to clarify intent when
making declarations.  Second, we divide concepts into those that define a type and those
that define only one or more operations.  Instances of the former are declared using
FACILITY_AND_TYPE , and instances of the latter using FACILITY.  Public routines
are declared “static” in either case, so operations are invoked with the traditional
imperative style but with a fully-qualified name, e.g., “Facility::Operation (arguments)”.
The example code illustrates this in several places.  Proposed “parameterized
namespaces” will help here when they eventually appear in C++.

Some areas where C++ code under the RESOLVE/C++ discipline is a bit unusual are:

• Swap operator — There is no “:=:” operator in C++, so we use the slightly
suggestive “&=” operator, which has no other use in RESOLVE/C++ code.

• Initialize and Finalize procedures — Initialize and Finalize are done using C++
constructors and destructors.  Initialize_Facility and Finalize_Facility cause some
problems, however.  Because all similarly-declared instances of the same class
template are considered to be the same instance in C++, there is no single “right”
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place to call Initialize_Facility and Finalize_Facility.  So in realizations where
these operations actually need to do something, they are handled in the constructor
and destructor by using a reference count to determine when the first object of a
type is constructed and when the last object of a type is destroyed.  This slightly
tricky business is not illustrated in the examples.

• Scalar types — Seamless integration with the built-in scalar types is provided
through “wrapper” classes called Standard_Boolean, etc.  These classes (not class
templates) permit a uniform treatment of the special scalar types by defining the
“&=” operators that are needed when composing these types with other ADTs, and
by defining other appropriate operations and type conversions between the wrapper
classes and their built-in counterparts.  A nice side-benefit of this approach is that
the special scalar types have the same names as in RESOLVE; e.g., you use Integer
instead of int.

• Record types — When a record type is needed, the obvious C++ struct is declared
with public data members for each field, and a public “&=” operator that is
implemented in the class declaration; see Figure 10.  We declare a struct only to
emphasize that the intent is to create a record; declaring the same thing as a class
would be equivalent.

• Prohibited copying  — Assignment and copy construction are explicitly prohibited
by declaring them to be private.  The equality-testing operator “==” need not be
prohibited because the C++ compiler does not generate default equality-testing
based on the representation.

• Routines — Most RESOLVE operations are implemented as C++ void routines.
For a RESOLVE functional operation that returns anything but a special scalar
type, an extra parameter is added to convey the return value from the
corresponding void routine.  The naming convention is as follows: for RESOLVE
procedural operation “P”, the C++ routine is “void P”; for RESOLVE functional
operation “F” returning a special scalar type “scalar”, the C++ routine is “scalar F”;
for RESOLVE functional operation “F” returning any other type, the C++ routine
is “void Get_F”.

• Parameter passing — All C++ formal parameters are declared to be passed by
reference (using “&”), except for the counterparts of RESOLVE preserves-mode
parameters of the built-in scalar types, which are declared to be passed by value.

• Types and facilities as template parameters — Both RESOLVE type and facility
parameters are imported as class parameters to class templates.

• Multiple implementations — The exports of a C++ class template are determined
entirely from the RESOLVE concept interface, and never depend on realization-
related information.  The only differences between two C++ class templates for the
same concept are in the class template names, in the context declarations
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(“include” files), and in the template parameter lists where realization parameters
occur.

Figures 6-10 illustrate how some RESOLVE examples [Parts II and III] look when coded
in C++ following the RESOLVE/C++ discipline.  One thing that stands out here is that
inheritance is not employed for the usual purpose, i.e., subtyping.  In Figure 8 we inherit
from template parameters to do a realization by bundling.  But overall, templates are
much more important and useful to us than inheritance.

Another more subtle consequence of the RESOLVE/C++ discipline is that some errors
caught by Ada at compile time (because facility parameters to generic package
specifications are “expanded” into their exports) are not caught by the C++ compiler, but
must be caught by the linker.  For example, in Figure 7 the C++ compiler has no way to
know the types of the parameters to Push, Pop, and Get_Replica.

