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ABSTRACT

In real-world environments, speech often occurs simultaneously with acoustic in-

terference, such as background noise or reverberation. The interference usually leads

to adverse effects on speech perception, and results in performance degradation in

many speech applications, including automatic speech recognition and speaker iden-

tification. Monaural speech separation and processing aim to separate or analyze

speech from interference based on only one recording. Although significant progress

has been made on this problem, it is a widely regarded challenge.

Unlike traditional signal processing, this dissertation addresses the speech separa-

tion and processing problems using machine learning techniques. We first propose a

classification approach to estimate the ideal binary mask (IBM) which is considered

as a main goal of sound separation in computational auditory scene analysis (CASA).

We employ support vector machines (SVMs) to classify time-frequency (T-F) units

as either target-dominant or interference-dominant. A rethresholding method is in-

corporated to improve classification results and maximize hit minus false alarm rates.
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Systematic evaluations show that the proposed approach produces accurate estimated

IBMs.

In a supervised learning framework, the issue of generalization to conditions dif-

ferent from those in training is very important. We then present methods that require

only a small training corpus and can generalize to unseen conditions. The system

utilizes SVMs to learn classification cues and then employs a rethresholding tech-

nique to estimate the IBM. A distribution fitting method is introduced to generalize

to unseen signal-to-noise ratio conditions and voice activity detection based adap-

tation is used to generalize to unseen noise conditions. In addition, we propose to

use a novel metric learning method to learn invariant speech features in the kernel

space. The learned features encode speech-related information and can generalize to

unseen noise conditions. Experiments show that the proposed approaches produce

high quality IBM estimates under unseen conditions.

Besides background noise, room reverberation is another major source of signal

degradation in real environments. Reverberation when combined with background

noise is particularly disruptive for speech perception and many applications. We per-

form dereverberation and denoising using supervised learning. A deep neural network

(DNN) is trained to directly learn a spectral mapping from the spectrogram of cor-

rupted speech to that of clean speech. The spectral mapping approach substantially

attenuates the distortion caused by reverberation and background noise, leading to

improvement of predicted speech intelligibility and quality scores, as well as speech

recognition rates.
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Pitch is one of the most important characteristics of speech signals. Although

pitch tracking has been studied for decades, it is still challenging to estimate pitch

from speech in the presence of strong noise. We estimate pitch using supervised

learning, where probabilistic pitch states are directly learned from noisy speech data.

We investigate two alternative neural networks modeling pitch state distribution given

observations, i.e., a feedforward DNN and a recurrent deep neural network (RNN).

Both DNNs and RNNs produce accurate probabilistic outputs of pitch states, which

are then connected into pitch contours by Viterbi decoding. Experiments show that

the proposed algorithms are robust to different noise conditions.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

When I was writing this dissertation, a science fiction action film Transformers 4:

Age Of Extinction was released. The plot of the film is rather lame and disappointing.

What I can remember are 165 minutes of explosions, car crashes, cars turning into

robots, and human figures shouting. I sat in the cinema and complained about the

film to my friends. Although we talked in a low voice and the background sounds

were strong, we could heard each other very well. How wonderful our human auditory

system is!

This is a very common situation we face in our daily life. The speech sound

reaches our ears is usually not just a clean utterance, but a mixture with acoustic

interference, such as movie sound, music, traffic noise, or another speech utterance. In

such a situation, a normal-hearing listener excels at separating the target sound from

various types of interference. Cherry used the term “cocktail party effect” to describe

the phenomenon of being able to focus auditory attention on a single conversation

1



while filtering out a range of other sound sources in a noisy room [17]. However,

comparing to the auditory system is a remarkable capacity, speech separation is still

a great challenge for machines.

Monaural speech separation and processing are the tasks of separating or analyzing

a speech signal from a monaural recording when the background interference presents.

For this task, the information regarding sound directions is not available, and one

can only make use of the intrinsic acoustic properties of speech and interference. The

task has proven to be extremely challenging [134]. On the other hand, dealing with

interference is strongly needed in many speech applications, for example, automatic

speech recognition (ASR) [81], and speaker identification (SID) [31], [149].

