IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 1994 631

Design and Specification of Iterators

Using the Swapping Paradigm

Bruce W. Weide, Member, IEEE, Stephen H. Edwards, Douglas E. Harms, Member, IEEE, and
David Alex Lamb, Senior Member, IEEE

Abstract—How should iterators be abstracted and encapsulated
in modern imperative languages? We consider the combined
impact of several factors on this question: the need for a com-
mon interface model for user defined iterator abstractions, the
importance of formal methods in specifying such a model, and
problems involved in modular correctness proofs of iterator im-
plementations and clients. A series of iterator designs illustrates
the advantages of the swapping paradigm over the traditional
copying paradigm. Specifically, swapping based designs admit
more efficient implementations while offering relatively straight-
forward formal specifications and the potential for modular
reasoning about program behavior. The final proposed design
schema is a common interface model for an iterator for any
generic collection.

Index Terms—Common interface model, formal specification,
iterator, modular reasoning, program verification, proof of cor-
rectness, swapping

I. INTRODUCTION

N iterator is an abstraction that supports sequential
access to the individual items of a collection, without
modifying the collection. Although some “academic” lan-
guages (most notably Alphard [16] and CLU [13]) include
special language constructs for iterators, and others have
been proposed [3], the most widely used modem imperative
languages, such as Ada and C++, offer no special support
for iterators. In these languages, iterators must be designed
and encapsulated using the same mechanisms that are used
for other user-defined abstractions: types, procedures, and
packages/classes/modules. This paper discusses why previ-
ously published iterator designs are unsatisfactory in several
respects, and considers the combined impact of several recent
advances on the potential for improvement.
One such development is the proposal by Harms and Weide
{91, [19] that swapping should replace copying as the primary

Manuscript received August 12, 1992; revised March 1994. The work of
the first two authors was supported by the National Science Foundation under
Grants CCR-9111892 and CCR-9311702, and by the U.S. Department of
Defense Advanced Research Projects Agency (ARPA) under ARPA Contract
F30602-93-C-0243, monitored by the U.S. Air Force Material Command,
Rome Laboratories, ARPA Order A714. Recommended by M. Moriconi.

B. W. Weide and S. H. Edwards are with the Department of Computer and
Information Science, Ohio State University, Columbus, OH 43210 USA; e-
mail: weide@cis.ohio-state.edu, edwards@cis.ohio-state.edu.

D. E. Harms is with the Department of Mathematics and Computer Science,
Muskingum College, New Concord, OH 43762 USA; e-mail: harms @musk-
ingum.edu.

D. A. Lamb is with the Department of Computing and Information Science,
Queen’s University, Kingston, ON K7L 3N6 Canada; e-mail: dalamb@
qucis.queensu.ca.

IEEE Log Number 9403568.

data movement mechanism in imperative programs. In the
swapping style of programming, the usual assignment operator,
:=, disappears. (Of course, copying still can be achieved by
calling a procedure to do it.) The universal method of data
movement becomes the swap operator :=:, which exchanges
the values of its two operands. This subtle change leads to
several advantages for designing and implementing generic
reusable software components,-including improved efficiency
and simplified modular reasoning about program behavior. The
swapping paradigm is especially valuable when dealing with
potentially large and complex data structures that represent
collections of items—just the situation in which iterators are
normally used.

In other recent work, Edwards [4] proposes that the swap-
ping paradigm might be applied to the design and implemen-
tation of iterators. He also addresses a serious problem facing
software component designers, i.e., developing interface mod-
els that simplify component composition. Tracz [18] discusses
an example involving what Edwards [5], [6] notices is an itera-
tor. Edwards defines a common interface model informally (see
[7] for a formal treatment) as a convention, shared by designers
of piece-part families and their potential clients, for how the
plugs and sockets of plug-compatible software components
are supposed to work. It includes not only parameter profiles
of operations but also a shared understanding of the abstract
behavior of those operations.

A third recent development is the development of formal
trace specifications for iterators by Lamb [12] and by Pearce
and Lamb [15]. These papers clearly explain the need for, and
difficulties in, formal specification of iterators. Two related
aspects of this issue that must be faced when defining a
common interface model are, How should the abstract behavior
of an iterator be designed so that all relevant features can be
formally specified, and how can we use this specification to
reason about program behavior? Especially in a component-
based system, this reasoning must be modular; i.e., it must
be possible to reason about the correctness of the iterator
implementation independently of each client program, and vice
versa. The crucial importance of, and difficulties with, modular
verification of realistically large software systems in modern
languages with data abstraction are noted by Ernst et al. [8]
and Hollingsworth [10], among others.

Previous work on iteration over the elements of a composite
data structure, summarized nicely by Bishop [1], has not
considered together efficiency with respect to copying, the
need for formal specification of a common interface model,

0098-5589/94$04.00 © 1994 IEEE

632 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 1994

and the importance of modular reasoning about correctness in
the design of iterators. This paper therefore has the following
related obijectives:

1) To show how to design an iterator in the swapping par-
adigm, which permits a most-efficient implementation,
i.e., one that does not copy either items of the collection
or the collection’s representation data structure;

2) To give an abstract model-oriented specification of an
iterator for a particular abstract collection of items, so the
iterator’s abstract interface is clearly and unambiguously
defined;

3) To explain how this specification supports modular rea-
soning about the behavior of the iterator implementation
and its clients, and modular verification of programs
involving iterators; and

4) To demonstrate how the design can be generalized
to lead to similar iterators for any abstract collection,
thereby promoting composability of components.

This paper is, in effect, a proposal for a common interface
model for a large class of iterators. A superficial examination
of this model suggests that it is not much different from
previously published iterators. In fact, however, our designs
resemble others, primarily in having similar names for the
operations. The behavior of these operations—both in func-
tionality and performance—is subtly but importantly different.

Section II begins with a review of past work on iterators

and notes the problems with previous designs. We also review
the swapping paradigm and the RESOLVE notation for formal
specification, and introduce a simple example that forms the
basis for development of a simple iterator: a first-in, first-out
(FIFO) queue abstract data type (ADT). Section III explains,
step-by-step, how to arrive at the design of an acceptable
swapping-style iterator for this ADT. It addresses objectives
1)-3) above for each candidate design along the way. Finalily,
Section IV discusses variations and extensions, and shows how
the method used for the simple FIFO queue example can be
generalized to a schema for specifying iterators for arbitrary
collection types. All iterators designed using these principles
share a common interface model, which can serve as the basis
for interfaces exported by Ada generic packages and C++
class templates, among others. Example code for two typical
client operations is provided in the Appendix.

II. BACKGROUND

This section discusses the features required of an acceptable
iterator design, the rationale for limiting the discussion to
user-defined abstractions (as opposed to built-in language
constructs that support iterators), relevant details of the swap-
ping paradigm, and our approach to, and notation for, formal
specification. Throughout the discussion, we refer to the client
(respectively, “client program” or “client code”) and to the
implementer (respectively, “implementation™). The former is
the programmer (respectively, program) that uses the abstract
iterator concept. The latter is the programmer (respectively,
program) that realizes the iterator abstraction in the form of
an executable code.

A. lterators

The simplest kind of iterator permits a client program to
examine (i.e., to execute some piece of code for) eachof the
items of a collection without modifying the collection as a
side effect of iterating over it. The items are presented to the
client in some order that is based on the collection abstraction.
Examples include enumerating and accumulating information
about the items in a set, printing all the items in a tree, and
copying a FIFO queue. There is no natural order for iterating
over the elements of a set (any order will do), but there are
several useful presentation orders for trees and an obvious
natural order for a FIFO queue.