Finally, note that the code for routines such as Get_Top in Figure 7 actually resides in a
header file for which object code is not generated until an instance is declared.  Most
compilers try to keep compiled class templates in an intermediate form to speed this
process, but the fundamental problem remains.  To offset it, you can create wrapper
classes (not templates) that are implemented by instantiating class templates as needed by
the application, then compiling them and placing their object code in the library.
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Figure 6:  C++ Class Template for a Realization of Stack_Template

#include "Standard_Integer.h"

template <
class Item

>
class Stack_1
{

public:

Stack_1 ();
~Stack_1 ();
void operator &= (

Stack_1& rhs
);

static void Push (
Stack_1& s,
Item& x

);
static void Pop (

Stack_1& s,
Item& x

);
static Integer Length (

Stack_1& s
);

private:

Stack_1 (Stack_1 s);
Stack_1& operator = (const Stack_1& rhs);

/* Representation goes here */
};
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Figure 7:  C++ Class Template for Realization Obvious for Stack_Top_Capability

template <
class Item,
class Stack,
class Item_Replica_Facility

>
class Stack_Top_1
{

public:

static void Get_Top (
Stack& s,
Item& x

);
};

/////////////////////////////////////////////////////////////////////

template <
class Item,
class Stack,
class Item_Replica_Facility

>
void Stack_Top_1<Item, Stack, Item_Replica_Facility>::
Get_Top (

Stack& s,
Item& x

)
{

OBJECT Item x_copy;

Stack::Pop (s, x);
Item_Replica_Facility::Get_Replica (x, x_copy);
Stack::Push (s, x_copy);

}

Figure 8:  C++ Class Template for Realization “Bundled” for Replicable_Stack_Template

template <
class Item,
class Stack,
class Stack_Replica_Facility

>
class Replicable_Stack_1:

virtual public Stack,
virtual public Stack_Replica_Facility

{ /* Empty */ };



20

Figure 9:  C++ Class Template (and One Routine Body) for Realization

“Unordered_Stack” for Partial_Map_Template

#include "Standard_Boolean.h"
#include "Standard_Integer.h"

template <
class D_Item,
class R_Item,
class D_R_Pair,
class Stack,
class D_Item_Are_Equal_Facility

>
class Partial_Map_1
{

public:

Partial_Map_1 ();
~Partial_Map_1 ();
void operator &= (

Partial_Map_1& rhs
);

static void Define (
Partial_Map_1& m,
D_Item& d,
R_Item& r

);
static void Undefine (

Partial_Map_1& m,
D_Item& d,
D_Item& d_copy,
R_Item& r

);
static void Undefine_Any_One (

Partial_Map_1& m,
D_Item& d,
R_Item& r

);
static Boolean Is_Defined (

Partial_Map_1& m,
D_Item& d

);
static Integer Size (

Partial_Map_1& m,
);

private:

   Partial_Map_1 (Partial_Map_1 s);
   Partial_Map_1& operator = (const Partial_Map_1& rhs);
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   static void Pop_Until_Passed (
Stack& s1,
Stack& s2,
D_Item& d

);
   static void Combine (

Stack& s1,
Stack& s2

);

   OBJECT Stack rep;
};

/////////////////////////////////////////////////////////////////////

template <
class D_Item,
class R_Item,
class D_R_Pair,
class Stack,
class D_Item_Are_Equal_Facility

>
void Partial_Map_1<D_Item, R_Item, D_R_Pair, Stack,

D_Item_Are_Equal_Facility>::
Undefine (

Partial_Map_1& m,
D_Item& d,
D_Item& d_copy,
R_Item& r

)
{
   OBJECT Stack catalyst;
   OBJECT D_R_Pair p;

   Pop_Until_Passed (m.rep, catalyst, d);
   Stack::Pop (catalyst, p);
   Combine (m.rep, catalyst);
   d_copy &= p.d;
   r &= p.r;
}

// Similarly for Pop_Until_Passed, Combine, constructor, destructor,
// operation &=, Undefine_Any_One, Is_Defined, and Size
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Figure 10:  C++ Class Template (and One Routine Body) for Realization

