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A realization module is a RESOLVE unit containing code that implements the behavior
of an associated conceptual module.  The purpose of this paper is to explain realization
modules, assuming that you have read the companion paper [Part II] explaining
conceptual modules.

The organization is as follows.  First we present some example realization modules with
little elaboration.  Then we discuss many aspects of realization modules in general, using
the examples for illustration.  Finally, we give an overview of the basis for modular
verification of the correctness of realizations.  The focus throughout is on the software
component engineering rationale for some slightly unusual language features.

1.  A Partial Taxonomy of Realizations (With Examples)

The simple examples in Figures 1–6 include most features of RESOLVE realization
modules.  Ada and C++ counterparts for pieces of these examples are provided in a
companion paper [Part IV] and also are available on-line.  You can consider the Ada/C++
versions to be the code we would generate if Ada/C++ were the target language of a
RESOLVE compiler; or, in the absence of a RESOLVE compiler, you can consider these
as the recommended Ada/C++ code to write when observing the RESOLVE discipline.
By comparing Ada/C++ to RESOLVE code you should be able to understand the aspects
of realization modules that we do not discuss explicitly in this paper.

While reading the examples, keep in mind that realization modules have several
important properties that we do not discuss further:

• There can be many realization modules for each conceptual module.

• Each realization module comes in two parts: a realization header that contains
information that a client needs to know in order to use the realization; and a
realization body that contains everything else.  A client sees only the header.

• The context of a realization header automatically includes that of the conceptual
module it claims to implement, and the context of a realization body additionally
includes that of the realization header.
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• A realization module contains enough information to prove that it correctly
implements the associated concept.  There is no need to know anything else about
the client that might use it.  It therefore contains, for example, various formal
assertions that are not required in most other languages.

The examples have been chosen in part to illustrate the two main categories that we
suggest as the primary dimension for organizing RESOLVE realizations:

• A fully-parameterized realization —  Figures 1–5 depict fully-parameterized
realizations, i.e., ones in which all realization context that can be parametric
actually is parametric.  Figures 1–3 deal with variations on Stack_Template [Part
II].  Figures 4 and 5 show two variants of an implementation of Partial_Map_-
Template [Part II] using Stacks — an unusual but illustrative example that is easy
to explain because we already have seen specifications for the concepts involved.
The key thing to note about these realizations is that all types and operations used
in the code are parameters to the concept or to the realization.  This gives a client
potentially great flexibility in choosing a performance profile for exported
operations, but also encumbers him or her with great responsibility for selecting the
“right” realizations for facility parameters [Sitaraman 92b].

• A partial instantiation of another realization — Figure 6 shows a second (closely
related) implementation of Partial_Map_Template that is less general than the ones
in Figures 4 and 5, but easier for a client to instantiate.  The technique used here is
to create a wrapper for a fully-parameterized realization, fixing some or all of the
latter’s realization parameters so a client does not have to do it.

We recommend that a mature component library should contain a fully-parameterized
realization for each implementation strategy (i.e., for each major decision about data
representations and algorithms).  It also should contain some partial instantiations of that
realization that meet the most common needs of clients, especially for use in early
development of large systems before detailed performance concerns dominate the
process.  When performance tuning becomes more important, it is easy to create new
partial instantiations that have different performance characteristics and to plug and
unplug functionally identical realizations, with only local changes in a few declarations.

You can organize realizations along orthogonal dimensions, too, making it easy for a
client to find the right implementation of a concept for the circumstances.  For example,
in order to facilitate modular testing and debugging we recommend constructing a
layered “checking” realization (which reports precondition violations) and a layered
“display” operation (which outputs a human-readable mathematical model value for an
ADT) for each kernel concept.  Details of these suggestions are beyond the scope of this
paper but are covered elsewhere [Hollingsworth 92b].

We now briefly introduce the realization module examples.  Figure 1 gives an obvious
layered implementation for Stack_Top_Capability, which exports an operation to return a
copy of the top Item of a Stack.  The RESOLVE discipline suggests that this should not
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be a primary operation [Part II], and the example shows why: It is easy to implement it by
layering, gaining significantly in reusability while incurring at most a small constant
factor performance penalty.  Figure 2 gives another example of this kind.  The highlight
here is that a single piece of code can be instantiated in so many different ways, each of
which copies a Stack from one representation to another.  A related concept (not shown
here) “converts” a Stack from any representation to any other by consuming, not
preserving, the first argument of the exported operation.  A single implementation of this
concept does all the work of what would seem to require at least linearly, if not
quadratically, many separate translators in a traditional approach [Sitaraman 92a].

The realizations in Figures 1 and 2 apparently have the same name: “Obvious”.  In fact,
the names are “Obvious (for) Stack_Top_Capability” and “Obvious (for) Stack_-
Replica_Capability” because each realization module is associated with a concept that it
purports to implement correctly.  (It is a separate matter to verify that this claim holds.)