There are various more complex iterators and possible uses
for them. For example, we might wish to be able to exit early
from an iteration based on satisfaction of some condition, to
have some control over the order of iteration or to leave it
entirely unspecified and up to the implementer’s discretion; or
we might wish to change the original collection or its items
while iterating over it. We begin by considering the simplest
case described above, and discuss more complex cases in
Section IV. A review of past work suggests that there are
two subtle aspects of even the simplest iterators.

1) Correctness: It should not be permissible for a (correct)
client program to iterate over a collection while inter-
leaved operations on that collection might be changing
it. We call this property noninterference.

2) Efficiency: It should be possible for a client program to
iterate over a collection without copying the data struc-
ture that represents the collection and without copying
the individual items in the collection.’

Correctness: Recognition of the relationship between non-
interference and the modular verification of correctness dates
back to attempts to verify Alphard programs involving iterators
[16]. Programmers using one of Alphard’s iterator constructs
are advised to consider noninterference to be a restriction
on its use, but no formal proof obligation is raised during
verification. Proof rules should permit local verification of
an implementation and its client programs, but this cannot
be achieved without an assurance of noninterference, either
through restriction by language syntax or by the presence of a
noninterference proof obligation. Alphard, like other languages
with iterator constructs, offers neither.

In an attempt to deal with noninterference in user-defined
iterator abstractions, Booch.[2] and Bishop [1] suggest classi-
fying iterators into two categories, which Booch calls active
and passive. An active iterator is a module that exports
an iterator type and associated operations and permits a
client to build iteration loops with standard control constructs,
e.g., while loops. The main difficulty with this approach is
that such a loop body may also contain calls to operations
that manipulate the collection over which iteration is being
done; this is precisely the problem with Alphard’s and other
language-supplied iterator constructs. By contrast, a passive
iterator effectively encapsulates the iteration loop in a single

'n the special case that copying a collection is the purpose of iterating
over it, all copying should take place in the client code that is executed for
each item. Copying should not be inherent in the iterator itself.

WEIDE er af.: DESIGN AND SPECIFICATION OF ITERATORS USING SWAPPING PARADIGM 633

procedure, which is parameterized by an action that would
be the loop body in an iteration using an active iterator. The
argument is that in this case there is no (obvious) way for a
client to interleave operations that change the collection with
those iterating over it, because the latter are encapsulated in
the passive iterator procedure.

Unfortunately, passive iterators suffer from their own seri-
ous problems, discussed in detail by many authors [1], [2],
[4]. From the standpoint of reusability, they are far less
flexible than active iterators. For example, a client can iterate
simultaneously over multiple collections with an active iterator
(see the appendix), but not with a passive one. In the face of
formal specification and the need for modular verification, the
nature of the action procedure’s effects and side effects must be
formally specified and proofs modularized. It is not clear how
to do this. Moreover, a client still can violate noninterference
by, for instance, declaring a collection to be global to the
iterator’s action procedure and interfering with the iteration
by manipulating that collection surreptitiously. The coup de
grace for passive iterators from the standpoint of reuse is the
observation that an implementation of a passive iterator can
be layered easily on top of an active one, but not vice versa.

Therefore, we follow the above-cited papers in concentrat-
ing on designs for active iterators. However, we insist that
clients observe the noninterference property and be modularly
verifiable, which necessarily makes our designs different from
previous ones. That is, like Lamb [12], we write our formal
specification so that noninterference must be observed by a
correct client program. A proof obligation involving noninter-
ference is raised in the client that can and must be discharged
in a provably correct client program.

By contrast, Booch [2] points out that his iterator designs
are relatively unprotected from client abuse. Indeed, nothing
but self-discipline prevents a client from altering a collection
during iteration over it. The same is true for Bishop’s designs
[t]. Several methods for repairing this shortcoming are pro-
posed by Edwards [4]; but like Booch and Bishop, he does
not deal explicitly with formal specification or the need for
a framework for modular verification. These objectives drive
many of our design decisions and account for the differences
between Edwards’s designs and the ones we propose here.

Efficiency: Although noninterference has long been seen as
a problem with iterators, Edwards [4] was the first to recognize
the inefficiency inherent in both published iterator abstractions
and language constructs. All previously published designs for
iterators (i.e., those before Edwards’s papers [4]-[6]) include
a function called, e.g., Value_Of. This returns to the client a
copy of the next item from the collection.

The execution-time cost of such copying is troubling if the
representations of the items in the collection are themselves
large, complex data structures. As noted by Harms and Weide
[9], the typical method of avoiding this expense—copying
only a reference (pointer) to an item, as with the designs
recommended by Booch [2] and Bishop [I]—creates even
more serious problems from the standpoint of our objec-
tives. It significantly complicates formal specification and,
practically speaking, thwarts modular verification [8], [10].
This formal-proof difficulty has practical consequences: It

means that human understanding of, and informal reasoning
about, program behavior is much harder than it should be.
Replacing copying by swapping is both efficient and amenable
to tractable formal specification and modular proof rules, and
hence to easier understanding of program behavior. This is the
reason why we prefer the swapping paradigm for our designs.
Another efficiency issue is noted by Edwards [4] and by
Lamb [12]. Achieving optimum performance of an iterator
generally requires that the implementer of an iterator have
access to the underlying representation of the collection.
However, this is not essential solely to obtain the required
functionality of an iterator, if the operations on the collection
abstraction are sufficiently powerful [4], [9], [19].

B. Language Features and User-Defined Iterator Abstractions

Alphard [16] and CLU [13] have built-in iterator constructs,
and Cameron [3] proposes some elegant variations. Here we
concentrate on designing iterators as user-defined abstractions
in languages that do not include special constructs to support
iterators, and we do not further consider possible language
support for our designs. There are three reasons for this. First,
the practical successors to Alphard and CLU (e.g., Ada and
C++) simply do not support iterators directly, so there is
clearly a need for a design approach that does not rely on
special language support. Second, even with language support,
one needs to define formally a common interface model
for iterators if a high degree of composability of software
components is to be expected [5], [6]. Finally, none of the
proposed language mechanisms satisfactorily addresses the
problem of noninterference and the need for modular reasoning
about program behavior, or the inefficiency of copying.

C. The Swapping Paradigm

The swapping style of software design [9], [19] differs
from the conventional copying style in using swapping (and
the swap operator :=:) to replace copying (and the standard
:= operator). It is based on two observations about generic
modules, e.g., Ada generic packages. First, items whose types
are parameters to generic modules might have large data struc-
tures as their concrete representations. These items therefore
might be expensive to copy. Second, an attempt to overcome
the cost of copying the abstract values of such items by
copying references to them inevitably leads to difficulties in
establishing program correctriess by modular reasoning. This
in turn frustrates both the clients of an abstraction and main-
tainers of its implementations. Therefore, it is advantageous
to design the abstract interface of a generic component so that
an implementation can achieve data movement by swapping
(exchanging) the abstract values of any two variables of the
same type, rather than by copying abstract values (destroying
old values and duplicating new ones) or by copying references
to abstract values.