Various approaches have been proposed for monaural speech separation and pro-

cessing, including speech enhancement [45], [62] and model based approaches [111],

[6], [103]. However, these methods either need strong assumptions regarding the

statistical properties of interference or rely on pretrained source models.

Psychoacoustic research in auditory scene analysis (ASA) [14] suggests that au-

ditory segregation has two stages: segmentation and grouping. In segmentation,

the input sound is decomposed into sensory elements (or segments), each of which

should originate from a single source. In grouping, the segments that likely arise from

the same source are aggregated together. The cues that characterize intrinsic sound

properties, including harmonicity, onset and offset, play a pivotal role in segregation.

Inspired by the principles of ASA, computational auditory scene analysis (CASA)

aims to utilize auditory cues to segregate target sound from interference [134].
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Machine learning, as a branch of artificial intelligence, focuses on the construc-

tion and study of systems that can learn from data. In recent years, the machine

learning and speech processing communities have had increasing influences on each

other. From a machine learning standpoint, the speech separation problem is to infer

clean speech from noisy speech signals. We believe it is reasonable to formulate the

separation problem as a supervised learning problem, i.e., given features extracted

from noisy speech, we train a model to predict clean speech outputs. A typical ex-

ample is the concept of the ideal binary mask (IBM), which has been suggested as a

main computational goal for CASA systems [133]. With the target of the IBM, the

speech separation problem is formulated as a classification problem. In addition, it

is natural to train a model to directly learn a spectral representation of clean speech

from its noisy version, a case of training a regression model. We will develop these

approaches in this dissertation.

Further, deep learning has emerged as a new trend in machine learning since

2006 [50], [49]. A deep neural network (DNN) is a feedforward neural network that

has more than one hidden layer between its input and output. It is capable of

utilizing large-scale data and learning high-level representations from raw features.

These advances enable effective modeling of nonlinear interactions between speech

and the acoustic environments as well as dynamic structure of speech. With sufficient

data and appropriate training strategies, DNNs perform very well in many machine

learning tasks, such as, speech recognition [88], [48], and speech separation [140].
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Motivated by recent progress, we will employ deep learning to address the speech

separation and processing problems in this dissertation.

1.2 Computational objectives

This dissertation is concerned with monaural speech separation and processing from

nonspeech interference. The goal of this dissertation is to build a robust speech

separation and processing system.

As we have mentioned above, a main goal for CASA systems is the IBM. The

IBM is defined in terms of premixed target and interference. Specifically, with a

time-frequency (T-F) representation of a sound mixture, the IBM is a binary matrix

along time and frequency where a matrix element is 1 if the signal-to-noise ratio

(SNR) within the corresponding T-F unit is greater than a local SNR criterion (LC)

and is 0 otherwise. A series of recent studies shows that IBM separation produces

large speech intelligibility improvements in noise for both normal-hearing and hearing-

impaired listeners [3], [15], [80], [136].

Adopting the IBM as the computational goal, we can formulate sound separation

as binary classification. A support vector machine (SVM) aims to find an optimal

(i.e., largest margin) hyperplane to classify data [127], which is successfully applied

to many classification problems. Typically, the output of the discriminant function

of an SVM is a real number, the absolute value of which indicates the distance from

the optimal hyperplane. The threshold of 0 is usually used to binarize the output

to calculate the label of each datum. However, the default threshold is not always
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an optimal choice when the measurement is not classification accuracy. In speech

separation, it has been shown that the difference between the hit rate (HIT) and the

false alarm rate (FA) is well correlated to speech intelligibility [70]. Therefore we

introduce rethresholding to adjust thresholds to achieve higher HIT−FA rates rather

than classification accuracies.