Figure 1:  One Realization for Stack_Top_Capability

realization header Obvious for Stack_Top_Capability

context

parametric context

operation Replica (
preserves x: Item

): Item
ensures Replica = x

end Obvious

realization body Obvious for Stack_Top_Capability

interface

operation Top (
preserves s: Stack

): Item
context

variables
x, x_copy: Item

begin
Pop (s, x)
x_copy := Replica (x)
Push (s, x_copy)
return x

end Top

end Obvious
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Figure 2:  One Realization for Stack_Replica_Capability

realization header Obvious for Stack_Replica_Capability

context

parametric context

operation Replica (
preserves x: Item

): Item
ensures Replica = x

end Obvious

realization body Obvious for Stack_Replica_Capability

context

global context

mathematics STRING_REVERSE_MACHINERY

local context

math facility STRING_REVERSE_FACILITY is
STRING_REVERSE_MACHINERY (math[Item])

interface

operation Replica (
preserves s: Stack_Facility_1.Stack

): Stack_Facility_2.Stack
context

variables
s_copy, catalyst: Stack_Facility_2.Stack
x, x_copy: Item

begin
loop maintaining

REVERSE (catalyst) * s = REVERSE (#catalyst) * #s
while Length (s) > 0 do

Pop (s, x)
Push (catalyst, x)

end loop
loop maintaining

REVERSE (catalyst) * s = REVERSE (#catalyst) * #s  and
s_copy = s

while Length (catalyst) > 0 do
Pop (catalyst, x)
x_copy := Replica (x)
Push (s, x)
Push (s_copy, x_copy)

end loop
return s_copy

end Replica

end Obvious
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Figure 3 shows the simplest way to realize Replicable_Stack_Template, which is
specified as an enhancement of Stack_Template [Part II].  Here, a client has to supply as
realization parameters instances of Stack_Template and Stack_Replica_Capability, and
this realization simply re-exports their interfaces.  At first glance, there is apparently little
“value added” when such a concept — whose interface is specified to be simply a
combination of other interfaces — is implemented by bundling together realizations of
those interfaces.  But the fact that Stack_Facility and Stack_Replica_Facility are
realization parameters defers to the client the decision of which realizations of
Stack_Template and Stack_Replica_Capability to use.  This feature gives a client great
performance flexibility.

Still, in the bundled realization there is no way for a client to avoid linear-time
performance of the Replica operation for Stacks.  It is beyond the scope of this paper to
explain how, but we note that it is possible to implement Replicable_Stack_Template
“from scratch” (i.e., without using existing realizations of Stack_Template or
Stack_Replica_Capability) so that all exported operations run in constant time.  Such a
realization would look more like Figure 4, since the interface would not use re-exporting.

Figure 3: One Realization for Replicable_Stack_Template

realization header Bundled for Replicable_Stack_Template

context

parametric context

facility Stack_Facility is Stack_Template (Item)

facility Stack_Replica_Facility is Stack_Replica_Capability
(Item, Stack_Facility, Stack_Facility)

end Bundled

realization body Bundled for Replicable_Stack_Template

interface

re-exports

Stack_Facility
Stack_Replica_Facility

end Bundled
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Figure 4 shows how you might implement Partial_Map_Template [Part II] by
representing a Partial_Map as a Stack.  While this realization is suboptimal from the
performance standpoint, it is straightforward but not trivial and it does help illustrate
most of the remaining aspects of realization modules.  It also emphasizes a very
important point: Other more traditional realizations (e.g., hashing and binary search trees)
clearly would require different realization parameters (e.g., a hash operation and a
comparison operation for D_Items, respectively) [Sitaraman 92a].  Careful separation of
specification and implementation demands separate parameterization of concepts and
realizations because different implementation strategies have different needs for
additional client-supplied information.

This example also involves non-trivial local context, including some mathematical
machinery [Heym 94a] and two local operations.  In order to understand this realization,
in  addition to what you know from the companion paper on specifying concepts [Part II]
you need to know that OCCURS_COUNT(s,x) is the number of occurrences of entry x in
string s; REVERSE (s) is the string consisting of the entries of s in reverse order; and
ELEMENTS(s) is the set containing the entries occurring in string s.

Figure 4:  A Fully-Parameterized Realization of Partial_Map_Template

realization header Unordered_Stack for Partial_Map_Template

context

global context

concept Record2_Template
concept Stack_Template

parametric context

facility D_R_Pair_Facility is Record2_Template (D_Item, R_Item)

facility Stack_Facility is Stack_Template (Record2)

operation Are_Equal (
d1: D_Item
d2: D_Item): Boolean

ensures Are_Equal  iff  d1 = d2

end Unordered_Stack

realization body Unordered_Stack for Partial_Map_Template

context

global context
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mathematics STRING_OCCURS_COUNT_MACHINERY
mathematics STRING_REVERSE_MACHINERY
mathematics STRING_ELEMENTS_MACHINERY

local context

renaming
Record2 as D_R_Pair
field1 as domain_value
field2 as range_value

math facility STRING_OCCURS_COUNT_FACILITY is
STRING_OCCURS_COUNT_MACHINERY (math[D_R_Pair])

math facility STRING_REVERSE_FACILITY is
STRING_REVERSE_MACHINERY (math[D_R_Pair])

math facility STRING_ELEMENTS_FACILITY is
STRING_ELEMENTS_MACHINERY (math[D_R_Pair])

math operation CONTAINS (
s: string of math[D_R_Pair]
d: math[D_Item])

): boolean
definition CONTAINS (s, d)  iff

there exists r: math[R_Item]
(OCCURS_COUNT (s, (d,r)) > 0)

math operation CONTAINS_AS_FIRST_ENTRY (
s: string of math[D_R_Pair]
d: math[D_Item])

): boolean
definition CONTAINS_AS_FIRST_ENTRY (s, d)  iff

there exists r: math[R_Item],
t: string of math[D_R_Pair] (s = <(d,r)> * t))

operation Pop_Until_Passed (
alters s1: Stack
alters s2: Stack
preserves d: D_Item