Harms and Weide [9], [19] and Hollingsworth [10] propose
detailed principles to help designers create generic reusable
software components in the swapping style. For example,
consider the operations on collection types such as a Queue
of Items. Insertion operations such as Enqueue should permit

634 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 1994

concept Queue_Template
context
parametric
type Item
interface
type Queue is modeled by string of math{Item]
exemplar g
initialization
ensures q = empty_string
operation Engqueue (
alters q: Queue
consumes x: Item)
snsures g = #¥q * <#x>
operation Degueue (
alters g: Queue
produces x: Item)
requires g /= empty_string
ensures <x> * g = #q
operation Is_Empty (
preserves q: Queue): Boolean
ensures Is_Empty iff q =
end Queue_Template

context

empty_string
Fig. 1. FIFO queue specification.

implementations that swap Items into the structure. Inspec-
tion or removal operations such as Dequeue should permit
implementations that swap Items out.

A particularly instructive example is an Array of Items
ADT. The (single) primary operation should take an Array, an
index, and an Item, and swap the indexed element with that
Item. The usual fetch and store become secondary operations
using this primitive. That is, they can be implemented with
an insignificant performance penalty by layering on top of the
primary swap-based operation if they are really needed, and
in most clients they are not [9], [19].

D. Formal Specification

The main example we use throughout the rest of this paper
is a FIFO queue abstraction. The formal specification of the
Queue_Template concept in a dialect of RESOLVE [9], [17],
[19] is shown in Fig. 1.

A concept specifies a generic abstract module consist-
ing of two parts: context, which spells out the informa-
tion needed to complete the specification, and a description
of the exported interface. The conceptual context of
Queue_Template is provided through a generic parameter, an
ADT called Item. The concept exports an ADT called Queue
and primary operations to Enqueue and Dequeue Items and to
test if a Queue Is_Empty. This is a model-based specification
in which a Queue is modeled as a mathematical string of (the
mathematical model of) Items. String theory notation includes
(x), where z is an Item, which denotes the string containing
the single Item z; and a * b, where ¢ and b are strings, which
denotes the string obtained by concatenating ¢ and b. Initiaily,
a variable of type Queue is empty; i.e., its model is the empty
string, denoted by empty_string.

The notation used in ensures clauses (postconditions) is
that a variable stands for the value of its mathematical model
at the conclusion of the operation; the variable prefixed with
(pronounced “old”) stands for the value of the variable’s
mathematical model at the start of that operation. The # prefix
is not needed or used in requires clauses (preconditions),
where all variables denote values at the start of the operation.

The parameters’ modes are used to simplify specification,
and have nothing to do with the mechanism for passing
parameters [9]. Mode alters means the argument replacing
this formal parameter may be changed as a result of the call;
how it is changed is stated explicitly in the postcondition,
which generally relates that variable’s new value to its old
value and to the values of other formal parameters. Mode
preserves means the argument’s value at the conclusion of
the operation is the same as it is at the start of the operation.
For example, in operation Is_Empty, there is no need to say
explicitly in the postcondition q = #q. Mode consumes
means the argument’s value is changed to an initial value for
its type. For example, consuming a variable of type Queue
would make it equal empty_string, while consuming an
Integer would make it O (assuming the initial value for Integers
is 0). Finally, mode produces means that the argument’s
value may be changed by the call, but its value at the beginning
of the call has no influence on.the operation’s behavior.

Lamb [12] and Pearce and Lamb [15] use trace specifica-
tions for iterators. In this paper, we use model-oriented specifi-
cations like the one above. Model-oriented specifications seem
well suited to designs based on swapping, have seen relatively
widespread use in practice (e.g., Larch and Z), and are rather
easily understood, even by those not intimately familiar with
the wide variety of formal specification techniques currently
in use [17], [20]. They also have been used in proof systems
for modular verification of implementations and clients [8].

At the risk of seeming to apologize for writing formal
specifications, we note in advance that the formal specification
of the final iterator design we propose is not as short or as
simple as we might have hoped. We believe this is due to the
moderately complex behavior that the specification describes,
inherent in iterators, and not to a serious shortcoming with
either the specification notation or with our choice of how to
specify iterators in that notation. We know of no comparably
complex behavior specified in any formal way that does
not look at least as imposing. The question arises, though,
whether real programmers can be expected to understand
such a specification, and, if not, what value it has. Others
already have answered this somewhat loaded question [17],
(20]. But we would add that the importance of programmer
understanding of formal specifications only underscores the
need for a common interface model for iterators that, once
understood after, say, a careful reading of this paper, leads to
rapid understanding of an entire class of structurally similar
specifications [6]. We also note that even if most client
programmers could understand iterators from only derived
metaphorical descriptions and examples and could not read
the formalism itself, then a formal specification still would
serve an important role as the legal contract between imple-
menter and client against which formal verification could be
performed by experts or mechanical provers.

[1I. DEVELOPMENT OF AN ITERATOR FOR A QUEUE

The goal of this section is to develop a design approach
that applies to iterators for any type of collection of any type
of item. We create an iterator for the generic Queue type of

WEIDE er al.. DESIGN AND SPECIFICATION OF ITERATORS USING SWAPPING PARADIGM . 635

Section II, then generalize in Section IV. The presentation in
this section is incremental. In each step, we present a proposed
design of the iterator and sample client code that uses it, then
discuss it, critique it, and propose a new design, until the
final design achieves the stated objectives. The development
proceeds as follows:

« Design #1: Attack problem (1) from Section II-A, i.e.,
noninterference and modular verification of correctness.
We define a companion type Iterator for type Queue
with operations that support iteration over a Queue. The
idea of this step is to make noninterference a nonissue
and thereby permit modular correctness proofs. The chief
problem with this design is that it is based on the copying
paradigm and therefore is inherently inefficient. In fact,
Design #1 might look like a straw man to some readers;
after all, no one really designs iterators this way. But
that is precisely the point: To enforce noninterference and
achieve modularity of correctness proofs, designs based
on the copying paradigm must sacrifice efficiency. Other
real iterator designs attempt to achieve some degree of
efficiency at the expense of assured noninterference and
proof modularity. Design #1 illustrates that the trade-off
might be made in the other direction. It also serves as the
basis for better designs to follow.

» Design #2. Attack problem (2) from Section II-A, i.e.,
efficiency with respect to copying. We revise Design
#1 to use swapping. The purpose of this step is to
permit an implementation of an iterator that still demands
noninterference and supports modular verification, yet
does not need to copy either the data structure that
represents the Queue or any of the Items in it. The main
problems with Design #2 are that it is cumbersome to
write a loop invariant to demonstrate the correctness of a
typical client program, and that some swapping-paradigm
principles still are not completely observed.

» Design #3: Add some abstract state information to the
model of the Iterator type to remedy the verification
problem above, and change the operations slightly to
take advantage of it. The purpose of this step is to
facilitate client correctness proofs and to achieve closer
adherence to swapping paradigm design principles. This
design achieves all the stated objectives. A generalization
that handles arbitrary collections and various extensions
is presented in Section IV.

A. Design #1

First, we define a companion type Iterator for the type
Queue. This new type has its own operations that support
iteration over a Queue. Typical client code involves two steps:
Transfer the Queue value into an Iterator variable; then iterate
over that variable, not over the original Queue.

