® Instead of viewing
algorithms as single large

operations, the authors use a
machine-oriented view to show
how they can be viewed as
collections of smaller objects and
operations. Their approach
promises more flexibility,
especially in making
performance trade-offs, and
encourages black-box reuse. They
tllustrate it with a sample design
of a graph algorithm.

Recasting
Algorithms
to Encourage

Reuse

Bruce W. WEIDE and WiLLIAM F. OGDEN,

Ohio State University

MURALI SITARAMAN, West Virginia University

1l large software
systems are built from components of
some kind. A typical modern software
component is a module, which usually
encapsulates an abstract data type.
The data type, in turn, hides the
details of both concrete data structures
and the algorithms that implement
operations to manipulate the abstract
data type’s variables.

Reusable software components are
just modules that have been carefully
designed to be useful in several pro-
grams, even unanticipated ones.! We
focus here on two types of flexibility
— functional and performance — that
make components reusable. We also
advocate a systematic black-box style
of reuse, in which designers use com-
ponents without source-code modifi-
cation. This contrasts to a haphazard

opportunistic style in which designers
scavenge old code for interesting tid-
bits to reshape.

We recommend black-box reuse
because the real value of reused code
lies in its properties, such as correct-
ness with respect to an abstract specifi-
cation. If you make even small struc-
tural or environmental changes, the
confidence in these properties tends to
evaporate, and with it most of the
component’s value.

In this article we show how to
design an entire category of more flex-
ible black-box reusable software com-
ponents by applying a general design
technique that “recasts” algorithms as
objects. To illustrate the technique,
we recast a sorting algorithm and a
spanning-forest algorithm into
objects.

80

0740-7459/94/304.00 © 1984 IEEE

SEPTEMBER 1994

RECASTING FOR FLEXIBILITY

Conventional object-oriented
design treats application-specific enti-
ties as objects and application-specific
actions as operations on those objects.
Many of these operations change the
objects a great deal. Because they are
implemented as single operations, they
involve algorithms that manipulate
complex data structures extensively.

The recasting technique we pro-
pose is a refinement of object-oriented
design — it turns a single large-effect
operation into an object by regarding
it as a machine that performs the
action. This effectively replaces one
operation with an entire module. The
module defines an abstract data type
— which records the machine state —
and several operations — each of
which has a smaller effect. One of
these smaller effect operations might
supply input to the machine, for exam-
ple; another might return results. This
kind of design has greater functional
flexibility — the component can be
readily adapted to provide good solu-
tions to any problem requiring its gen-
eral services. A design that uses smaller
effect operations does two things.
First, it provides a finer grain of con-
trol. Second, it gives implementers the
opportunity to offer more performance
flexibility — they can substitute alter-
native implementations of an abstract
component by making trade-offs
among individual operations. This
changes the component’s performance
characteristics but retains the same
functional behavior.

Recasting works for two reasons:

¢ Component designers can orga-
nize data processing along one of two
dimensions: The usual object-structure
dimension relates items according to
their explicit representation as data
objects using arrays, records, lists,
trees, and so on. Our recasting
approach adds a temporal dimension,
which relates items by the time they
appear in a program.

¢ It takes advantage of the widely
recognized fact that an abstract behav-

ior specification does not prescribe
bow behavior is to be realized. In fact,
module specification hides the knowl-
edge of both how and when computa-
tions actually take place.

When you design a component to
use large-effect operations, you are
confining yourself primarily to the
object-structure dimension. You miss
the opportunity to use the temporal
dimension as a data organizer and so
preclude some potentially efficient
implementations of the
desired abstract behavior.
Once you realize you can
amortize the cost of an
algorithm among several
operations in the module
and retain the same func-
tionality, you gain tre-
mendous flexibility. You
can use precomputation,
batch computation, de-
ferred computation, and
related data-structuring
and algorithm-design
techniques.? This gives
various options to applications (like on-
line and real-time systems) that
demand that individual operations
exhibit certain constrained perfor-
mance profiles in addition to — or
even instead of — optimal performance
for an entire operation sequence.

SAMPLE DESIGN PROBLEM

To explore the nature and benefits
of recasting single large-effect opera-
tions as objects, we present a tradition-
al design problem and show how the
usual design is flawed from the view-
point of reusability. The design prob-
lem is to implement part of a circuit-
layout tool: Given an output terminal
and a set of input terminals to which it
must connect, determine how the terminals
should be wired together in a net that
minimizes total wire length.