For supervised learning to be effective, the distribution of the training set needs

to match that of the test set. For speech separation, if input SNRs or background

noises in test mixtures are not seen in the training set, the trained classifier will

unlikely achieve good classification results. Previous systems have avoided this is-

sue by testing on SNR and noise conditions similar to those in training. Hence, it

is important to investigate the generalization capability of such classifiers. We ob-

serve that, with SVM based classification, rethresholding can significantly improve

estimated IBMs under new noisy conditions. Therefore, we convert generalization

to a threshold determination problem. The new thresholds are adaptively computed

based on the characteristics of test mixtures, and they are expected to generalize to

new SNR or noise conditions. The rethresholding based approach yields good gener-

alization performance, but it is difficult to apply it to real-time applications because

rethresholding is applied after a system sees a certain portion of test signals. A more

desirable approach directly focuses on the mismatch problem of the training set and

the test set. We use a feature transformation approach to project original features to

a new space such that new features are robust to different noises. A model trained

on these new features is able to generalize to new noisy conditions.
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Room reverberation introduces distortion in both temporal and spectral domain.

Although human listeners have an extraordinary ability of separating a sound of in-

terest from its background under reverberant conditions, it is very challenging for

machines to simulate this perceptual ability. In this scenario, we aim to separate

clean anechoic speech from a reverberant noisy mixture. We use supervised learn-

ing to acquire a spectral mapping for dereverberation and denoising. With strong

learning capacity, a DNN is expected to be able learn the mapping in the magnitude

spectrogram domain. Therefore, we convert dereverberation and denoising to a re-

gression problem, i.e., given a real-valued noisy magnitude spectrogram, we train a

model to estimate a real-valued clean magnitude spectrogram.

One important characteristic of speech is the fundamental frequency (F0), or

pitch. It has been shown that pitch information benefits many speech applications,

including speech separation, recognition, speaker identification. Extracting pitch from

noise is difficult, because the harmonic structure is corrupted by noise. To determine

pitch in noise, we use supervised learning to estimate pitch frequency in each frame.

Utilizing temporal dependency of pitch, we connect frame-level pitch points into pitch

contours using sequential modeling.

1.3 Background

We now introduce basics of speech enhancement and model-based techniques for

speech separation and survey related studies.
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1.3.1 Spectral subtraction

Speech enhancement is concerned with improving perceptual aspects of speech that

has been degraded by additive noise. In most applications, the objective of speech

enhancement is to improve the quality and intelligibility of degraded speech [83]. In

this case, speech enhancement algorithms mainly deal with additive noise, instead

of competing speech. Therefore, these approaches can utilize the characteristics of

speech to reduce or suppress the background noise.

The spectral subtraction method is probably the earliest speech separation method

in real-world applications. The principle of spectral subtraction is simple: the clean

signal spectrum can be estimated by subtracting the estimate of the noise spectrum

from the noisy speech spectrum. This method usually uses nonspeech intervals to

estimate the noise spectrum. Therefore, it requires the assumption that the noise

spectrum does not change significantly in the time domain. Consider that clean

speech x(n) is corrupted by additive noise d(n). The mixture y(n) is,

y(n) = x(n) + d(n) (1.1)

Then we take the discrete-time Fourier transform for both sides:

Y (ω) = X(ω) +D(ω) (1.2)

where, Y (ω) can be expressed in terms of its magnitude and phase as Y (ω) =
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|Y (ω)|ejφy(ω). As phase is not expected to affect speech intelligibility, we can re-

place the speech phase and noise phase with the noisy speech phase. Therefore, we

have

|X(ω)| = |Y (ω)| − |D(ω)| (1.3)

In practice, |Y (ω)| can be calculated from the mixture. Then one needs to estimate

the noise magnitude spectrum |D(ω)|, which is usually replaced by its average value

computed during nonspeech intervals. Note that, due to inaccuracies introduced by

the noise spectrum estimation, |X(ω)| could be negative according to Eq. 1.3. In

this case, one simple solution is to set |X(ω)| to 0 to ensure a nonnegative magnitude

spectrum.