An appropriate mathematical model of an Iterator is (like
a Queue) a string of Items.? This string records the order in
which the Items are to be processed during iteration. Here

2An Iterator is not modeled by a Queue, because in our model-based
specification framework, an ADT’s model is always a mathematical object,
not another program object.

concept Queue_Iterator_Template
context
global context
Queue_Template
parametric context
type Item
facility Queue_Facility is
Queue_Template (Item)
interface
type Iterator is modeled by
exemplar i
initialization
ensures i = empty_string
operation Start_Iterator (
produces i: Iterator
preserves q: Queue)
ensures i=gq
operation Finish_Iterator (
consumes i: Iterator)
operation Get_Next_Item (
alters i: Iterator
produces x: Item)
requires i /= empty string
ensures <x> * i = #i
operation Is_Empty (
preserves i: Iterator): Boolean
ensuras Is_Empty ff£# i = empty_string
end Queue_Iterator_Template

string of math{Item]

Fig. 2. Queue.Iterator Design #1.

we choose this to be the order in which the Items would be
Dequeued from the original Queue. Other orderings can be
specified easily by changing the postcondition of Start Iterator,
and, for some representations of type Queue, other orderings
can be implemented as easily as the natural order. (See also
Section IV.) The specification for Design #1 is shown in Fig.
2.

Discussion: Design #1 involves a specification mechanism
called a facility parameter. A facility is an instance of
a (generic) concept. In this case, Queue_Iterator_Template
is parameterized by type Item, and by an instance of
Queue_Template called Queue_Facility, which exports a Queue
(of Items) ADT and associated operations.

As noted earlier, we should be able to layer the implemen-
tation of an iterator on top of the corresponding collection
abstraction, so that the new code respects the collection
abstraction, and this could be done here [9], [14], [19]. How-
ever, there are potential order-of-magnitude efficiency gains
if the underlying collection and the iterator are implemented
together as a single program unit with shared knowledge of
the collection and iterator representations. We specify such a
composite concept in Fig. 3.

Queue_With_Iterator_Template is a concept that exports the
combined interfaces of Queue_Template and Queue_Iterator_
Template. The local context section in Fig. 3 simply
ties down the parameters of these two generic abstractions,
so the combination of interfaces is what we require from the
strong typing standpoint. This is the RESOLVE mechanism
for specification or interface inheritance [11]. In subsequent
discussions of efficiency of iterator operations, we refer to the
direct implementation of Queue_With_Iterator_Template from
Fig. 3.

Here is a sample of client code for iteration using Design

#1:
Start_Iterator (i, q)

636 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 1994

concept Queue _With_Iterator_Template
coantext
global context
Queue_Template
Queue_lIterator_Template
parametric context
. type Item
local context
facility Queue_Facility is
Queue_Template (Item)
facility Queue_Iterator_Facility 1is
Queue_Iterator_Template (Item, Queue_Facility)
interface
re-exports
Queue_Facility
Queue_Iterator_Facility
end Queue_With_Iterator_Template

Fig. 3. Queuve_With_Iterator Specification.

while not Is Empty (i) do
Get Next_Item (i, x)
(* code to process x *)
end while
Finish_Iterator (i)

It is evident from the sample code that Design #1 achieves
noninterference by defining it away. The original Queue ¢
is completely separate from the Iterator i. The Start_Iterator
operation protects ¢ from being changed during iteration. If
the code in the loop body of the sample code manipulates g,
there is no interference with the iteration. Similarly, changes
to z in the code to process z do not influence either ¢ or :.
Therefore, it is acceptable for a client program to manipulate
q inside a loop that is iterating over %, even if 7 was obtained
from gq.

Critique: Noninterference is assured here only at the cost
of efficiency. Design #1 effectively forces an implementation
of Start_Iterator to copy ¢ into i. The reason is that simply
copying a reference to ¢ or references to its Items creates
aliases, and hence cannot preserve the independence of the
abstract values of ¢ and 7 [9], [10]. It is impossible to prove
that such an implementation of Queue_With_Iterator_Template
is correct outside the context of a client program, because
the client program might manipulate ¢ or its Items through
these aliases. The only way to create a modularly verifiable
implementation for Design #1 is to copy ¢ (including all of
its Items).

However, a clever implementation of Queue_With_Iterator_
Template might defer copying the data structure that represents
q (but not its Items), as long as there are no calls to Enqueue
or Dequeue on the original Queue g during an iteration over
t. It can keep enough internal state as part of a Queue
representation to recognize that in the abstract view of these
operations, ¢ supposedly has been copied into an Iterator
t. It can determine whether an iteration is in progress by
monitoring whether the call to Start_Iterator has been matched
by a bracketing call to Finish_Iterator. If a call to Enqueue
or Dequeue occurs during an iteration, the copy of ¢’s data
structure can be made at that time. Supporting this kind of
implementation is the only real reason for the Finish_Iterator
operation in Design #1. In the worst case, though, copying
of ¢ is still necessary.

concept Queue_lIterator Template
conceptual context
uses
Queue_Template
parametric context -
type Item
facility Queue_Facility is
Queue_Template (Item)
interface
type family Iterator is modeled by (
future: string of math(Item]
present: math(Item]
original: string of math([Item]}
exemplar i
initialisation
engures i.future = empty_string and
is_initial (i.present) and
i.original = empty_string
operation Start_Iterator |(
produces i: Iterator
consumes J: Queue
produces x: Item)
ensures i.future = #q
i.present = x
i.original = #q
operation Finish_Iterator (
consumes i: Iterator
produces q: Queue
consumes x: JItem)
requires i.predent = x
ensures q = #i.original
operation Get_Next_Item (
alters i: Iterator
alters x: Item)
requires i.future /=
i.present = x
<x> * i.future = #i.future and
i.present = x and
i.original = #i.original
operation Is_Empty {
preserves i: Iterator):
ensures Is_Empty 4ff
end Queue_Iterator_Template

and
and

empty_string and

ensures

Boolean
i.future = empty_string

Fig. 4. Queue_Iterator Design #2.

We again note that nearly all previously published iterator
designs do not force copying of the data structure representing
the collection, but they do force copying of its Items in the
course of iterating. In such designs, the counterpart of Get.
Next_Item is a function that returns a copy of the next Item in
the collection. Again, a modularly verifiable implementation
may not make this copy cheaply by creating an alias to the
Item. These problems are intrinsic to the copying paradigm
{9], [19].

B. Design #2

Design #1 can be changed to use the swapping paradigm.
The reason for doing this is to permit an implementation that
does not need to copy either the data structure that represents
the Queue or any of the Items in it. Two key ideas make this
approach workable.

The first is a change to Start_Iterator and Finish_Iterator.
Start_Iterator can be modified so that an implementation can
move the original Queue into the Iterator object, and the
matching call to Finish_Iterator can move the Queue back.
This design relieves the implementer from responsibility for
copying the data structure the represents the Queue. Moving
arbitrarily large data structures in this way can be accom-
plished in constant (uniformly bounded) time with swapping

91

WEIDE e al.: DESIGN AND SPECIFICATION OF ITERATORS USING SWAPPING PARADIGM 637

The second idea is to define Get NextItem so that its
implementation does not need to return a copy of the Item
to the client, but can swap it out. This is possible if the client
is required to pass that Item back (unchanged) in the next call
to Get_Next_Item. In this case, the implementation can simply
put the Item back into the Queue data structure, and swap out
the next one to return to the client. The only real hurdle is to
get the boundary conditions correct, so that the first and last
calls to Get_Next_Item are not special cases.

The mathematical model of an Iterator becomes an ordered
triple: a string of Items (called future) serving the same
purpose as the model in Design #1, a single Item (called
present) that records the Item value currently held by the client,
and a string of Items (called original) that records the value of
the original Queue. The complete specification for Design #2
is shown in Fig. 4, where the predicate is_initial means
that its argument has an initial vatue for its type.

