# Basics of sound

#### • Mathematics of the pure tone

$$x(t) = A\sin(2\pi t / T + \phi)$$

or 
$$x(t) = A\sin(2\pi f t + \phi)$$

- *A*: amplitude
- *\( \phi \: phase \)*
- *T*: period
- *f*: frequency



#### Phase lead – phase lag



FIGURE 1.3. The wave shown by the solid line is said to lead the wave shown by the dashed line because every waveform feature—peak, positive-going zero crossing etc.—occurs at an earlier time for the solid line. Alternatively the dashed-line wave can be said to lag the solid-line wave. Both waves have the same frequency and amplitude, but their starting phases are different.

## Power, intensity, and decibels

- Treat signal x(t) as voltage
- By Ohm's law, the current i(t) = x(t)/R
- Then the instantaneous power is

$$P(t) = x(t)i(t) = \frac{x^2(t)}{R}$$

• Energy is the integrated power over a certain time period (e.g. kilowatt vs. kilowatthour)

# Power, intensity, and decibels (cont.)

- Treat signal *x*(*t*) as sound pressure
- Then the instantaneous intensity is

 $I(t) = x^2(t) / (\rho c)$ 

- I(t) is measured in watts/ $m^2$  (x(t): pressure, Newtons/ $m^2$  or pascals)
- $\rho$ : the density of the medium
- c: speed of sound

# Sound level

• Ratio of one sound to another (baseline), expressed as decibels (dB)

 $L_2 - L_1$  (decibels) =  $10 \log_{10}(I_2 / I_1)$ 

- Note the use of common logarithm
- Double intensity leads to 3 dB, and double amplitude leads to 6 dB
- SNR: signal-to-noise ratio
- Conversational speech is about 65 dB. Above 100 dB is damaging to the ear

#### How loud are sounds?



Source:

http://www.handsandvoices.o rg/resource\_guide/055\_audio gram.html

## Spectrum

• Fourier Series: For any periodic function of time, *x*(*t*), with period *T*, i.e.

x(t+mT) = x(t), for all integer *m* 

- x(t) can be represented as a Fourier series like this  $x(t) = A_0 + \sum_{n=1}^{\infty} [A_n \cos(\omega_n t) + B_n \sin(\omega_n t)]$
- Furthermore,

$$\omega_n = n\omega_0 = 2\pi n/T$$

• *n* is integer and  $\omega_0$  is the fundamental frequency

CSE 5539-0010

Sound Basics

# Spectrum (cont.)

 "The multiplicity of vibrational forms which can be thus produced by the composition of simple pendular vibrations is not merely extraordinarily great; it is so great that it can not be greater." (H. Holmholtz, 1863)



# Waveform illustration



A periodic waveform

CSE 5539-0010

Sound Basics

#### Spectrum illustration



# Spectrum illustration



**FIGURE 5.4.** Coefficients  $A_n$  and  $B_n$  as a function of harmonic number n (or of frequency  $nf_0$ ) constitute the Fourier spectrum of x(t)

#### Spectrum illustration



Sound Basics

## Fourier transform

For any function of time, x(t), the Fourier transform
X(ω) of x(t) is defined in terms of the Fourier integral:

$$X(\omega) = \int_{-\infty}^{+\infty} e^{-i\omega t} x(t) dt$$

- The Fourier transform converts a function of time to a function of frequency
- Inverse Fourier transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i\omega t} X(\omega) d\omega$$

$$e^{i\omega t} = \cos(\omega t) + i\sin(\omega t)$$