)
requires s2 = empty_string
ensures REVERSE (s2) * s1 = #s1  and

(if s2 = empty_string
 then not CONTAINS (s1, d)
 else CONTAINS_AS_FIRST_ENTRY (s2, d))

context
variables

found: Boolean
p: D_R_Pair

begin
loop maintaining

not CONTAINS (s2, d)  and
REVERSE (s2) * s1 = REVERSE (#s2) * #s1

if Length (s1) = 0
then



8

s1 :=: s2
exit

end if
Pop (s1, p)
found := Are_Equal (p.domain_value, d)
Push (s2, p)
if found

then
exit

end if
end loop

end Pop_Until_Passed

operation Combine (
alters s1: Stack
consumes s2: Stack

)
ensures s1 = REVERSE (#s2) * #s1
context

variables
p: D_R_Pair

begin
loop maintaining

REVERSE (s2) * s1 = REVERSE (#s2) * #s1
while Length (s2) > 0 do

Pop (s2, p)
Push (s1, p)

end loop
end Combine

interface

type Partial_Map is represented by Stack
convention for all d: math[D_Item], r: math[R_Item]

(OCCURS_COUNT (m.rep, (d,r)) <= 1)
correspondence m = ELEMENTS (m.rep)

operation Define (
alters m: Partial_Map
consumes d: D_Item
consumes r: R_Item

)
begin

Push (m.rep, (d, r))
end Define

operation Undefine (
alters m: Partial_Map
preserves d: D_Item
produces d_copy: D_Item
produces r: R_Item

)
context

variables
catalyst: Stack

begin



9

Pop_Until_Passed (m.rep, catalyst, d)
Pop (catalyst, (d_copy, r))
Combine (m.rep, catalyst)

end Undefine

operation Undefine_Any_One (
alters m: Partial_Map
produces d: D_Item
produces r: R_Item

)
begin

Pop (m.rep, (d, r))
end Undefine_Any_One

operation Is_Defined (
preserves m: Partial_Map
preserves d: D_Item

): Boolean
context

variables
catalyst: Stack
defined: Boolean

begin
Pop_Until_Passed (m.rep, catalyst, d)
if Length (catalyst) > 0

then
Combine (m.rep, catalyst)
defined := true

end if
return defined

end Is_Defined

operation Size (
preserves m: Partial_Map

): Integer
begin

return Length (m.rep)
end Size

end Unordered_Stack

A client of the realization in Figure 4 must instantiate Record_2_Template and
Stack_Template (in a certain way) before instantiating realization Unordered_Stack for
Partial_Map_Template.  The parametric context section of the realization explains what
must be done, but it seems odd that the client should have to instantiate components used
in the bowels of the representation.  The apparent reason for this decision is to give the
client performance flexibility.

But this flexibility is available even if the client just selects appropriate realizations of
Record_2_Template and Stack_Template and leaves their use in instantiation to the
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implementer of Unordered_Stack [Sitaraman 92b].  In RESOLVE, this can be described
by changing the realization as shown in Figure 5.

Although we prefer the approach of Figure 5 for many reasons, our current component
library uses the approach of Figure 4 because it can be directly translated into Ada or
C++ code [Part IV].  These languages have no counterpart for an uninstantiated
realization as a realization parameter.

Figure 5:  Alternate Fully-Parameterized Realization of Partial_Map_Template

realization header Unordered_Stack_Alt for Partial_Map_Template

context

global context

concept Record2_Template
concept Stack_Template

parametric context

realization Record2_Realization for Record2_Template

realization Stack_Realization for Stack_Template

operation Are_Equal (
d1: D_Item
d2: D_Item): Boolean

ensures Are_Equal  iff  d1 = d2

end Unordered_Stack_Alt

realization body Unordered_Stack_Alt for Partial_Map_Template

context

...

local context

facility D_R_Pair_Facility is Record2_Template (D_Item, R_Item)
realized by Record2_Realization

facility Stack_Facility is Stack_Template (Record2)
realized by Stack_Realization

...
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Figure 6 shows the fully parameterized Unordered_Stack realization of Figure 4 wrapped
inside a new realization module that has as little parametric context as possible.

Figure 6:  Partial Instantiation of Unordered_Stack

realization header Unordered_Stack_Fixed for Partial_Map_Template

context

parametric context

operation Are_Equal (
d1: D_Item
d2: D_Item): Boolean

ensures Are_Equal  iff  d1 = d2

end Unordered_Stack_Fixed

realization body Unordered_Stack_Fixed for Partial_Map_Template

context

global context

concept Record2_Template
concept Stack_Template
realization Standard for Record2_Template
realization List for Stack_Template
realization Unordered_Stack for Partial_Map_Template

local context

facility D_R_Pair_Facility is Record2_Template (D_Item, R_Item)
realized by Standard

facility Stack_Facility is Stack_Template (Record2)
realized by List

facility Partial_Map_Facility is Partial_Map_Template
(D_Item, R_Item)

realized by Unordered_Stack
(D_R_Pair_Facility, Stack_Facility, Are_Equal)

interface

re-exports

Partial_Map_Facility

end Unordered_Stack_Fixed
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For obvious reasons, this approach to realization is called partial instantiation.  By
comparing the realization header of Figure 6 to those of Figures 4 and 5, you can see that
the fully parameterized versions ask a client to supply either instances or realizations of
Record2_Template and Stack_Template.  With partial instantiation the implementer
selects these realizations and declares instances in the local context section of the
realization body.  This trades client flexibility in tuning performance for simplified client
instantiation.