Discussion: Below is a sample of client code for iteration
using Design #2.

Start_Iterator (i, g9, X)
while not Is Empty (i) do
Get Next_Item (i, x)
(* code to process x without
changing i or x *)
end while

Finish_Iterator (i, g, x)

Why is this specification so much more complex than Design
#17 How does it permit the implementer to avoid copying the
Queue data structure and its Items? How can a client check
the preconditions of the GetNextItem and Finish Iterator
operations? We answer these and other questions below by
considering how to implement Queue_With_Iterator_Template.

Fig. 5 traces an example of the effects of the sample client
code segment above. It shows both the abstract models of
i,q, and z (to illustrate the abstract behavior), and the critical
aspects of possible concrete representations for i and g (to
support performance claims). In this case, ¢ is a Queue of
Integers,’ mathematically modeled as a string of mathematical
integers; strings are shown between {). Fig. 5 also shows a
typical Queue representation, which is a record containing two
fields: f points to the front node of the queue and 7 to the rear.
The representation of an Iterator is identical, except that there
is an additional field in the representation record: p points to
the node whose Item is presently held by the client (if any).
These concrete representations are only illustrative; others also
would achieve the claimed performance.

In the top row of Fig. 5, just before execution of the
sample client code begins, ¢ and x might have any values. For
example, ¢ might have an initial value for type Iterator and z
might be 17, as illustrated. The value of z before Start Iterator
is immaterial; it is just a priming value, and the specification
does not say exactly what Start_lterator (g, ¢, &) returns in
2. But note that i.present records that value; see the second

3This makes it easy to understand the operation of the iterator, but it also
makes the example too simple to illustrate the importance of not copying an
ftem, which might be a far more complex type than Integer! We opted for
ease of understanding in choosing the example.

row of Fig. 5. The next three rows show the situation after
the three calls to Get_Next_Item that occur in the case that the
original ¢ is modeled by the three element string (9 6 _90).
The value of z after the call to Finish_Iterator is 0, because
the specification says that operation consumes .

One aspect of Fig. 5 might seem mysterious: Why are there
top-level pointers to the records representing an Iterator and
a Queue? These pointers are not strictly necessary in order to
achieve the claimed performance; swapping of Iterators and
Queues still would require only constant time, even without
this extra level of indirection. However, it is important for
implementing swapping in a uniformly bounded time, and
for code-sharing among instances of generics, as noted in
[9]. .

In the abstract explanation of Start_Iterator, the original
value of g is remembered in 7. future, from which Items sub-
sequently are to be dispensed to the client by Get_Next_Item.
An implementation of Start_Iterator in Design #2 need not
copy the original Queue data structure in order to achieve this
effect. It can acquire the original value of g by swapping.
Start_Iterator is designed to consume ¢ in order to support this
implementation.

On first reading, it might appear that Start_Iterator should
have to copy ¢ in order to satisfy the postcondition clause
i.original = #q. This also is not the case, because
i.original is part of the abstract state of an Iterator. There is
no implication that the concrete representation of an Iterator
must explicitly include i.original, and indeed none of the
other operations demands that i.original actually be kept
for correct execution, as explained below. Adding an adjunct
variable (a variable that participates in proofs but not in exe-
cutable code) to the Iterator representation enables us to write
a formal correspondence relation between the representation
and abstract values [10].

Similarly, the postcondition clause i.present = x in
Start_Iterator means that the Item value returned to the client
in z is remembered as part of the Iterator’s state. But as above,
this does not require copying, because i.present is only part
of the abstract state of an Iterator and need not be represented
concretely, unless some operation’s implementation calls for
that; none does here.

Similarly, Get_Next_Item need not copy an Item. Its precon-
dition i .present = x requires that the client pass in as x an
Item equal to the one most recently returned by Start_Iterator or
Get Next_Item. The implementation can merely put this value
back into the Queue data structure (in the node referenced
by field p in Fig. 5) and return the next Item by swapping
it out of the structure. Again, there is no need for copying,
because the Item returned must be passed back in the, next
call to Get_Next_Item, and so on.

When iteration is completed, the client calls Finish_Iterator.
This operation’s precondition requires that the client give back
the one outstanding Item (whose value is ¢.present), at which
point the implementation has the entire data structure and all
the Items in the original Queue. It simply swaps this with
parameter g to achieve the stated postcondition.

A point worth noting is that no code in the client or in
the implementation checks the clause i .present=x at the

638

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 1994

Start_lterator (i, q, x)

abstract values concrete concrete
of i, g, and x representation representation
" of i f r ofq ¢
i=(<»0 > E IZ@Z
g=<9 6 90> —]
x=17 5 . ”

i=(<9 6 90>,0,<9 6 90>)

q=< >
x=0

l<]]

Get_Next_Iltem (i, x)

i=(<690>,9,<9 6 90))

°1]
B

Get_Next_ltem (i, x)

i=(<90>,6,<9 6 90>)
q=(>

x=6

Get_Next_item (i, x)

i=(c>,90,<9 6 905)

q=< >
x =90

Finish_lterator (i, q, x)

i= (¢
q
X

0,3
6 90>

Fig. 5. Sample execution for design #2.

beginning of a call to Get_Next.Item or Finish_Iterator. In
fact, because there is no operation that reveals the value of
i.present, a client or an implementer cannot write such
code without copying Items. Thus, the only means for a client
to be sure that no preconditions are violated is to be able to
prove that the code to process = does not change x.

Without the precondition on Get NextItem and
Finish_Iterator, no such proof obligation would be raised in an
arbitrary client program. Although it then might be possible to
verify a particular use of the swapping-based implementation,
there would be no way to separate a proof of correctness of
the implementation from that of the client program. Therefore,
we could not prove the correctness of this implementation in a
modular fashion, and we could not declare the swapping-based
implementation of Queue_Iterator_Template to be correct out
of the context of a particular client. The feasibility of such a

modular correctness proof was one of the primary objectives
of our design.

Critique: Although Desigh-#2 has a more complex specifi-
cation than Design #1, its swapping-based implementation
is straightforward and efficient. However, experience using
the specification of Design #2 suggests some minor changes.
Most importantly, with Design #2, it is cumbersome to show
in the sample client program that the code to process « actually
is executed for every item in the original Queue ¢. The proof
relies on a loop invariant that keeps track of the Items that
have been processed and relates them to the Items in i. future
and the original Queue. It is possible to introduce an adjunct
variable for each loop to keep track of the processed Items,
but it is more convenient to include support for this in the
specification. This and other minor modifications are discussed
in the next section.

WEIDE et al.; DESIGN AND SPECIFICATION OF ITERATORS USING SWAPPING PARADIGM 639

concept Queue_Iterator_Template
conceptual context
uses
Queue_Template
parametric context
type Item
facility Queue_ Facility is
Queue_Template (Item)
interface
type family Iterator is modeled by (
past: string of math[Item]
present: math[Item]
future: string of math[Item]
original: string of math(Item]
deposit: math[Item])
sxemplar i
initialization
ensures i.past = empty_string
is_initial (i.present)

and
and
i.future = empty_string and
i.original = empty_ string and
is_initial (i.deposit}’
operation Start_Iterator (
alters i: Iterator
consumes q: Queue
consumes x: Item)
requires is_initial (i)
ensures i.past = empty_string
.present = x and
.future = #q and
.original = #g and
i.deposit = #x
operation Finish_Iterator (
consumes i: Iterator
produces gq: Queue

and

i
i
i
i

alters x: Item)
regquires i.present = x
ensures q = #i.original and
x = #i.deposit
operation Get_Next_Item (
alters i: Iterator
alters x: Item)
requires i.present = x and
i.future /= empty_string
snsures i.past = #i.past * <x> and

i

.present = x and

<x> * i.future = #i.future amnd

i
i

.original = #i.original and
.deposit = #i.deposit

operation Is_Empty {
preserves i: Iterator):
ensures Is_Empty 4iff
end Queue_Iterator_Template

Boolean
i.future = empty_string

Fig. 6. Queue Iterator Design #3.