The key to attacking this problem
is an abstract mathematical model. In
this case, we can reuse well-developed
ideas from the algorithms community:

THE MACHINE
MODEL LETS
DESIGNERS
TUNE HOW A
COMPONENT
PERFORMS,
NOT WHAT

IT DOES.

The required layout is a minimum
spanning tree of an edge-weighted
graph — a subset of the graph’s edges
that connect its vertices with a mini-
mum total weight. The vertices are the
terminals to be connected, and the
edges are weighted by the lengths of
wire required to connect correspond-
ing terminal pairs.

Whether you use a traditional func-
tional design approach modified to
embrace information-hiding prin-
ciples® or a conventional
object-oriented design
approach, a typical solu-
tion might be

L. Find the abstractions
to be encapsulated in mod-
ules, identify their opera-
tions, and specify interface
bebavior. Here you
encapsulate the graph
abstraction in a module
and identify both opera-
tions sufficient for con-
structing a circuit model
and implementing an op-
eration, Find_MST, to compute the
graph’s minimum spanning tree.

2. Implement the graph module and its
associated operations. You might use any
of the many textbook graph represen-
tations.>*

3. Write a client program that uses the
graph module and Find MST to

¢ construct a graph g that models the
portion of the civcust for which a net tis to
be selected and

¢ find a subgraph t of g that is a min-
imun spanning tree of g.

The graph module should be
reusable in this and in other applica-
tions — if you carefully design it to be
reused and not just to support finding
minimum spanning trees. However,
this design is fundamentally flawed
from the standpoint of reusability and
maintainability. The Find_MST oper-
ation is a single large-effect operation.
It can be recast to make the task of
finding a minimum spanning tree a
separate object, offering the program-
mer who may want to reuse it a design
that is more flexible.

IEEE SOFTWARE

81

Maintenance change. To illustrate,
what happens when the users of this
layout tool request “minor” changes
after it is in the field? For example,
suppose the total required wire length
cannot exceed a certain
bound or the output ter-
minal’s electrical features
must be adjusted to han-
dle a heavy load. This in
turn might re-quire
changing some ter-
minal locations, until the
net’s total wire length
is within the required
bound. At that point,
you can use the original
net-selection operation
to finish the job. Thus, you must now
add the subtask

¢ Determine if the total wire length of
a net exceeds a given bound.

This operation must be invoked
repeatedly, with different graphs and
bounds before a net can be selected;
something the original code did in one
invocation of the net-selection opera-
tion.

You can easily solve the bounds-
checking problem by adding a step to
the third part of the original solution:

¢ Determine if the total edge weight of
t exceeds the given bound.

Unfortunately, this change causes
users to complain of poor performance
for some nets — and you find that
changing the graph module or the
Find_MST operation does not signifi-
cantly improve the situation. How can
you tune performance?

There is no easy solution to this
problem because the decision to design
Find_MST as a single operation has
limited its functional and performance
flexibility. Consequently, you must
break into the Find_MST code to
tune performance — eschewing black-
box reuse and all its advantages.

Sorting algorithm. Suppose for the
moment you are satisfied with the
original net-selection program design.
You might continue by refining the
implementation of the Find_MST

operation, which eventually should
lead to something like textbook code.>*
Here’s what might happen along the

way.
First, you must choose a method for
finding a graph’s min-

imum spanning tree.

CONVENTIONAL The one we describe
DESIGN FORCES
DEVELOPERS TO
’PEEK UNDER THE joining subsets of ver-
COVERS’ TO TUNE
A COMPONENT.

here is Kruskal’s algo-
rithm,> * a greedy
algorithm that com-
bines smaller trees

tices. This set of trees
is called a spanning
forest. To build it, the
algorithm starts with
an empty set of edges,
T (a spanning forest in which each ver-
tex is connected only to itself), looks at
the edges of the graph, E, in nonde-
creasing order of edge weight, and
adds a candidate edge to T if that edge
does not form a cycle with those
already in 7. If the original graph is
connected by E then T eventually con-
tains a single tree, which is a2 minimum
spanning tree. Otherwise, T eventually
contains a minimum spanning forest of
the original graph.

Because Kruskal’s algorithm exam-
ines the edges in nondecreasing order
of edge weight, it might be best to look
at the problem in terms of sorting:

Given a list of items and some ordering
relation on them, organize the list into
nondecreasing order (where “smallest”
describes the first item).

