
1/4

New Course Proposal Questionnaire

Bridging the Introductory Course Sequence
(221/222/321) and 560

Draft: Thursday, January 11, 2007
Author: Paul Sivilotti
__

What is the nature of the proposed course?
1. What is the overall nature of the course briefly stated?
The course is intended as a first course in Java. In addition to language syntax and
mechanics, the course will cover a variety of tools used in various stages of software
development (eg testing, documentation, version control). Finally, the course will
present several best practices, explaining them as manifestations of component-based
software principles seen in the introductory course sequence.

2. What is the scope of the course in terms of expected changes to the current CSE
curriculum?
This course will have significant impact on the core CSE curriculum. We are proposing
that this new course be a required core class. The intellectual content covered in this new
class would have some overlap with the existing 459.23 (Java language mechanics), 560
(tools for software development, testing, documentation), and 321 (application of
principles of component-based software design and development).

3. What existing CSE courses or courses are related to the proposed course by
similarity, prerequisites, etc.?
The proposed course would be a prerequisite to 560. As a prerequisite, it would require
222. Thus, it would occupy a slot concurrent to 321, although we do not anticipate
making these courses co-requisites.

4. What other departments will be concerned with the proposed course and how?
Any stakeholders in 560 will be directly affected since the prerequisite chain for 560 is
larger (in breadth, not length).

What problems does the proposed course solve and/or create?
1. Why is there a need for this course?
(a) Tools are helpful in 560. In 560, we want group projects to begin almost
immediately: The bigger the lab (and the longer the students have to work on it) the better.
But students have not yet learned many tools that are useful for “programming in the
large” (CVS, Make, testing harnesses, debugger) until (midway through) 560. As a result,
this information comes too late to be helpful in the early lab(s).

2/4

(b) Students lack appreciation for real-world applicability of RESOLVE foundations. In
560 (and beyond?), students working in languages other than RESOLVE seem to have
difficulty mapping RESOLVE concepts into their group’s implementation language. For
example, they don’t see the relevance of defining a mathematical model, or of
distinguishing between concrete and abstract state.

(c) Java is a complex language. It is hard to do Java justice in a 1-credit S/U class. In
459.23 (Programming in Java), it is practically the end of the quarter before students can
do anything interesting in Java. In order to get to the Collections Framework, one must
first cover interfaces, inheritance, generics, and exceptions as well as the OO basics
(objects, classes, encapsulation, syntax).

2. What could not be accomplished if this course were not created?
The current curriculum does not allow for the integration of the presentation of a
programming language and the application of component-based software design
principles (221/222/321) in the context of that language. The current curriculum
structure also requires that students begin their project work in 560 with little knowledge
of the tools that can help.

3. Who is demanding the course or the product of the course?
The 560 instructors and some students, although student interest should really be gauged
more carefully and methodically.

4. Who is the intended/expected audience for the course?
Undergraduate CSE majors and minors.

5. How many students would be involved in the course?
Annual enrollment would be similar to the steady-state annual enrollment of 560 and 321.
I would guess that number to be roughly around 180, but this guess should be confirmed
with a more informed opinion.

6. How is the course related to national movements or trends?
It is similar to many introductory programming courses in CS curricula across the
country in that it is a first-course presentation of a real programming language. It is also
similar to the (inter)national trend in its choice of Java. In my opinion, Java is a terrible
choice (from a pedagogical perspective) for CS 1/2. The complexities and idiosyncrasies
of the language present the novice programmer with a significant barrier to understanding
many core CS concepts. Nevertheless, it has been a popular choice for the last 10 years.

The proposed course differs significantly from the (international) trend in that it is a first-
course in Java without being a first-course in programming. Students arrive with a good
background in principles of component-based software design. This course can then
focus on the manifestation of these principles in the context of Java, including all of the
languages complexities and idiosyncracies.

7. How is the course related to the GRE advanced test in CS?

3/4

The GRE advanced test in CS lists its subject focuses on abstract concepts rather than a
particular language’s syntax or semantics. Part 1 is “Software Systems and
Methodology” and accounts for 40% of the total score. Within this part, there are 3
subsections that are potentially relevant: Data Structures, Program Control and Structure,
and Programming Languages. None of these mention Java (or any other particular
programming language) explicitly.

The GRE practice test currently available from ETS includes several questions that have
pseudocode written in a C-like notation. These code snippets do not include pointers.
They tend to focus on procedural control structures (functions, while loops, etc) and
simple variables or arrays.

Although Java mechanics, as such, are not part of the GRE test, data structures, control
structures (eg exceptions) and languages (eg scoping, parameter passing) are. These
concepts will be part of the new course.

What is the proposed course's detailed structure?
1. What draft sample course descriptions (objectives, prerequisites, syllabi, texts,
grading schemes, ...) are available?
A draft official syllabus has been prepared and submitted via the CSE web portal.

2. What draft sample homework problems, lab assignments, and exam questions are
available?
Four labs that were developed as part of a revamping of 459.23 could be used in this new
course. These labs can be found at:
 http://www.cse.ohio-state.edu/~paolo/teaching/45923/
The lab topics are:
a) Implementing a class representing an arbitrarily large natural number
b) Implementing a personnel database
c) Implementing the Random Writer from “nifty assignments”

3. What is the history and previous experience with this course (pilot sections, other
universities, ...)?
Many universities have a “programming in the small” course that is similar to the one
being proposed here. The focus is on language facility and tools, as well as a small
amount of OO design principles.

What resources are needed to implement and conduct the course?
1. What faculty are available/will be required to teach the course?
The software engineering faculty would be the best choices to teach the course, especially
if the manifestation of component-based software design principles is to be a serious
component of this course. Faculty from other areas but with practical expertise in Java
development could also teach the course. Clinical faculty could draw on their practical
experience to teach the course.

4/4

2. What computer resources (hardware, software, staff time, etc.) will be required to
implement this course? What's the initial, one-time cost and what is the yearly
maintenance, upgrade, replacement cost?
The main student labs will need Eclipse (already installed for 201) and JUnit. CVS will
also be required (although Eclipse comes with a CVS client, it does not come with a CVS
server).

3. What other materials or resources will be required to implement this course?
None.

4. What kind of grading or lab assistant support will this course need?
JUnit test cases would be used for all of the acceptance testing of student submissions, so
that part of the grading should be light. The grader will also have to examine Javadoc
documentation, however, and provide feedback on design. This will be a lab-intensive
course and so will likely be a 10 hr/week grading load (for a 30 student section).

How will the course be implemented?
1. If applicable, how will the course's curriculum be phased in?
A new core package will have to be created. Students can either take: 321 + 560 + 459,
or 321(new) + new course + 560(new). After modifying 321, the old version of 560
could be offered for a full calendar, while introducing the occasional offering of the
revised 560.

Open question: is it possible to pilot the proposed course without committing to this
change in core curriculum?

2. What are the "fall-back" positions if the changes cannot be completed as
originally planned?
Status quo.

How will "success" of the course be gauged?
1. What are the criteria to be evaluated?
(a) Student performance in 560. Do students arrive ready to undertake a large
programming project armed with the appropriate tools for testing, documentation, and
code versioning.
(b) Student perception of RESOLVE. Can students see how industry best practices are
approximations of sound principles driven by component-based approaches to software
design?
(c) Student proficiency in Java.

2. What provisions are there to conduct the evaluation?
(a) Feedback from 560 instructors, likely as part of the “software spine” course group.
(b) Exit and alumni surveys.
(c) None.