C. Design #3

In Fig. 6, we add to the abstract model a field (called past)
that records the Items that have been returned to the client
through Get_Next_Item, and a field (called deposit) that records
the priming Item that the client passed into the first call to
Start_Iterator. We also add a precondition to Start_Iterator to
guarantee that the Iterator ¢ satisfies its initial condition, make
Start_Iterator consume the deposited value z, modify the post
condition of Finish_Iterator so that i.deposit is returned in
z, and reorder the Iterator model components to give a more
natural reading.

The representation of an Iterator as specified in Fig. 6
might look like the representation in Fig. 5. In addition, we
have to store i.deposit in the concrete representation; but
this is accomplished simply by swapping the value in during
Start_Iterator and swapping it back out during Finish_Iterator,
so there are no substantive performance implications of this
change.

Discussion: Here is a sample of client code for iteration
using Design #3. (See the appendix for complete client
examples.)

Start_Iterator (i, q, %)

maintaining i.past * i.future = #i.past
* #i.future and
i.present = x and -
i.original = #i.original and
i.deposit = #1i.deposit
while not Is_Empty (i) do
Get_Next_Item (i, x)
(* code to process x without changing
i or x *)
end while
Finish_Iterator (i, g, x)

In this sample code, we include the loop invariant in a
maintaining clause, which may be considered an extra
syntactic slot in the while loop construct. The notation means
that at the beginning of each iteration of the loop, the concate-
nation of i.past and i.future_equals their concatenation just
before the loop is first encountered; that i.present equals x;
and that i.original and i.deposit equal their respective values
just before the loop is first encountered.

Clearly, this invariant is true at the start of the first iteration.
It is easy to show that it is true for an arbitrary iteration if and
only if the code to process z does not change i or z. With
the addition of the past field to an Iterator’s abstract state, it
also is easy to show that all Items in the original Queue g, and
only those Items, are processed by the loop.

The other changes in Design #3 support a general principle
of the swapping paradigm: There are advantages in simplified
reasoning about program behavior and in the performance
of storage management activities if temporary variables in a
program act as catalyst variables [9]. A catalyst variable is one
that is necessary to carry out a computation, but experiences
no (net) change in value from the beginning to the end of the
computation, or is an initial value for its type at both points.
In the expected use of Queue_Iterator_Template, we want to
make sure the local variables i and x are catalysts. Notice that
this is not the case for Design #2; ¢ and = might start out with
any values whatsoever before Start_Iterator, and their values
after Finish_Iterator might be different.

In Design #3, we therefore require that Iterator : be an
initial value for its type before the call to Start Iterator.
Finish_Iterator consumes i, leaving it again as an initial value
for its type. Also in Design #3, we record the priming value
of z that is passed to Start.Iterator and restore that value in
Finish_Iterator; thus, the name ¢.deposit, reflecting the fact
that we consider the priming value to be like a security deposit
that should be returned to the client upon completion of the
iteration. Now both 4 and x act as catalyst variables.

IV. VARIATIONS AND EXTENSIONS

There are several interesting variations and extensions of
this approach to iterators. We briefly discuss them here, and, in
the process, propose a schema for a generic Iterator_Template
concept (Fig. 7) that is flexible enough to accommodate most
interesting uses for iterators. This concept schema constitutes
our proposal for a common interface model for iterators.

640 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 1994

concept Iterator_Template
conceptual context
parametric context
type Item
type Collection
interface
type family Iterator is modeled by (
past: string of math(Item]
present: math[Item]
future: string of math[Item]
original:math(Collection]
deposit: math[Item])
exemplar i

initialization
snsures i.past = empty string and
is_initial (i.present) and
i.future = empty_string and
iw_initial (i.original) and
is_initial (i.deposit)
operation Start_Iterator (
alters i: Iterator
consumes c: Collection
consumes Xx: Item)
requires is_inicial (i)
ensures i.past = empty_string and
i.present = x and
p (i.future, ¥c) and
i.original = #c and

i.deposit = #x
operation Finish_Iterator (
consumes i: Iterator
produces c: Collection
alters x: Item)
requires i.present = x
snsures ¢ = #i.original and
x = #i.deposit
operation Get_Next_Item |(
alters i: Iterator
alters x: Item)
requires i.present = x and
i.future /= empty_string
i.past = ¥i.past * <x> and
i.present = x and
<x> * i.future = #i.future and
i.original = #i.original and
i.deposit = #i.deposit
operation Is_Empty (
preserves i: Iterator)
ensures Is_Empty 4iff
end Iterator_Template

ensures

Boolean

i.future = empty_string

Fig. 7. Schema for a generic iterator design (with p free).

A. Early Exit from Iteration

A client program that exits from an iteration loop before
the Iterator is empty poses no particular problem for Design
#3. (See the Appendix for an example.) However, the
rationale for implementing Queue_With Iterator_Template
as one module, and not layering the implementation of
Queue. Iterator Template on top of Queue_Template, is
efficiency in this special case. If all the Queue Template
operations take constant time, then all the layered operations
take constant time, except FinishIterator. In the case
of an early exit from an iteration, Finish_Iterator takes
time proportional to the number of Items remaining in
the Iterator’s future string. A direct implementation of
Queue_With_Iterator_Template in which the Iterator operations
have access to the underlying Queue representation (as in Fig.
5) achieves constant time performance for all operations.

B. Different Orders of Iteration and Iteration
Over a Subset of All Items

It is easy to generalize the specification of Design #3 to
define a schema for an Iterator type that presents the Items in

a Queue to the client in a different order, and/or that iterates
over just those Items that satisfy a particular condition. We
define a binary (mathematical) relation: -

p:string of math[Item]
X string of math[Item] — Boolean,

so that p(s, t) holds whenever the order of appearance of the
Items in string s is an acceptable or possible order of iteration
for the desired Items in string t. We can now generalize the
ensures clause of Start_Iterator as underlined.

operation Start_Iterator (
alters i: Iterator
consumes J: Queue
consumes x: Item)
requires is_initial (i)
ensures i.past=empty_string and
i.present = x and
p(i.future,#q) and
i.original=# q and
i.deposit =# x

This operation specification, with p a free variable, should
be interpreted as part of a schema for a concept, in the
following sense. A specifier might use it to guide the design
of different but related iterator concepts by binding p in any
of three ways.

1) For each individual iterator concept, replace p by a
particular relation that controls the order in which Items
are to be returned by Get_Next_Item.

2) Make p a client-supplied parameter to the specification
(like Item and Queue_Facility).

3) Make p an implementer-supplied parameter to the spec-
ification.

In cases (1) and (2), any realization must be further param-
eterized by program operations [4], [10] that satisfy certain
properties involving p and that permit the implementer to write
code that achieves the specified behavior. In case (3), the client
knows only that p is some relation, possibly with additional
mathematical properties dictated by the specifier. Here the
implementer has the freedom to present the Items from the
Iterator in any convenient (efficiently computed) order, and
must supply a definition for p that characterizes the orders it
might produce.