“Unordered_Stack_Fixed” for Partial_Map_Template

#include "Standard_Boolean.h"
#include "Standard_Integer.h"
#include "Stack_1.h"
#include "Partial_Map_1.h"

template <
class D_Item,
class R_Item,
class D_Item_Are_Equal_Facility

>
class Partial_Map_2
{

public:

Partial_Map_2 ();
~Partial_Map_2 ();
void operator &= (

Partial_Map_2& rhs
);

static void Define (
Partial_Map_2& m,
D_Item& d,
R_Item& r

);
static void Undefine (

Partial_Map_2& m,
D_Item& d,
D_Item& d_copy,
R_Item& r

);
static void Undefine_Any_One (

Partial_Map_2& m,
D_Item& d,
R_Item& r

);
static Boolean Is_Defined (

Partial_Map_2& m,
D_Item& d

);
static Integer Size (

Partial_Map_2& m,
);

private:

   Partial_Map_2 (Partial_Map_2 s);
   Partial_Map_2& operator = (const Partial_Map_2& rhs);
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   struct D_R_Pair
   {

D_Item d;
      R_Item r;
      void operator &= (D_R_Pair& lhs, D_R_Pair& rhs)
      {
    lhs.d &= rhs.d;

lhs.r &= rhs.r;
}

   };

   FACILITY_AND_TYPE Stack_1<D_R_Pair> Stack;
   FACILITY_AND_TYPE Partial_Map_1 <D_Item, R_Item, D_R_Pair,

Stack, D_Item_Are_Equal_Facility> Partial_Map;

   OBJECT Partial_Map rep;
};

/////////////////////////////////////////////////////////////////////

template <
class D_Item,
class R_Item,
class D_Item_Are_Equal_Facility

>
void Partial_Map_2<D_Item, R_Item, D_Item_Are_Equal_Facility>::
Undefine (

Partial_Map_2& m,
D_Item& d,
D_Item& d_copy,
R_Item& r

)
{
   Partial_Map::Undefine (m.rep, d, d_copy, r);
}

// Similarly for constructor, destructor, operation &=, Define,
// Undefine_Any_One, Is_Defined, and Size

3.  Conclusion

There is little difference for a RESOLVE programmer between the RESOLVE/Ada and
the RESOLVE/C++ disciplines.  Both are relatively cumbersome compared to
programming in the RESOLVE realization language, and both disciplines probably seem
awkward to typical Ada and C++ programmers as well.  But after a short time it is easy to
feel somewhat comfortable using either one, especially with support from tools such as
rapp.

We plan to extend these tools in several ways.  One direction that seems attractive is to
generate Ada and/or C++ code from RESOLVE code.  This approach permits us to
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reason about program correctness in RESOLVE itself, factoring off the problem of
correct code generation.

We have used the (manual) RESOLVE/Ada discipline to develop a significant
component library and some classroom-complexity applications.  Major parts of the
discipline have been taught in CS2 at three different institutions, in three upper-division
undergraduate/graduate courses at two different institutions, and in two TRI-Ada full-day
tutorials.  From this experience we are confident that the discipline is sound and that it
can be used to develop non-trivial Ada components and applications that use them.  The
impact of Ada9X additions and changes remains to be investigated, as do various
performance-related questions such as the effects of inlining in conjunction with heavy
use of generics.

We have used one version of the RESOLVE/C++ discipline to develop a less extensive
but still quite practical component library, and this also has been used to develop
classroom-level applications.  This version is being used to build a commercial software
package for Windows — a realistic task that is more ambitious than the ones for which
we have used the RESOLVE/Ada discipline.  We hope to be able to report on the results
of this effort in the future.  The RESOLVE/C++ discipline has not been well-tested in the
classroom yet, nor have the alternative versions been fully explored.  So our future plans
include investigating the relative advantages of these variants, teaching one or more of
them, and exploring the same kinds of performance-related questions as for Ada.

The power and flexibility of Ada and C++ language constructs — just the positive
attributes that let us shoehorn most of RESOLVE into these languages — must be
harnessed in order to achieve modular reasoning about program behavior.  Apparently,
programming in what seems like a straight jacket is the price you need to pay for the
invaluable ability to reason modularly about software components written in these
languages.  At least, we know of no published alternative styles that accomplish this.