You might call a procedure from
the body of Find_MST:

procedure Sort_List
(e_list: edge_list)

to sort the edges in e_1list (the edges
of the graph) into nondecreasing order
of edge weight.

Because Kruskal’s algorithm can
terminate when it discovers a mini-
mum spanning tree, you might not
have to examine many edges. This
suggests a variant of sorting in which
the problem is to enumerate the #
smallest of z items in nondecreasing
order. Unfortunately, in this case it is

hard to capture this behavior in a sin-
gle procedure because k is not pre-
dictable in advance — you don’t know
how many edges Kruskal’s algorithm
will need to examine before it termi-
nates.

So you must separate the (partial)
sorting problem into two phases:

1. Construct a data structure contain-
ing the set of edges that are to be examined
in sorted order.

2. Incrementally deliver one edge at a
time to Kruskal’s algorithm, on demand,
until it needs mo more edges to form a
minimum spanning tree.

In some textbook implementations
of Kruskal’s algorithm,* this is essen-
tially how things work. Phase 1 con-
sists of creating a heap data structure
containing the edges, and phase 2
involves removing edges one at a time
from the heap. The heap organization
guarantees that the edges come out in
nondecreasing order of edge weight.

This design makes it possible to
have reasonable overall runtime for
Find_MST because it lets you pre-
compute a sorted order during phase
1, during the transition between phas-
es 1 and 2, during phase 2, or during
any of these, spreading the work
around. Most important, it does not
need to take as much time to get to
phase 2 as it would if the algorithm
sorted all the edges. So, if Kruskal’s
algorithm terminates before examining
all the edges, the total time spent on
the (partial) sorting can be substantial-
ly less than with the single Sort_List
operation.

David Parnas’ famous KWIC
(“keyword in context”) example notes
the advantage of breaking up sorting
into slightly smaller chunks of func-
tionality.” However, to our knowledge
this basic idea has neither been touted
as being as general as it is nor been
further developed and systematically
applied to the design of reusable com-
ponents. Twenty years after Parnas’
paper, object-oriented component
libraries still encapsulate data struc-
tures as objects and algorithms as sin-
gle operations.

82

SEPTEMBER 1894

RECASTING SORTING

To solve the sorting variation in the
Find_MST operation and produce a
highly reusable software component,
you must recast sorting as an object.
Our recasting approach is based on a
machine-oriented-design paradigm, in
which you begin by viewing sorting as
a machine that puts things of type Item
into a sorted order. In this case, Item
is a graph edge that you want to sort by
the usual less-than-or-equal-to order on
edge weights. But the module might as
well be generic so it can be used with
other Ttems and other orderings.

Sorting machine duta type. Imagine a

sorting machine that accepts items to
be sorted, one at a time, then dispens-
es items, one at a time, in sorted
order. In many applications, you must
insert all the Items before extracting
the first one. There are two distinct
phases: an insertion phase and an
extraction phase.

Our encapsulation of a sorting
machine into a module exports an
abstract data type, Sorting_Machine
_State, which records a machine
state, and six operations. (Here, m is of
type Sorting_Machine State and x
is of type Item).

¢ Change_To_Insertion_
Phase (m) : Prepare m for calls to the
Insert operation. This operation
requires that m be in the extraction
phase at the time of the call.

¢ Insert (m,x): Insert x into m.
This operation requires that m be in the
insertion phase at the time of the call.

¢ Change_To_Extraction_
Phase (m) : Prepare m for calls to the
Extract operation. This operation
requires that m be in the insertion
phase at the time of the call.

¢ Extract (m,x) : Extract a small-
est (remaining) Item from m, return-
ing it in x. This operation requires
that m be in the extraction phase at the
time of the call.

¢ Size (m): Return the number of
Itemsinm.

¢ Is_In_TInsertion_Phase(m):

" a particular kind in any

Test if m is in the insertion phase.

Figure 1 shows the specification for
this machine in Resolve.”’

Intuitively, you may think of the col-
lection of jtems in a sorting machine as
a set, but this has two problems: First,
sets have no duplicate elements,
although you should be able to sort
even with duplicate items. Second, sets
have no intrinsic order among their
elements. Using a multiset or bag
(INVENTORY_FUNCTION in Figure 1)
solves the first problem. You can
address the ordering problem by spec-
ifying the Extract operation so that
it selects, from among those items
remaining, one that is smallest with
respect to the desired ordering.