It is easy to implement a spectral subtraction method to reduce the noise in the

corrupted signal. However, a few drawbacks exist. As we discussed above, if the left

side of Eq. 1.3 is negative, we can directly set it to 0, which introduces some isolated

peaks in the spectrum domain. In the time domain, these peaks sound similar to

tones and are commonly referred to as musical noise.

Some studies utilize the oversubtraction technique to overcome the shortcoming

of speech distortion [9], [12]. That is, when subtracting the estimate of the noise spec-

trum from the noisy speech spectrum, we oversubtract the noise spectrum to further

reduce the amplitude of peaks and use nonzero spectral floor to fill in the spectral val-

leys. Berouti et al. [9] found that noisy speech processed by oversubtraction had less

musical noise than that processed by original subtraction. Further, studies use more
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flexible methods to perform oversubtraction, including nonlinear spectral [82] and

multiband spectral subtraction [68], where different frequencies or different subbands

have different subtraction factors.

Another problem for spectral subtraction is that it requires noise to be stationary

or slowly varying. For nonstationary noise, spectral subtraction is not able to effec-

tively estimate noise spectrum from nonspeech intervals and thus the approach does

not work well.

1.3.2 Wiener filtering

Spectral subtraction estimates speech spectra using the instantaneous spectra of the

noisy signal and the time-averaged spectra of the noise. If the power spectra of speech

can be estimated, one can design a filter to restore speech.

The Wiener filter derives the enhanced speech by minimizing the mean-square

error in complex spectrum domain. Let H(ω) be the discrete Fourier transform (DFT)

of the impulse response of the filter. Then the spectrum of speech can be computed

by

X(ω) = H(ω) · Y (ω) (1.4)

To obtain H(ω), we have:

H(ω) =
Px(ωk)

Px(ωk) + Pd(ωk)
=

ξk

ξk + 1
(1.5)

where, Px(ω) and Pd(ω) are the power spectrum of x(n) and d(n), respectively. ξk is
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called a priori SNR, defined as the ratio of Px(ω) and Pd(ω), which can be estimated

as a weighted combination of the past and present estimates of ξk [27], [116].

Compared with spectral subtraction, the noise residual of noisy speech processed

by Wiener filtering is similar to white noise, which is more tolerable than music noise

for human listeners. The original Wiener filter assumes stationary noise, and this

assumption can be relaxed to nonstationary noise by using Kalman filters [98]. Wiener

filters are considered to be linear estimators of the clean signal spectrum, because

in the frequency domain the enhanced speech spectrum is obtained by multiplying

the noisy speech spectrum by a Wiener filter. Some nonlinear estimators, such as

statistical-based methods, could potentially yield better performance.

1.3.3 MMSE estimation

Spectral subtraction is an estimator with little or no assumptions about the prior

distributions for power spectra of speech and noise. In fact, speech and noise sig-

nal usually have their statistic characteristics and one can utilize prior statistical

distributions to design an estimator.

Minimum mean square error (MMSE) estimators have been developed under var-

ious assumptions such as Gaussian sample distributions, lognormal distribution of

spectral magnitudes, etc. MMSE approach aims to minimize the mean-square error

(MMSE) between the estimated and true spectral magnitudes :

e = E[(X̂k −Xk)
2] (1.6)
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where X̂k is the estimated spectral magnitude at frequency ωk, andXk is the true mag-

nitude of the clean signal. Given observed noisy speechY = [Y (ω0)Y (ω1) . . . Y (ωN−1)],

the optimal MMSE estimator is:

X̂k = E[Xk|Y] =

∫

Xkp(Xk|Y)dXk (1.7)

If we have prior knowledge about the distributions of the speech and noise DFT

coefficients, we can evaluate the mean of the posterior probability density function of

Xk, i.e., p(Xk|Y).