Clearly, you can create similar partially instantiated versions of Unordered_Stack in
which only one of the two facility parameters is fixed.  In general, if there are k facility
parameters to a fully parameterized realization module, there are 2k – 1 partial
instantiations of this kind, and for each of these there are as many choices for the
realizations of the fixed facilities as there are different realizations of those concepts.  So
even in a component library with only two or three major implementation variants for
each concept, the combined power of layering and fully parameterized realizations leads
to a combinatorially large number of performance profiles even for a single realization of
a single concept [Sitaraman 92b].  This is one reason that we do not immediately concede
the need for libraries of thousands of vaguely related components.  Our components are
organized by concept, by realization style (fully parameterized or partial instantiation),
and along the other orthogonal realization dimensions mentioned earlier.  This relatively
small library of carefully designed components stands in place of a huge library of
components that might be built without heavy use of layering or fully parameterized
realizations.

2.  Realization Headers

Now we present most of the syntax for realization modules, with the help of some of the
non-terminal symbols and the conventions followed in the companion paper [Part II] and
a supporting report on mathematical foundations [Heym 94a].  Accompanying discussion
centers on the need for and use of the most important features in disciplined software
component engineering.

We begin with realization headers.  As noted previously, every realization module is
physically divided into two parts.1  The realization header may contain only a context
section that adds to the context of the concept it implements.  The context section itself
does not appear if there is no additional parametric context:

1 The fine structure of realization modules surely will change in future versions of RESOLVE.
For example, there might be more than one realization body for each realization header, and there might
be a new kind of module between concepts and realizations to contain non-functional (e.g.,
performance) specifications [Sitaraman 94].  Details of these revisions need to be worked out carefully
in order to retain the modularity-of-reasoning property.
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<realization_header> ::=
realization header <realization_module_id>

for  <conceptual_module_id>
[<realization_header_context_section>]

end <realization_module_id>

The realization header includes information that a client of a realization must know in
order to instantiate it, and nothing else.  Specifically, it lists all additional formal
parameters to the realization and additional context (e.g., mathematical machinery)
needed to explain them to a client.  All remaining information beyond what is in the
associated concept belongs in the realization body; see Section 3.

A realization header can add three different kinds of context: global, parametric, and
local; but it must have parametric context:

<realization_header_context_section> ::=
context

[<concept_global_context_section>]
<realization_header_parametric_context_section>
[<realization_header_local_context_section>]

Global context serves the same role as in conceptual modules, and in realization headers
it has the same syntax and semantics as for concepts.  The need for and use of global
context is illustrated in Figures 4 and 5, where the parametric context includes instances
or just realizations of two concepts (Record2_Template and Stack_Template) that are not
in the conceptual context of Partial_Map_Template — because they have nothing to do
with explaining its functionality.

Record2_Template takes as parameters two types, called Item1 and Item2.  Their
mathematical models are the math types of two fields called field1 and field2 in the tuple
that models exported type Record2.  The use of instances of Record2_Template in the
realization body involves special syntax as a matter of convenience (as explained further
in Section  3.2.3), but this special nature is not seen in the realization header.

Parametric context is a bit different from that of conceptual modules because a realization
can ask a client to provide slightly different information than is needed for a concept.
There are five kinds of parameters to realization modules: (program) constants, (program)
facilities, and math operations as in conceptual modules, and now additionally (program)
operations and realizations:
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<realization_header_parametric_context_section> ::=
parametric context

<realization_header_parameter_sequence>
[<concept_parametric_context_restriction>]

<realization_header_parameter> ::=
<concept_constant_parameter> |
<concept_facility_parameter> |
<concept_math_operation_parameter> |
<realization_header_operation_parameter> |
<realization_header_realization_parameter>

<realization_header_operation_parameter> ::=
<operation_declaration>

<realization_header_realization_parameter> ::=
realization <realization_id> for <concept_id>

Constant, facility, and math operation parameters are the same as for conceptual modules,
and the restriction clause is also identical.  Types need not be allowed as realization
parameters because the only possible uses for additional types in a realization body
demand that particular operations should be available for them.  Additional types used in
realizations, therefore, come from facilities that are parameters to the realization or that
are locally declared in the realization body.  These facilities export the needed operations
along with their types.

The new kind of formal parameter to realizations is the operation parameter, the use of
which is demonstrated in Figures 1, 2, 4, and 5.  In each example, the realization needs to
invoke an operation which does not appear in the concept (where it is not needed to
explain functionality) and which cannot be declared locally within the realization.
Therefore, it must be supplied by a client as a parameter.

Local context for realization headers also is a restricted version of that for concepts, in
that it may not contain facility declarations:

<realization_header_local_context_section> ::=
local context

<realization_header_local_context_item_sequence>

<realization_header_local_context_item> ::=
<math_subtype_declaration> |
<math_operation_header_declaration> |
<math_operation_definition_declaration>

Local context in realization headers is not illustrated in the examples.  However, it can be
used to declare additional mathematical machinery involved in pre- and postconditions
for operation parameters, and for stating restrictions on parametric context.
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3.  Realization Bodies

The realization body contains the remainder of the realization module:

<realization_body> ::=
realization body <realization_module_id>

for  <conceptual_module_id>
[<realization_body_context_section>]
realization_body_interface_section

end <realization_module_id>

In addition to an optional context section, a correct realization body has an interface
section that declares a representation for each type exported by the concept it claims to
implement, a code body for each operation exported by that concept, and no more.