Functional flexibility. The Sorting_
Machine_Template component is
functionally more flexible than a sin-
gle Sort_List operation. If you
must sort all items in a collection and
want a procedure like Sort_List,
you can layer it on top of Sorting_
Machine_Template. But if you
must find only the % smallest items, or
remove items until some condition is
met, then you can stop after partial
sorting.

This design has other advantages.
For example, single
large-effect operations
such as Sort_List
must operate on a par-
ticular data structure (it
may be concrete or
abstract, but it must be

case). In Sort_List,
this structure is a list. If
a program doesn’t hap-
pen to have its data in
list form, it must trans-
late it into that form.
Sorting_Machine_
Template requires
neither the source nor destination of
the data to be a particular data struc-
ture or even the same kind of struc-
ture. For example, if you must get
items from an input device and put
them into a sorted list, you can easily

IN OUR DESIGN,
NEITHER THE
DATA’S SOURCE
NOR ITS
DESTINATION
MUST BE A
CERTAIN DATA
STRUCTURE.

layer code on Sorting_Machine_
Template to do this.

Performance flexibility. The improved
performance flexibility of Sorting_
Machine_Template over Sort_
List comes from recognizing a key
point: The abstract specification of
functionality is not a prescription for
how data structures are represented or
when sorting actually takes place. Of
course you can achieve the specified
behavior by representing Sorting_
Machine_State as a list of items
and a Boolean phase flag. And you can
implement the Insert operation by
adding a new Item anywhere in the
list; the Change_To_Extrac-
tion_Phase operation by toggling
the phase flag; and the Extract
operation by searching for, removing,
and returning the smallest Item in
the list.

But there are many other imple-
mentation strategies with different
performance profiles:

¢ During each call to Insert,
maintain the list in sorted order.

Duringhange_To_Extrac-
tion_Phase, sort the list explicitly
using any sorting algorithm.

¢ Represent a Sorting_Machine_
State using a binary
search tree or a heap or
any other data struc-
ture, in each case facing
similar choices for what
each operation should
do to that structure.
You can precompute to
any extent during each
Insert operation;
batch process during
Change_To_Extrac-
tion_Phase; defer
work as long as poss-
ible until an Extract
operation requires it; or
amortize the effort among these oper-
ations in other ways.

A good choice for a minimum-span-
ning-tree application is to embed heap-
sort so that Change_To_Extrac-
tion_Phase creates a heap but does

|IEEE SOFTWARE

83

not sort the items. The fact that sort-
ing is a two-phase operation makes this
implementation possible. And some
secondary operations (like finding a
smallest Ttem or a kth smallest Item)
run faster with this implementation
than with one that sorts everything in

Change_To_Extraction_Phase.

RECASTING FIND_MST

Returning to the original net-selec-
tion problem, note the parallels

between our variation of sorting and a

minimum-spanning-tree algorithm.
Once you realize that you may not

have to sort all items, you can prof-

itably recast sorting as an object. The

same applies to obtaining edges. If you
don’t need to obtain all the edges of a

concept Sorting_Machine_Template
context

global context
Standard_Boolean_Facility
Standard_Integer_Facility

parametric context
type Item
math operation ARE_ORDEF.. D (
x: math([Item]
y: math(Iten]
) : boolean
restriction(* ARE_ORDERED is a total
pre-ordering *)

local context -
math subtype INVENTORY_FUNCTION is
function from math{Item] to integer
exemplar f
constraint for all x: math[Item]
(£(x) >= 0
math operation EMPTY_INVENTORY:
INVENTORY_FUNCTION
definition for all x: math{Item]
(EMPTY_INVENTORY (x) = 0)
math operation IS_FIRST (
f: INVENTORY_FUNCTION
x: math{Item]
)
definition f(x) > 0 and
for all y: math[Item] where
ARE_ORDERED (y, x) and
not ARE_ORDERED (x, y)
(fly) = 0)
interface
type Sorting_Machine_State 1s modeled by
(
count: INVENTORY_FUNCTION
insertion_phase: boolean
)
exemplar m
initialization

ensures m = (EMPTY_INVENTORY, true)

operation Change_To_Insertion_Phase (
alters m:
Sorting Machine State
)