C. Other Collections

To specify Iterators for collections that are not modeled as
mathematical strings, we can adapt the approach suggested
above and parameterize the concept by a Collection type, as
shown in Fig. 7. Again, we introduce a binary (mathematical)
relation:

p: string of math(Iten|

X math[Collection] — Boolean,

defined so that p(s, ¢) holds whenever the order of the Items
in string s is an acceptable or possible order of iteration for
the desired Items in Collection c.

WEIDE et al.; DESIGN AND SPECIFICATION OF ITERATORS USING SWAPPING PARADIGM 641

We need a relation here, not a function. Consider a Set
ADT, where the mathematical model of a program Set is a
mathematical set. Then a useful implementer-supplied relation
p would have p(s,c) hold exactly when every Item in set ¢
occurs exactly once in string s. There is no natural order for
iterating over the elements of a Set, but we probably want to
specify that the iteration should see each element exactly once.
If an implementer is free to choose any order that meets this
criterion, there is substantial performance flexibility.

D. Modifying a Collection (But Not Its Items)

We now consider two more advanced kinds of iterators that
involve modifying the collection during iteration. There are
two sorts of changes: those that restructure the collection into
an equivalent form without modifying any of its Items, and
those that (instead or in addition) modify the values of the
Items. An example of the first kind arises if we have a Tree
ADT whose nodes are labeled by Items. We might not care
about the shape of a Tree, as long as an in-order traversal
produces the Items in the same order, e.g., if the Tree is used
as a binary search tree. A side effect of iterating over such a
Tree, then, might be that it is rebalanced.

How can we specify an iterator that has such an effect? We
introduce another relation below:

o: math[Collection] x string of math[Item]
x math[Collection] — Boolean,

defined so that (i, s,) holds whenever the initial Collection
i, when iterated over with the order of Items in string s, is
equivalent to the final Collection f. We can then generalize
the ensures clause of Finish_Iterator from the specification
in Fig. 7, as underlined, below.

operation Finish_Iterator (
consumes i: Iterator
produces c: Collection
alters x: Item)
requires i.present = x
ensures o(#i.original,#i.past * #i.future,c)
and x = #i.deposit

Now an implementation can return in ¢ any Collection that
is equivalent to the original Collection, offering the possibility
of performance flexibility or even intentional restructuring. A
degenerate case of this schema, where o (i, s, f) holds if and
only if p(s,4) holds and ¢ = f, is the schema of Fig. 7.

E. Modifying the Items in a Collection

The intuitively obvious way to change every Item in a
Collection is to iterate over the Collection and change each one
as it is processed. Of course, this will not work directly with
the proposed design, because getting the next Item requires the
client to pass back exactly the same value that it received in the
previous call to Get Next_Item. This process works similarly
for Finish_Iterator.

There are two ways to address this problem. One is to iterate
over the Collection and construct the modified Collection as a
new object. The appendix contains example code for copying

a Queue in this wayj; there is no modification of each Item as it
is added to the new Queue, but it is easy to see how this would
be done if that were the objective. The difficulty with this as
a general solution is that Items cannot be modified in place.
New ones must be constructed, with the associated efficiency
penalty (which is possibly significant if the Items are large)
that we initially argued we should like to avoid if possible.

Another approach, then, is to further generalize the
Iterator_Template design to support specifying the way in
which each Item is to be modified. Again, we introduce a
relation that characterizes mathematically how the modified
Item values must be related to the old ones:

v: math [Item] X math [Item] — Boolean.

The specifier or client should define v(a, b) to hold if and only
if b is an allowable new value corresponding to the old value
a. (This relation could be generalized even further to have
a third argument, a string of Items, so that new Item values
could depend on the values of all previously processed Items
as well.)

Now we generalize the preconditions of Get_Next Item
and Finish_Iterator, replacing i.present = x by v
(i.present, x). We also have to do two other things.
The first is to add another component to the Iterator model—a
string of Items perhaps called updates—and to change the
postcondition of Get_Next_Item, so that this string records the
(modified) Items returned to Get_Next_Item. The second is to
change the relation o from the previous subsection, so that it
depends additionally on another string of Items that includes
the updates, and to change the postcondition of Finish_Iterator
accordingly.

Note that modifying a collection while iterating over it,
though specifiable and sometimes useful, is fraught with
danger. Consider iterating over a Set of Integers, squaring
each one. The abstract set model of the program Set object
might have fewer elements following the iteration; e.g., —2
and 2 both yield 4. Similarly, consider iterating over a Tree
of Integers, squaring each one, but trying to maintain the
binary search tree property. These examples illustrate that for
a correct implementation, it is insufficient just to traverse the
data structure representing the Set or Tree and to perform
a squaring operation on each element. This is the kind of
problem, both in client understanding of iteration and in imple-
mentation efficiency, that leads us to warn against modifying
Items during iteration in general, even though it causes no
insurmountable technical difficulties with our specification and
design approach.

V. CONCLUSION

Previously published iterator designs are unsatisfactory
along several dimensions. The iterator design developed
incrementally for Queues in Section IlII, and generalized to a
schema for arbitrary Collections in Section IV-C, addresses
the deficiencies of prior approaches in the following specific
ways.

« It is designed to support efficient implementations; nei-

ther the implementer nor the client needs to copy the

642 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 1994

data structure representing the Collection, or any of the
individual Items in it.

* Its abstract behavior (including the noninterference prop-
erty) is formally specified.

» Its implementations and clients can be verified indepen-
dently, i.e., modularly, in the sense of [8].

» It can be specified as a schema for an independent generic
concept that defines an iterator abstraction for arbitrary
Collections, so all iterator abstractions in a system share
a common interface model.

Because of these advantages, the iterator design in Fig. 7
should be considered as a baseline proposal for a common
interface model for iterator abstractions. This baseline supports
sequential access to the individual Items of a Collection in
various orders, but without allowing a Collection or its Items
to be modified during iteration, and is robust enough to handle
any container structure where such iterations are meaningful.

A final note on language issues: Our design shows, in
principle, how iterators can be abstracted and encapsulated
to support modular programming and modular reasoning about
program behavior. But can the design be used in real program-
ming languages? There is no technical difficulty with Ada,
because a generic package may export more than one type,
as an implementation of a Collection_With_Iterator_Template
must. (See the RESOLVE/Ada Discipline [10]. The particularly
interested reader also should consult [4] for detailed examples
of similar iterator designs coded in Ada.)

For C++, a mismatch with the RESOLVE language
model leads to minor trouble. There is a temptation to use
inheritance to combine interfaces, i.e., to make Queue_With_
Iterator.Template a class derived from the Queue_Template
class. However, such a C++ class effectively defines
just one type, not two. This leads inevitably to nontrivial
differences between the abstract specification given here
and even the parameter profiles of the C++ class methods.
So, another solution is preferred: Make Queue_Template and
Queue_Iterator_Template separate but friend classes in order to
get the required efficiency of implementation of the combined
interface.