3.1.  Context

The context section of a realization body may introduce additional global and local
context — but not parametric context, which must be in the realization header:

<realization_body_context_section> ::=
context

[<realization_body_global_context_section>]
[<realization_body_local_context_section>]

3.1.1.  Global Context

Global context is just as it is for concepts and realization headers, with one addition:

<realization_body_global_context_section> ::=
global context

[<realization_body_global_context_item_sequence>]

<realization_body_global_context_item> ::=
<concept_global_context_item> |
realization <realization_id> for <concept_id>

The context of a realization body, unlike that of a concept, may include other realizations
so complete facility declarations can be made locally, as explained in the next section.
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3.1.2.  Local Context

Local context also is similar to that for concepts, but again a bit more complex.  Besides
additional mathematical machinery, the local context section of a realization body may
rename types and operations; and it may declare instances of concepts with specific
realizations, local (unexported) operations, and/or module-level state information:

<realization_body_local_context_section> ::=
local context

[<realization_body_local_context_item_sequence>]
[<realization_body_local_context_state_variables_section>]

<realization_body_local_context_item> ::=
<math_subtype_declaration> |
<math_operation_definition_declaration> |
<concept_renaming_section> |
<realization_body_facility_declaration> |
<realization_body_local_operation_declaration>

The mathematical local context items are discussed elsewhere [Heym 94a], as is
renaming [Part II].  The only difference here is that the renaming of types and operations
in the local context section applies only within the realization body, and does not affect
the interface.

One major difference between local context in conceptual modules and in realization
bodies involves the declaration of facilities.  In the conceptual world, where only abstract
behavior matters, a facility is an abstract instance that is defined by fixing the parameters
of a concept.  In the realization world, you must complete such a facility declaration by
selecting some realization for that concept and fixing the realization’s parameters:

<realization_body_facility_declaration> ::=
facility <facility_id> is <conceptual_module_id>

[(<concept_facility_argument_list>)]
realized by <realization_module_id>

[(<realization_facility_argument_list>)]

In fully parameterized realizations, you do not declare facilities in the local context
section because all facilities needed are declared by the client.  For partial instantiations
of fully parameterized realizations (and for some other realizations), you do need to make
facility declarations as part of local context.

The second new kind of local context in realization bodies is the local operation, i.e., an
operation that is not exported as part of the interface but that simplifies coding of the
exported operations:
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<realization_body_local_operation_declaration> ::=
<operation_declaration>

[<operation_body_context>]
begin

<statement_sequence>
end <operation_id>

<operation_body_context> ::=
context

[<realization_body_facility_declaration_sequence>]
[variables

<variable_declaration_sequence>]

<variable_declaration> ::=
<variable_id> : <type_id>

The context section of an operation may contain declarations of facilities and/or
variables, whose scope is local to the operation and whose lifetime is the duration of the
operation’s execution.  The examples only illustrate local variables, not local facilities.

Figure 4 shows a couple local operations.  These and all other local operations should
satisfy two conditions:

• A local operation has a formal behavioral specification.

• A local operation may not include code that involves variables of any type
exported by the module (but it may, of course, involve variables of their
representation types).

The reason for the first condition should be clear.  The reason for the second is more
subtle.  Each exported type has what we call a representation “convention”; others call
this a “representation invariant” or “class invariant”.  The convention for a type is
required to hold only at the beginning and end of every primary operation for that type —
not necessarily during execution of such an operation.  The correctness of
implementations of the primary operations is based on so-called “data type induction” in
which the convention is shown to hold following initialization, and is shown to hold at
the end of each primary operation given that it holds at the beginning.  Now suppose a
local operation were to try to do something to a variable of an exported type as though it
were abstract.  It would have to do so by invoking a primary operation since these are the
only operations available for the exported type at this point.  A primary operation is
known to work correctly only if the convention holds when it is called.  But the local
operation can be called from within the body of a primary operation, and at the time of a
call the convention might not hold for variables of an exported type that are parameters to
the local operation.  (There also are module-level conventions, discussed below, which
further complicate matters.)
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It is possible to build a modular proof system that handles internal calls to exported
operations, thereby (apparently) giving an implementer greater “freedom”.  Our
experience suggests, however, that an outright ban on such poor practices — even if they
can be dealt with in principle — eliminates many hard-to-find bugs.  This kind of
syntactic check (which, as it turns out, is always easy to live with) is especially helpful in
the absence of a mechanical verifier that embodies a sophisticated proof system.

The last kind of local context declaration involves module-level state variables.  These
are similar to conceptual state variables, except that they are programming and not
mathematical objects:

<realization_body_local_context_state_variables_section> ::=
state variables

<realization_body_local_context_state_variable_sequence>
[convention <assertion>]
[correspondence <assertion>]

<realization_body_local_context_state_variable> ::=
<variable_id> : <type_id>

Each instance of a realization module with state variables has its own set of them.  These
variables are accessible both to local and to exported operations but are, of course, not
visible outside the module.

The convention and correspondence clauses are used to characterize the relationship
between the realization module’s state variables and the associated conceptual module’s
state variables.  However, even if the concept has no state variables, the realization may
still have some.  A typical case involves shared storage among variables of an exported
type [Ernst 94].  Conventions and correspondences for types, which are similar, are
covered in Section 3.2.2.