requires not m.insertion_phase
ensures m = (EMPTY_INVENTORY, true)
operation Insert (
alters m:
Sorting_Machine_State
consumes x: Item
)
requires m.insertion_phase
ensures differ (m.count, #m.count,
{#x}) and
m.count (#x) = #m.count (#x)
+1 and

m.insertion_phase
operation Change_To_Extraction_Phase (

alters m: Sorting_Machine_State
)
requires m.insertion_phase
ensures m = (#m.count, false)
operation Extract (
alters m:
Sorting_Machine_State
produces x: Item
)
requires m.count /= EMPTY_INVENTORY

and not m.insertion_phase

IS_FIRST (#m.count, x) and

differ (m.count, #m.count,
{x}) and

m.count (x) = #m.count (x)
-1 and

not m.insertion_phase

operation Size (

ensures

preserves m: Sorting_Machine_State
): Integer
ensures Size = sum x:math[Item]

(m.count (x))
operation Is_In_Insertion_Phase (
preserves m:
i Sorting_Machine_State
): Boolean

ensures Is_In_Insertion_Phase iff

Figure 1. Specification of a sorting-machine concept.

84

SEPTEMBER 1894

concept Spanning_Forest_Machine_Template
context
global context

Standard_Boolean_Facility
Standard_Integer_Facility

parametric context

constant max_vertex: Integer
restriction max_vertex > 0

local context

math subtype EDGE is (
vl: integer
v2: integer
w: integer
)
exemplar e
constraint 1 <= e.vl <=
1 <= e.v2 <=
e.w > 0
math subtype GRAPH is set

max_vertex and
max_vertex and

of EDGE

math operation IS_MSF (
msf: GRAPH
g: GRAPH
}: boolean
definition (* true iff msf is an
MSF of g *)
interface
type Spanning_Forest_Machine_State
is modeled by (
edges: GRAPH
insertion_phase: boolean
)

exemplar m
initialization
ensures m = (empty_set, true)

operation Change_To_Insertion_Phase (

alters m: Spanning_Forest_Machine_
State
)
requires not m.insertion_phase
ensures m = (empty_ set, true)

operation Insert (

alters m: Spanning_Forest_Machine_
State

consumes vi: Integer

consumes v2: Integer

consumes w: Integer

)

requires m.insertion_phase and
1 <= vl <= max_vertex and °
1 <= v2 <= max_vertex and
w > 0
ensures IS_MSF (m.edges,
#m.edges union
{(#vl, #v2, #w)}) and

m. insertion_phase

operation Change_To_Extraction_Phase (

alters m:Spanning_Forest_
Machine_State
)
requires m.insertion_phase
ensures m = (#m.edges, false)

operation Extract (

alters m:Spanning_Forest_
Machine_State
produces vl: Integer
produces v2: Integer
produces w: Integer
)
requires m.edges /= empty_set and
not m.insertion_phase
ensures (vl, v2, w) is in

#m.edges and :
m = {#m.edges without
{(vl, v2, w)}, false)

operation Size |

preserves m:Spanning_Forest_
Machine_State
): Integer
ensures Size = m.edges

operation Is_In_Insertion_Phase (
preserves
m:Spanning_Forest_
Machine_State
) : Bcolean
ensures [s_In_Insertion_Phase
m.insertion_phase

iff

end Spanning_ orest_Machine_Template

Figure 2. Specification of a spanning-forest-machine concept.

minimum spanning tree, you can prof-
itably recast this operation as an
object.

Two phases. Imagine a spanning-
forest machine that accepts weighted
edges of a graph, one at a time, then
dispenses the edges of a minimum
spanning forest, one at a time. (We
call this a spanning-forest machine,
not a spanning-tree machine, because
the original graph might not be con-
nected by its edges. In the net-selec-

tion application the graph presumably
is connected and everything will work
fine. But the specification is easier,
implementations are essentially the
same, and the component is more
reusable if the machine can find the
minimum spanning forests of uncon-
nected graphs, too.)