APPENDIX
CLIENT EXAMPLES FOR DESIGN #3

Here is a sample client for Design #3, an operation to copy
a queue using an iterator.

operation Copy (
preserves gl: Queue
produces g2: Queue)
ensures g2 = gl

begin
variable
cleared: Queue
i: Iterator
x1l, x2: Item
g2 :=: cleared

Start_Iterator (i, ql, x1)
maintaining i.past * i.future =

#i.past * # i.future and
i.present = x1 and
i.original = #i.original

and
i.deposit = #i.deposit

and
qz =
while not Is_Empty
Get_Next_Item (i, x1)
Copy-Item (x1, x2)
Enqueue (g2, x2)
end while
Finish_Iterator (i,
end Copy

i.past
(i) do

ql, x1)

This example illustrates simultaneous iteration over two
collections, and a possible early exit from an iteration loop:
an operation to determine whether two Queues are equal.

operation Are_Equal (
preserves gl: Queue
preserves g2: Queue): Boolean
ensures Are_Equal iff gl = g2

begin
variable
il, i2: Iterator
x1l, x2: Item

equal: Boolean

equal := true
Start_Iterator (il, ql, x1)
Start_Iterator (i2, g2, x2)
maintaining il.past * il.future =
#1il.past * #il.future
and
il.present = x1 and
il.original =
#il.original and
il.deposit= #il.deposit)
and
i2.past * i2.future =
#i2.past * #i2.future
and
i2.present =
i2.original =
#1i2.original and
i2.deposit = #i2.deposit
and
equal = (il.past =
i2.past)
while equal and not Is_Empty (il) and
not Is Empty (i2) do
Get _Next_Item (il, x1)
Get_Next_Item (i2, x2)
equal := Are_Equal_Items
X2)
end while
if equal and (not Is_Empty

x2 and

(x1,

(il) or not

WEIDE e al.: DESIGN AND SPECIFICATION OF ITERATORS USING SWAPPING PARADIGM 643

Is_Empty (i2)) then
equal := false
end if
Finish_Iterator (il, gl, x1)
Finish_Iterator (i2, g2, x2)
return equal

end Are_Equal

ACKNOWLEDGMENT

We are indebted to W. Heym, J. Hollingsworth, B. Ogden,
M. Sitaraman, S. Zweben, and the anonymous referees for
many helpful comments.

(11

{2}
{3}

15]

[6]

{81

{91

(10]

(1]
(12
[13]
(14]

[15]

{16}

{17]

REFERENCES

J.M. Bishop, “The effect of data abstraction on loop programming
techniques,” IEEE Trans. Software Eng., vol. 16, pp. 389-402, Apr.
1990. g

G. Booch, Software Components with Ada. Redwood City, CA:
Benjamin-Cummings, 1987.

R.D. Cameron, “Efficient high-level iteration with accumulators,” ACM
TOPLAS, vol. 11, pp. 194211, Apr. 1989.

S.H. Edwards, “An approach for constructing reusable software com-
ponents in Ada,” Tech. Rep. P-2378, Inst. for Defense Analyses,
Alexandria, VA, USA, 1990.

, “Common interface models for components are necessary to
support composability,” Proc. 4th Ann. Workshop on Software Reuse,
SPC, Herndon, VA, USA, 1991.

, “Common interface models for reusable software,” Int. J.
Software Eng. Knowledge Eng., vol. 3, pp. 193-206, June 1993.

. “A formal model of software subsystems,” Ph.D. dissertation,
Dept. of Comput. and Inform. Sci., Ohio State Univ., Columbus, OH,
USA, in preparation.

G.W. Emst, R.J. Hookway, and W.F. Ogden, “Modular verification
of data abstractions with shared representations,” IEEE Trans. Software
Eng., vol. 20, pp. 288-307, Apr. 1994.

D.E. Harms and B. W. Weide, “Copying and swapping: Influences on
the design of reusable software components,” /EEE Trans. Software Eng.
vol. 17, pp. 424-435, May 1991.

J. E. Hollingsworth, “Software component design-for reuse: A language
independent discipline applied to Ada,” Ph.D. dissertation, Dept. of
Comput. and Inform. Sci., Ohio State Univ., Columbus, OH, USA, 1992.
W.R. LaLonde, “Designing families of data types using exemplars,”
ACM Trans. Programming Languages Syst., vol. 11, pp. 212-248, 1989.
D.A. Lamb, “Specification of iterators,” IEEE Trans. Software Eng.,
vol. 16, pp. 1352-1360, Dec. 1990.

B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert, *Abstraction
mechanisms in CLU,” CACM , vol. 20, no. 8, pp. 564-576, Aug. 1977.
S. Muralidharan and B. W. Weide, “Should data abstraction be violated
to enhance software reuse?” Proc. 8th Ann. Natl. Conf. Ada Technol.,
1990, pp. 515-524.

T.W. Pearce and D.A. Lamb, “The property vector specification of a
multiset iterator,” Proc. 14th Int. ACM/IEEE Conf. Software Eng. , 1992.
M. Shaw, W. A. Wulf, and R.L. London, “Abstraction and verification
in Alphard: defining and specifying iteration and generators,” CACM,
vol. 20, no. 8, pp. 553-564, Aug. 1977.

M. Sitaraman, L.R. Welch, and D.E. Harms, “On specification of
reusable software components,” Inr. J. Software Eng. Knowledge Eng..
vol. 3, pp. 207-229, June 1993.

[18] W. Tracz, “Parameterization: A case study,” Ada Lett., vol. 9, pp.
92-102, May/June 1989.

(19] B.W. Weide, W.F. Ogden, and S.H. Zweben, “Reusable software
components,” in M.C. Yovits, Ed., Advances in Computers, vol. 33.
New York: Academic, 1991, pp. 1-65.

{20] J.M. Wing, “A specifier’s introduction to formal methods,” Comput.,
vol. 23, pp. 8-24, Sept. 1990.

B.W. Weide (5'73-M’78) received the B.S.E.E.
degree from the University of Toledo, OH, USA,
and the Ph.D. degree in computer science from
Carnegie Mellon University, Pittsburgh, PA, USA.

He is an Associate Professor of Computer and In-
formation Science at Ohio State University, Colum-
bus, OH, USA, and Codirector of the Reusable
Software Research Group with Bill Ogden and Stu
Zweben. His research interests include all aspects
of software component engineering, especially in
applying RSRG work to Ada and C++ practice.
Dr. Weide is a member of the [EEE, ACM, and CPSR.

S.H. Edwards received the B.S.E.E. degree from
the California Institute of Technology and the M.S.
degree in computer and information science from
Ohio State University, Columbus, OH, USA.

He is a Ph.D. degree candidate in computer
and information science at Ohio State University.
Prior to attending Ohio State, he was a Member of
Research Staff at the Institute for Defense Analyses.
His research interests are in software engineering
and reuse, formal models of software structure,
programming languages, and information retrieval
technology.

Mr. Edwards is a member of the IEEE Computer Society and ACM.

D.E. Harms (S'87-M’88) received the B.S. from
Muskingum College, New Concord, OH, USA, and
the M.S. and Ph.D. degrees from Ohio State Uni-
versity, Columbus, OH, USA.

He is an Associate Professor of computer science
at Muskingum College. His research interests are
in software engineering (especially reuse, specifica-
tion, and verification) and programming language
design.

Dr. Harms is a member of the IEEE and ACM.

D.A. Lamb (S8°75-M’77-SM’87) received the Ph.D. degree in computer
science from Camnegie Mellon University, Pittsburgh, PA, USA, in 1983.

He is an Associate Professor of Computing and Information Science at
Queen’s University, Kingston, ON, Canada. His research interests include
software design methods, configuration management, and formal methods in
software engineering.

Dr. Lamb is a member of ACM and Sigma Xi.