The possibility of module-level state variables raises the issue of facility initialization,
and (because facilities can be declared within operations, i.e., in dynamic scopes) facility
finalization.  Initialization of state variables to initial values of their types is automatic.  If
any additional processing is needed to get module-level state variables to a desired initial
configuration, this code is supplied in an interface operation called “Initialize_Facility”
which has no parameters.  Similarly, in the relatively rare case that finalization requires
extra processing before finalization of the state variables, it is done in an operation called
“Finalize_Facility”.  A typical realization body contains neither of these operations.

3.2.  Interface Section

The interface section of a realization body defines representations for exported types and
code bodies for exported operations:
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<realization_body_interface_section> ::=
interface

[re-exports
<concept_re-exported_item_sequence>]

[<realization_body_interface_item_sequence>]

<realization_body_interface_item> ::=
<type_representation_declaration> |
<realization_body_exported_operation_declaration>

3.2.1.  Re-exported Interfaces

RESOLVE lets you re-export from a realization R the entire interface implementation of
any facility that appears in R’s global, parametric, or local context.  Figure 5 illustrates
the use of this feature in creating a partial instantiation.

As for concepts, you may rename any type or operation when re-exporting it, but the
examples do not illustrate this.  Renaming allows construction of very simple alternate
“views” of concepts by making the by-name connection between types and operations in
a concept and realization slightly more flexible.  However, there is no shorthand method
for changing any other part of an interface when re-exporting it.  For example, suppose
you have an instance of a concept C that exports part of the interface needed from
realization R — except that the names of the operations are not identical.  This problem
can be solved by renaming.  But if the order of operands for one of C’s operations needs
to be reversed, then renaming cannot be used.  The only way to achieve the desired result
is to write trivial wrapper operations in R, each of which calls through to the appropriate
operation from C.  The potential problems here can be minimized by adopting library-
wide conventions, as we have done, but we are considering language extensions that
would solve this minor problem as a side-effect of dealing with other limitations related
to “common interface models” for components [Edwards 93, Edwards 94].

3.2.2.  Types

The representation of each exported programming type is another program type that is in
the context of the realization body:

<type_representation_declaration> ::=
type <type_id> is represented by <type_id>

[convention <assertion>]
correspondence <assertion>
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In Figure 4, for example, the type Partial_Map is represented as a Stack of Records
whose fields are of type D_Item and R_Item.  The representation type is built up, level by
level, using facility declarations in the realization header and/or body context section.

It seems it would be convenient to have built-in type constructors (especially records),
but this would introduce several complications, too.  In particular, the uniformity seen in
fully parameterized realizations such as in Figure 4 would be lost.  And little would be
gained, because the real economy of having built-in records comes in the use of compact
record field extraction notation, not in record declaration and naming.  So RESOLVE
includes special syntax for extracting record fields (see Section 3.2.3), just as there is
special syntax for expressions involving the special scalar types Boolean, Character, and
Integer [Part II].  But the language contains no built-in array or pointer type constructors
at all.  These capabilities are provided by concepts that have no special status whatsoever
among all reusable abstract components [Hollingsworth 92a, Hollingsworth 92b].

In order to reason about the correctness of ADT representation, you must define a relation
between the (mathematical model of the) representation type and the mathematical model
used in the exported type’s specification.  This relation is, in general, partial; i.e., certain
configurations of the representation might never arise and, if they did, would have no
abstract counterparts.  The convention clause describes the domain of this relation, i.e.,
it characterizes the allowable representation states.  The correspondence clause
characterizes the relation between representation and conceptual values, given that the
convention holds.

In Figure 4, for example, the convention says that no (D_Item, R_Item) pair occurs more
than once in the Stack that represents a Partial_Map value.  The correspondence says that
the pairs in the set modeling a Partial_Map value are exactly those appearing in the Stack
that represents it.  A Stack is treated as a string in these assertions because that is its
mathematical model.

When a variable of type T is declared in a client program, T’s representation (say, of type
T′) is automatically initialized.  If an initial value of type T′ does not represent an initial
value of type T according to the convention and correspondence, then the realization
exporting type T must describe the additional processing that is required upon variable
initialization.  To do this, you write an operation called “Initialize” which has one
parameter of type T and whose functional specification is the initialization clause
from the concept’s declaration of T.  Similarly, if you need to do anything before the
representation of a variable of type T is finalized, this must be done in an operation called
“Finalize” which also has one parameter of type T.

3.2.3.  Operations

The executable statements in an operation body are similar to the standard constructs of
other imperative languages, with the exceptions briefly elaborated below:
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<statement> ::=
<swap> |
<function_assignment> |
<procedure_operation_call> |
<selection> |
<loop>

<swap> ::=
<variable_id> :=: <variable_id>

<function_assignment> ::=
<variable_id> := <function_operation_call>

<loop> ::=
loop maintaining <assertion>

<loop_statement>
end loop

Both calls to procedural operations and selection statements are treated as in conventional
imperative languages, and are not discussed further.  The swap statement is rarely seen in
other languages but should not be surprising in RESOLVE because the “swapping
paradigm” is the basis for our designs [Harms 91].