Should a spanning-forest machine
have two phases? The same factors
that influenced the design of Sort-
ing_Machine_Template suggest that
it should have. But there is also anoth-

er reason. Given the way a minimum
spanning forest is defined, it doesn’t
make much sense to ask for the next
edge in a graph that is changing as you
extract its edges. Edges previously
extracted could be made erroneous as
new edges are inserted. This addition-
al reason supports the logic behind
making this a two-phase machine.
How you define a spanning-forest
machine is important. It is best to
explain it as an “organizer” machine:
The Insert operation promises to

IEEE SOFTWARE

85

realization Kruskal_ Amortized

for Spanning_Forest_Machine_Template
‘ context
‘1 global context

parametric context

‘ local context
| type Edge is record
vertexl: Integer
vertex2: Integer
weight: Integer
end record
facility Sorting_Machine Facility is
Sorting_Machine_Template
i (Edge, EDGES_ARE_ORDERED)
i realized by Heapsort_Embedding (...)
| facility Coalesceable_Equivalence_
Relation_Facility is
Coalesceable_Equivalence_
Relation_Template (max_vertex)
realized by Disjoint_Set (...)
type Spanning_Forest_Machine_
State_Rep is record
graph_edges: Sorting Machine_State
are_connected: Coalesceable
Equivalence_Relation
num_spanning_edges: Integer
end record
interface
type Spanning_Forest_Machine_State
; is represented by
i Spanning_Forest_Machine_State_Rep
‘ convention (* rep invariant *)
correspondence (* representation-
abstraction relation *)

operation Change_To_Insertion_Phase (
alters m: Spanning_Forest_
Machine_State
)
new_rep: Spanning_Forest_Machine
State_Rep
begin
m.rep :=: new_rep
end Change_To_Insertion_Phase

operation Insert (

alters m: Spanning_ Forest_
Machine_State

consumesvl: Integer

consumesv2: Integer

consumesw: Integer
)
begin
if not Are_Equivalent
(m.rep.are_connected, vl, v2)
then
Make_Equivalent

(m.rep.are_connected, vl, v2)
m.rep.num_spanning_edges :=
m.rep.num_spanning edges + 1
end if
Insert (m.rep.graph_edges, (vl, v2, w))
end Insert

operation Change_To_Extraction_Phase (
alters m: Spamning Forest_
Machine_State
)
new_equivalence_relation:
Coalesceable_Equivalence_ Relation
begin
Change_To_Extraction_Phase
(m.rep.graph_edges)
m.rep.are_cornected :=:
new_ecuivalence_relation
end Change_To_Extraction_Phase

operation Extract (
alters m: Spanning_Forest_
Machine_State
produces v1l: Integer
produces v2: Integer
produces w: Integer
)
begin
loop
maintaining (* loop invariant *)
Excract (m.rep.graph_edges,
(Vi,v2,w))
if not Are Equivalent
m.rep.are_connected, vLv2)
then
Make_Equivalent
(m.rep.are_connected, vl, v2)
m.rep.num_spanning edges :=
m.rep.num spanning_edges -1
exit
end if
end loop
end Extract

operation Size (

preserves m: Sparning Forest_
Machine_State
) Integer
begin
return m.rep.nun_spanning_edges
end Size

operation Ts_Tn_Insertion_Phase (
preserves m: Spanning Forest
Machine_State
) : Boolean
begin
return Is_In_Insertion_Phase
m.rep.inserting
end Is_In Insertion_Phase
end Spanning_Forest_Machine Template

i Figure 3. An amortized-cost implementation of Spﬂnning_Fo7‘&\‘1‘;“/1[/]im’_Temp/ﬂre.

86

SEPTEMBER 1984

keep only edges that are part of a min-
imum spanning forest, and the
Extract operation simply removes
and returns some remaining ones, as
Figure 2 shows.

You can use the component in
Figure 2 to solve the original net-
selection problem with one Span-
ning_Forest Machine_State, m

while some edge of g is not
yet inserted into m do
let (vl, v2, w) be any edge
of g not yet inserted
into m
Insert {(m,
end while
Change_To_Extraction_Phase (m)
while Size (m) > 0 do
Extract (m, vl, v2, w)
record/report that (vl, v2,
w) is an edge of t
end while

vl, v2, w)

An interesting feature of this code is
that you can easily change the second
loop to find if a net’s total wire length
exceeds a given bound:

total_weight := 0
while (Size (m) > 0 and
total _weight <= bound) do
Extract (m, vl, v2, w)
total_weight :=
total_weight + w
end while
exceeds_bound :=
(total_weight > bound)

This change by itself is not particu-
larly easier or harder to make than for
the original design. But other ramifi-
cations of the new design are signifi-
cant. Now you can tune performance
without “peeking under the covers”
into Kruskal’s algorithm. All you
need to do is select an implemen-
tation that amortizes the costs of
Spanning_Forest_Machine_
Template so that the Insert
and Change_To_Extraction_Phase
operations don’t actually compute
a minimum spanning forest —
its almostall done in the Extract
operation.