Note that, similar to Wiener filtering, the MMSE estimator assumes that the a

priori SNR and the noise power spectrum are known. In practice, however, their

estimation is not trivial, because one can only access the noisy speech. Ephraim and

Malah [27] assumed that the Fourier transform coefficients have a complex Gaussian

probability distribution. Based on this assumption, one can calculate the conditional

probability density function p(Y (ωk)|Xk) and the prior P (Xk). By using Bayesian

formula, one can obtain the estimate of Xk. They proposed a method to estimate the

a priori SNR [27], where the speech power spectrum is computed by a maximum-

likelihood method and the noise power spectrum is estimated during nonspeech in-

tervals. However, if noise stationarity does not hold, it is not easy to obtain the noise

power spectrum. Hendriks et al. [45] proposed a noise power spectrum estimation

algorithm, which uses a weighting function derived from MMSE to estimate the noise

power spectrum, which performs well for both stationary and nonstationary noises.

In addition, Jensen and Hendriks [62] derived a gain function based on the same
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spectral magnitude MMSE as in Hendriks et al. but generated an optimal binary

mask in the MMSE sense, which is a binarization based on gain thresholds. Their

MMSE based continuous masks can improve speech intelligibility to some extent.

A key assumption made in the above MMSE algorithms is that the real and

imaginary parts of the clean DFT coefficients follow a complex Gaussian distribu-

tion. Such an assumption, however, may not hold in some situations. It has been

shown that Gamma and Laplacian probability distributions provide a better fit to

the experimental data than the Gaussian distribution [83].

Statistical model based speech separation analyzes the statistical properties of

speech and noise signal. Therefore, in general it is not sensitive to speakers. As can

be seen, it is important to estimate critical quantities such as the a priori SNR or

the noise power. However, the estimation of these parameters depends on statistical

models, and it is questionable whether the statistical assumptions are applicable to

different noisy conditions.

1.3.4 Model based methods

The previous approaches can be categorized as speech enhancement approaches,

which aim to either enhance speech or attenuate noise in noisy speech. If the inter-

ference is competing speech, speech enhancement algorithms are not able to separate

them. Model based methods use generative models to capture the feature statistics of
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isolated sources, and thus source separation becomes the problem of using prior mod-

els to identify a set of source signals that combine to produce the observed mixture

signal [25].

Due to the temporal continuity of speech, it is naturally to use hidden Markov

models (HMMs) to model speech signals. Roweis’s system [111] trained an HMM

using narrowband spectrogram for each speaker. To separate a mixture of multiple

known speakers, these pretrained models are combined into a factorial HMM architec-

ture and separation is done by inferring an underlying state sequence of the multiple

Markov chains.

A large number of studies formulated speech separation as a non-negative matrix

factorization (NMF) problem, where the spectrogram or cochleagram of a signal Y

can be represented as

Y = B ·G (1.8)

where, B is the basis matrix and G is the encoding matrix. For a multiple-source

mixture, B = [B1, . . . ,BK] and G = [G1, . . . ,GK ]
T , where Bk and Gk correspond to

the basis matrix and the encoding matrix of the kth source. If one can decompose Y

to the multiplication of B and G, it is straightforward to reconstruct the kth source

by Xk = BkGk.

Lee and Seung [78] proposed to decompose the matrix by minimizing the re-

construction error between the observation Y and the model BG. Virtanen [132]
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incorporated temporal continuity to the cost function and iteratively updated the

gains and the spectra.

The model-based approaches rely on pretrained models, resulting in a difficulty

on generalization. Researchers attempted to overcome this problem by model adap-

tation. Ozerov et al. [97] proposed a general framework for model based source

separation, which can be applied to either blind separation with random initializa-

tion or non-blind separation with pretrained models. But without prior knowledge,

random initialization usually does not yield satisfactory performance according to on

our experiments.

1.4 Organization of dissertation

The rest of this dissertation is organized as follows.

The next chapter presents a classification based speech separation to estimate the

IBM. This study employs support vector machines to classify T-F units as either

target-dominant or interference-dominant. A rethresholding method is incorporated

to improve classification results and maximize hit minus false alarm rates. An audi-

tory segmentation stage is utilized to further improve estimated masks. Systematic

evaluations show that the proposed approach produces high quality estimated IBMs

and outperforms another classification based separation system in terms of classifica-

tion accuracy.