The first significant difference here involves assignment statements, which are called
“function assignment statements” [Harms 91] because of their restricted form.  In
RESOLVE, the right-hand side of an assignment must be an invocation of a functional
procedure (or an expression involving the special scalar types, which is just shorthand for
such an invocation).  In most other languages, copying is assumed to be available for
every type, and if it is not then the compiler simply copies the representation type.  This
approach is a disaster for modular reasoning [Harms 91].  So copying is not assumed to
be available for all types in RESOLVE; swapping is.  The special scalar types such as
Integer are really no different.  When you write “x := y” (you may for convenience) you
really mean “x := Replica (y)”.  The compiler simply knows how to copy the standard
representations of the special scalar types, and they can be copied inexpensively, so no
performance or other problem arises from making this small concession to convenience at
the apparent expense of uniformity.

The second noticeable difference is in loops, where every specific kind of loop (while
loop, general exit loop, etc.) is enclosed within a loop block that includes a syntactic
slot, the maintaining clause, for the loop invariant.

There is one other convenience feature that is not evident from the syntax at this level of
description, but which is illustrated in the examples.  For each possible number of fields
N of a record (e.g., two), the RESOLVE library in principle includes a concept (e.g.,
Record2_Template) that exports a type (e.g., Record2) whose model is a tuple with N
components.  These concepts are declared as needed in global context and instantiated
like other concepts.
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For each component of a Record type (e.g., field1, whose type is math[Item1]) there is
an associated operation that swaps it with a variable of the appropriate type, e.g.:

operation Swap_Field1 (
alters r: Record2
alters x: Item1

)
ensures r.field1 = #x  and  x = #r.field1  and

r.field2 = #r.field2

The pervasiveness of records in typical data representations only amplifies the annoyance
of accessing each field by swapping it into a simple variable, modifying that variable, and
then swapping back.  There is no danger — from the standpoint of modular reasoning or
otherwise — in using ordinary “dot” notation for record field extraction in executable
statements, just as it is used in other programming languages and in RESOLVE assertions
for tuple component extraction.  So you may use r.f (for field f of record r) anywhere a
variable might appear.  It is straightforward to translate this mechanically into calls to
Swap_Field operations as needed.

It might seem odd that we should comment on this at all.  But unfortunately, when
programming in the RESOLVE/Ada discipline without any support tools [Part IV], you
have to use Swap_Field calls to access record fields!  In the RESOLVE/C++ discipline,
on the other hand, you can use dot notation if you are careful to follow the other aspects
of the discipline.

4.  Verification of Realizations

Writing a correct realization module is just part of the work involved in creating a
certified concrete component.  Before it can be confidently (re)used, a realization must be
shown to conform to its specification.  The potential for modular formal verification of
correctness of realizations is a central objective of the RESOLVE framework, discipline,
and language [Part I, Hollingsworth 92b, Weide 94a].

We emphasize that we do not intend — in the short term at least — that every RESOLVE
realization must be formally verified before being placed in a component library, because
mechanical discovery of formal proofs even for rather simple components is beyond
current theorem proving technology.  So a sound and rigorous informal argument,
perhaps presented in a code review and augmented by systematic testing for added
comfort, is a good temporary substitute for complete formality.  However, we do intend
that every realization in principle should be formally verifiable because the existence of a
sound and rigorous informal argument is predicated on the existence of a formal proof of
comparable length and complexity.  In other words, if we can’t mechanically discover a
formal proof of correctness for a correct component, then the problem is not due to
deficiencies in our components or in our programming style.



23

4.1.  Modular Reasoning

Achieving modular proof-of-correctness (which is tantamount to modular reasoning
about program behavior) means that:

(1) A programmer using an abstract component can reason about its functional
behavior in a client program independently of the concrete components
implementing that abstract component.

(2) A programmer developing a concrete component to implement an abstract
component can reason about its functional correctness independently of the client
programs using that concrete component.

For this approach to succeed, an abstract component must be considered to define a
contract between implementer and client.  It must state precisely all the responsibilities
and guarantees of both parties.  For example, the client programmer must make sure that
every call to an operation occurs when that operation’s precondition holds, and the
implementer must make sure that every exported operation eventually returns in a state
satisfying the postcondition of that operation.  In RESOLVE as in other verification
systems, such proof obligations are raised in the client program and the realization body.

The first problem to be addressed is that many programming practices involving
operation calls — repeated arguments to calls, use of global variables as arguments to
calls, aliased pointers and array references, and a variety of other more-or-less subtle
problems — can thwart modularity [Hollingsworth 92b, Weide 93, Weide 94a].  Much of
this territory has been mapped out in work involving Hoare-style systems, which have
typically considered statement-level verification and modular verification across calls
[Weide 93].  In RESOLVE, the offending practices are syntactically outlawed or simply
cannot arise.  (In Ada and C++, the discipline — not the compiler — “outlaws” them.)

Most of the RESOLVE work has focused on relatively uncharted areas of modular
verification of parameterized components and component composition.  Some of the
most interesting barriers to modularity arise from these more advanced constructs.  For
example, in the RESOLVE framework a client instantiates a component before using it.
This involves fixing conceptual parameters and fixing realization parameters.  The claim
that a concrete component implements an abstract component makes sense only if the
client fixes these parameters in accordance with the restrictions stated in the parametric
context sections of the concept and the realization header — which is why these
restrictions are stated formally in RESOLVE.  For example, in Figure 1 (one realization
for a Top operation for Stacks) consider a client that passes for the formal “Replica”
operation an operation which has the proper parameter profile, but which doesn’t copy an
Item.  Then surely a proof that the code in the realization body correctly implements the
Top operation is worthless — that’s not at all what the code actually does in such a case.
Instantiation, then, raises a proof obligation in the client program.
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The key result of modular verification is simple and important: Once a concrete
component is verified to be correct, it is guaranteed to be correct forever.  If you put it in
a component library and use it over and over again, the per-use cost of this proof
(however expensive it is initially) becomes negligible.  Contrast this with a proof system
that requires reverification for each use of a component and the primary benefit of
modular verification is clear.

