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Signal representations: Cepstrum

• Source-filter separation for sound production
• For speech, source corresponds to excitation by a pulse train for 

voiced phonemes and to turbulence (noise) for unvoiced phonemes, 
and filter corresponds to vocal tract (resonators)

• For music, source corresponds to vibrations (e.g. vibrating strings in 
plucked or bowed string instrument) and filter corresponds to the 
body of the instrument

• Overall signal reaching the ear is the convolution of source with the 
impulse response of filter

• Cepstral analysis attempts to separate source from filter, 
hence it can be viewed as deconvolution
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Speech production illustration
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Real cepstrum
• For speech, the spectral magnitude can be written as 

• Taking the logarithm yields

• Observation for speech production
• The E term corresponds to an event (e.g. a pulse train with a 

frequency of 100 Hz) more extended in time than the impulse 
response of the vocal tract. Analogously, E corresponds to “carrier” 
and V corresponds to “envelope” in the frequency domain. In other 
words, E varies more quickly with respect to ω than V

• Hence, one can apply some kind of “filter” to separate “high-
frequency” components from “low-frequency” components, thus E
term and V term

X(ω) = V(ω) E(ω)

log X(ω ) = log V(ω) + log E(ω )
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Real cepstrum (cont.)

• Change of notations because the variable is frequency 
rather than time
• Filtering -> liftering
• Frequency response -> quefrency response
• Spectrum -> cepstrum
• High (low) frequency components -> high (low) time components or 

high (low) quefrency components
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Real cepstrum (cont.)

• The log-operation converts a multiplicative term into an 
additive term, which can be operated upon by a linear 
operation such as filtering. The cepstrum is defined as 
the inverse Fourier transform

• c(n) is called the nth cepstral coefficient
• Given separated cepstra for excitation and vocal tract, they can be 

inverted to give original spectral magnitudes
• Only a moderate number of cepstral coefficients (e.g. 10-14) is 

needed for many applications, including speech recognition
• Complex cepstrum exists as well
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Cepstral analysis illustration
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Linear predictive coding (LPC) for speech modeling

• The vocal tract can be modeled as a cascaded set of 
acoustic tubes, each corresponding to a resonator

• Furthermore, each resonator corresponds to a formant
• Complete vowel spectrum can be reasonably represented by six 

resonators
• A direct implementation of the spectral model is written 

as an all-pole filter in the complex z domain (z-transform 
is the discrete-time counterpart of the Laplace transform 
- generalized form of the Fourier transform):

• P is twice the number of resonators, aj’s are coefficients

H(z) =
1

1− ajz
− j

j=1
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LPC illustration
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LPC (cont.)

• In the above system, the discrete-time response y(n) to 
the excitation x(n) can be written as

• In LPC, the coefficients are computed to give an 
approximation to the original signal. That is, one 
attempts to predict the speech signal by a linear, weighted 
sum of its previous values:

• is the linear predictor of y(n)
• The coefficients that produce the best approximation are called the 

linear prediction coefficients

y(n) = x(n) + ajy(n − j)j=1
P∑

?y (n) = a jy(n − j )j=1
P∑

?y (n)
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LPC (cont.)

• The difference between the predictor and the original 
signal is called the error signal, residual error, LPC 
residual, or prediction error
• can be viewed as an approximation to the 

excitation signal
e(n) = y(n) − ?y (n)

Signal Processing



CSE 5539-0010 11

Residual error illustration
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LPC (cont.)

• Computing the coefficients can be viewed as an 
optimization problem, where square error is generally 
used

• Various methods can be employed to find coefficients, 
including gradient descent

D = e2 (n)
n=0

N−1
∑ = [y(n) − ajy(n − j)j=1

P∑ ]2
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LPC (cont.)

• Properties of LPC representation
• For a harmonic signal, the (spectral) model spectrum tends to follow 

(hug) harmonic peaks, but not harmonic valleys, hence yielding an 
estimate of the envelope of the signal spectrum

• Too many coefficients will yield a good fit to signal spectrum, but 
miss spectral envelope. On the other hand, too few coefficients will 
miss formants. A reasonable number is between 10 and 20.

• Prediction error is significantly higher for unvoiced speech

• Compared to Fourier and cepstral analysis, LPC is more 
directly related to vocal tract characteristics
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More LPC illustrations
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More LPC illustrations
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More LPC illustrations
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Spectral analysis via filterbanks
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Summary table
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