Amortizing costs. Model-based formal
specifications do not favor any par-
ticular implementation and certainly

do not limit you to a single implemen-
tation. So, despite this specification’s
claim that Insert keeps only mini-
mum-spanning-forest edges, you are
free to amortize the cost of finding
a minimum spanning forest among
Insert, Change_To_Extraction_
Phase, and Extract in any
way that makes sense.

For example, you could
choose to do all the in-
teresting work during
Change_To_Extrac-
tion_Phase. To do so,
build a graph from the
inserted edges, use
Kruskal’s algorithm to
find 2 minimum spanning
forest, and save the span-
ning-forest edges in a
list (for example) from which they can
be dispensed during subsequent
Extract operations. This gives the
same performance as the original
solution, and it also means that you
pay for finding a minimum spanning
forest even if you don’t need to
extract all the edges — precisely the
performance problem raised by the
maintenance example.

Instead, your implementation
could defer computation until the
Extract operation, as Figure 3
shows. Represent a Spanning_For-
est_Machine_State (in part) with
a Sorting Machine_State whose
Item type is a record that contains
two vertices and a weight for a single
edge. The EDGES_ARE_ORDERED
relation is less-than-or-equal-to on the
weight field. Then call the Insert
operation on the Sorting_Machine_
State to add the new edge and call
the Change_To_Extraction_
Phase operation on the Sorting_
Machine_State to change the
phase of the Spanning_Forest_
Mechine State. Finally, keep calling
the Extract operation on the
Sorting Machine_State to get the
smallest remaining edge until you find
one that doesn’t form a cycle with the
previously extracted edges.

Besides its use of amortization, the

MACHINE-
ORIENTED
DESIGN IS
EASIER FOR
CLIENTS TO
UNDERSTAND.

code in Figure 3 is subtle in another
respect. It includes a Size operation,
which keeps a count of spanning-forest
edges without knowing which edges
are involved. This means you do not
have to compute the minimum span-
ning forest when Size is first called,
which would have unfor-
tunate performance con-
sequences!

To analyze the perfor-
mance of Figure 3, let » =
the number of edges in 7.
Insert (m,...) takes
O(1)time,and Change_
To_Extraction_Phase
(m) takes O(n) time. Ex-
tract (m,...) might
take only O(log #) time if
the smallest remaining
edge is an edge of a minimum spanning
forest. If not, it might take much longer,
but not more than O(z log) time.

On any given graph, both the origi-
nal implementation of the Find_
MST operation and its implementa-
tion layered on top of this real-
ization of Spanning_Forest_
Machine_Template use O(z log #)
time in the worst case. In summary,
there is no difference in performance
from the original net-selection prob-
lem. However, our recasting design
has a potentially significant perfor-
mance advantage over the convention-
al design for the bounds-checking
problem.

(Incidentally, Figure 3 also uses
a Coalesceable_Equivalence_
Relation type to solve the cycle-
detection problem, and you would
want to use it in Find_MST even if
you settled for the original design.
There are operations to make two
integers equivalent and to test if two
integers in a Coalesceable Equiva-
lence_Relation are equivalent, but
space prevents us from showing
the formal specification for this
component here. Suffice to say that an
efficient representation of Coalesce-
able_Eqguivalence_Relation
uses the textbook disjoint-set data
structure with path-compression?%)

IEEE SOFTWARE

87

c onventional reusable component design techniques —
even ones based on object-oriented principles —resultin
components that encapsulate data structures as objects and
algorithms as single operations. Separating data structures and
algorithms for this purpose is a false dichotomy. Algorithms
can and should be encapsulated as objects, just as data struc-
tures are. By following machine-oriented design principles,
you can achieve more of the functional and performance flexi-
bility potental of systematic component reuse. You also can
make your designs consistent and therefore easier for clients to
understand.

In principle, there are no limits in applying this approach. For
example, you could specify a “record-high” machine that reports
each largest item so far; an “eigenvalue” machine that dispenses
eigenvalues of a matrix in increasing order;® a “compression” or
“encryption” machine that works on a series of items.