We have developed a proof system that includes verification rules for all RESOLVE
constructs.  Details of various pieces of this system, which are beyond the scope of this
paper, can be found in various places [Krone 88, Ernst 91, Ernst 94, Heym 94b].

4.2.  Semantics

The denotational semantics for RESOLVE are based on a rich structured space that
includes models of the same ideas as those in the proof system: mappings from identifiers
to (generic) abstract and concrete components and their instances in order to record
“declaration meanings” arising during compilation and instantiation; the usual variable-
to-value mappings in order to denote the usual effects of execution; and a very important
bit called the assert status.  Proofs of soundness and (relative) completeness are
conceptually straightforward but still distressingly intricate.  This section provides an
overview of the metatheory.

The foremost implication of doing modular verification in a RESOLVE-like framework
is the requirement for a different definition of validity (correctness).  It is not possible to
conclude that a concrete component is valid even if an instance of it produces correct
outputs for all executions.  To see why, consider a concrete component R that uses an
abstract component C.  Suppose that there is an implementation of C where each
operation satisfies its postconditions even when the corresponding preconditions are not
met.  If R uses this implementation of C and violates some of the preconditions, it may
still be valid under a usual definition if it meets its specification.  However, if an
alternative implementation is used for C — one that behaves in an unspecified way when
its operations’ preconditions are violated — then R will not be valid.  (Similarly, an
invalid implementation of C may make R invalid.)  In other words, the usual definition of
validity depends on which implementation of C is used.  Modular verification requires
that validity be based only on the specifications of reused components.

The semantic space, therefore, includes an assert status which allows us to capture an
appropriately modified notion of validity for declarations and operation execution.
Initially the assert status is neutral (NL).  It may become categorically false (CF) when,
for example, a parameter to a facility instantiation does not satisfy the stated context
restrictions, or when the precondition of a called operation is violated, or when the code
for a local or exported operation does not satisfy its postcondition.  It may become
vacuously true (VT) when a called operation violates its postcondition. Once the assert
status becomes CF or VT, it remains that way for the rest of a declaration and/or
operation execution.  A declaration or concrete operation is valid whenever the assert
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status, starting from NL, does not end up CF; and a concrete component is valid
whenever all its declarations and operations are valid [Krone 88, Ernst 94].

Operation implementation semantics are also different in RESOLVE, partly because
operations may be specified to compute relations rather than functions (as with
Undefine_Any_One in Partial_Map_Template [Part II]).  In the absence of non-
determinism arising from the language, it might seem that any particular implementation
of an operation with a relational specification should actually compute a function that
agrees with the given relation.  But an operation’s implementation might be layered on
other operations with relational specifications [Ernst 94], and representations of certain
data abstractions may involve relational correspondences.  Furthermore, in specifying
most optimization problems, choice is inherent in the problem statement — there are
many possible correct answers for the same input [Weide 94c].  Another situation
involves the non-determinism that potentially can be introduced by data abstraction itself
[Ernst 94]. The semantics and modular proof rules must deal with these cases.

4.3.  Soundness, Expressiveness, and Relative Completeness

Proving that a realization is correct is a syntax-directed process that effectively converts
some program-like text — the realization, along with the specification it purports to
implement and the specifications of concepts it uses — into a mathematical assertion.
The idea is that if the assertion holds, then the program is valid; if not, the program still
might execute correctly but you should not trust it to do so.  (The latter case might arise,
for example, if a loop invariant is too weak.)

Given these notions, establishing soundness and relative completeness of the proof
system essentially involves showing that each rule used to carry out an incremental step
in the program-to-assertion transformation preserves validity in both directions.

While soundness is an essential requirement of any proof system, relative completeness is
also important.  With respect to the execution-time aspect of performance, for example, it
implies the ability to demonstrate tightest possible bounds.  The RESOLVE proof system
is only “relatively” complete because the specification language includes theories for
which there is no complete deduction system.  “Relative” means that the proof system
itself does not introduce any incompleteness.

5.  Conclusion

The RESOLVE realization language, at the level of executable statements, is not much
different from other modern imperative languages.  However, at the level of constructs
needed for effective software component engineering, RESOLVE is unusual in many
respects.  The most significant are support for multiple implementations of a single
concept, separate parameterization of realizations, separation of realization header from
realization body, and syntactic slots for assertions needed in program proofs.
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Parts of the RESOLVE proof system that handle shared realizations [Ernst 94] and
preliminary work on extensions to handle performance verification in a modular fashion
[Krone 93, Sitaraman 94] show the difficulties involved in dealing with modern
programming language features in a modular way.  This is ironic in a sense because these
features were introduced largely to permit modular design and programming.  In general
they are almost too powerful, leaving the software engineer with too many choices and
little guidance.  It is little wonder, then, that most programs using these features do not
satisfy all the technical conditions under which modular reasoning is possible.  One of the
key contributions of the formal methods portion of the RESOLVE work is the translation
of technical results from formal methods into programming language syntax, principles,
and guidelines that can be applied by practicing software engineers to improve their
design and coding habits.