There are several points to consider when you recast a single
large-effect operation as an object. First, try to develop a simple,

fully abstract, clearly explainable mathematical model for the
collection of items in the machine.*” Then consider if you can
settle for a two-phase machine. You probably should have a two-
phase version of every machine in the reusable component
library even if you can’t see the immediate need for it in a partic-
ular application. Often, implementations for two-phase
machines are easier and/or potentially more efficient than for
multiphase or phase-less machines.

Finally, consider which explanation style you should use to
specify the machine’s overall behavior by characterizing what it
apparently does during the insert, change-to-extraction, and
extract operations. What and when your machine does some-
thing will depend, in part, on which explanation is most under-
standable. You might just have to use trial and error before you
can judge which is best. But don’t worry too much about the ini-
tial cost of making these design decisions! If your component
is really reusable, the effort you spend on making a good
design choice will be amortized over many future uses.

ACKNOWLEDGMENTS

We thank Steve Edwards, Wayne Heym, Joe Hollingsworth, Tim Long,
Stu Zweben, and the anonymous JEEE Software referees for many helpful sug-
gestions. We also acknowledge the financial support for our research from the
National Science Foundation (Weide and Ogden are supported under grants
CCR-9111892 and CCR-9311702; Sitaraman is supported under grant CCR-
9204461); the Department of Defense’s Advanced Research Projects Agency
(Weide and Ogden are supported under contract F30602-93-C-0243, moni-
tored by the USAF Materiel Command, Rome Laboratories, ARPA order
A714; Sitaraman is supported under ARPA contract DAAH04-94-G-0002,
monitored by the US Army Research Office); and the National Aeronautics
and Space Administration (Sitaraman is supported under grant
7629/229/0824).

REFERENCES
1. B.W. Weide, W.F. Ogden, and S.H. Zweben, “Reusable Software
Components,” Advances in Computers Vol. 33, M.C. Yovits, ed., Academic

Press, New York, 1991, pp. 1-65.

2. T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms,
MIT Press, Cambridge, Mass., 1990.

3. D.L. Parnas, “On the Criteria to Be Used in Decomposing Systems Into
Modules,” Comm. ACM, Dec. 1972, pp. 1,053-1,058.

4. E. Horowitz and S. Sahni, Fundamentals of Data Structures, Computer
Science Press, Rockville, Md., 1976.

5. M. Sitaraman, L.R. Welch, and D.E. Harms, “On Specification of
Reusable Software Components,” Int’l §. of Software Eng. and Knowledge
Eng. June 1993, pp. 207-219.

6. B.W. Weide et al., “Design and Specification of Iterators Using the
Swapping Paradigm,” IEEE Trans. Software Eng., Aug. 1994.

7. Special feature on “Component-Based Software Using Resolve,” SIGSoft
Software Eng. Notes, Oct. 1994, to appear.

8. E.R. Davidson, “Monster Matrices: Their Eigenvalues and Eigenvectors,”
Computers in Physics, Sept./Oct. 1993, pp. 519-522.

Bruce W. Weide is an
associate professor of com-
puter and information sci-
ence at Ohio State Uni-
versity, and codirector of
the Reusable Software
Research Group with Bill
Ogden and Stu Zweben.
His research interests
include all aspects of soft-
ware component engineering, especially in applying
RSRG work to Ada and C++ practice.

Weide received a BS in electrical engineering
from the University of Toledo and a PhD in com-
puter science from Carnegie Mellon University.

He is 2 member of the IEEE, ACM, and Computer
Professionals for Social Responsibility.

William F. Ogden is an
associate professor of
computer and information
science at Ohio State
University, and codirector
of the Reusable Software
Research Group with
Bruce Weide and Stu
Zweben. His main
research interests are in
software reuse, software specification, and program
verification.

Ogden received a BS in mathematics from the
University of Arkansas and an MS and a PhD in
mathematics from Stanford University. He is a
member of the IEEE Computer Society and ACM.

Murali Sitaraman is on
the faculty of statistics and
computer science at West
Virginia University. His
research interests span all
areas of software compo-
nent construction includ-
ing design, formal specifi-
cation, and verification.

Sitaraman received an
ME in computer science from the Indian Institute
of Technology at Bangalore and a PhD in comput-
er and information science from Ohio State

Unijversity.

Address questions about this article to Weide at Ohio State University, Computer and Information Science Dept., Columbus, OH 43210; weide@cis.chio-state.edu.

88

SEPTEMBER 1994