Chapter 3 investigates the generalization problem for classification based speech

separation. This study focuses on the situation of mismatch between the training
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set and the test set. This chapter presents methods that require only a small train-

ing corpus and can generalize to unseen conditions. The system utilizes SVMs to

learn classification cues and then employs a rethresholding technique to estimate the

IBM. A distribution fitting method is used to generalize to unseen SNR conditions,

and voice activity detection based adaptation is used to generalize to unseen noise

conditions.

Chapter 4 describes a different approach to address the generalization problem.

We propose to use a metric learning method to extract invariant speech features in

the kernel space. As the learned features encode speech-related information that is

robust to different noise types, the system is expected to generalize to unseen noise

conditions.

Chapter 5 presents a DNN based approach for dereverberation and denoising.

The input is a magnitude spectrogram of noisy speech and the output is that of clean

speech. A DNN is trained to learn a spectral mapping to remove or attenuate rever-

beration and noise. We evaluate our approach for dereverberation, speech separation,

and ASR tasks.

Chapter 6 discusses pitch estimation in noise. We investigate two alternative neu-

ral networks modeling pitch state distribution given observations. The first one is a

feedforward DNN, which is trained on static frame-level acoustic features. The second

one is a recurrent deep neural network (RNN) which is trained on sequential frame-

level features and capable of learning temporal dynamics. Both DNNs and RNNs
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produce accurate probabilistic outputs of pitch states, which are then connected into

pitch contours by Viterbi decoding.

Chapter 7 summarizes the contributions of this dissertation and outlines future

research directions.
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CHAPTER 2

A CLASSIFICATION BASED APPROACH TO SPEECH

SEPARATION

For monaural speech separation, one can only utilize the intrinsic properties of speech

or interference to separated target speech from background noise. The IBM has been

proposed as a main goal of sound separation in CASA, and has led to substantial

improvements of human speech intelligibility in noise. This chapter proposes a clas-

sification approach to estimate the IBM, and employs support vector machines to

classify T-F units as either target-dominant or interference-dominant. A rethreshold-

ing method is incorporated to improve classification results and maximize hit minus

false alarm rates. An auditory segmentation stage is utilized to further improve es-

timated masks. Systematic evaluations show that the proposed approach produces

high quality estimated IBMs and outperforms a recent system in terms of classifica-

tion accuracy. The work presented in this chapter has been published in the Pro-

ceedings of the 2011 IEEE International Conference on Acoustic, Speech, and Signal

Processing [36] and Journal of the Acoustical Society of America [37].
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2.1 Introduction

Monaural speech separation has been studies for decades. Various approaches have

been proposed for monaural speech separation. Speech enhancement approaches [27],

[45], [62] utilize the statistical properties of the signal to enhance speech that has

been degraded by additive non-speech noise, which need assumptions regarding the

statistical properties of signals. Model based approaches [115], [96], [148], [97] use

trained models to capture the characteristics of individual signals for separation but

they strongly rely on pre-trained source models. On the other hand, computational

auditory scene analysis (CASA) [134] aims to separate a sound mixture based on

perceptual principles [14].

As we mentioned in Sect. 1.2, the IBM has been suggested as a main goal for

CASA systems [133], which is defined in terms of premixed target and interference

and shown to produces substantial speech intelligibility improvements in noise for

both normal-hearing and hearing-impaired listeners [3], [15], [80], [136].

Since the IBM is a matrix of binary values, IBM estimation is a form of bi-

nary classification. Roman et al. [107] proposed an early supervised classification

method for IBM estimation although the method used binaural features for speech

separation. Several studies employ binary classification for IBM estimation in the

monaural domain. Seltzer et al. [118] treated the identification of noise components

in a spectrogram as a Bayesian classification problem for robust automatic speech

recognition. Weiss and Ellis [141] utilized relevant vector machines to classify T-F
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units. Jin and Wang [63] trained multilayer perceptrons (MLP) to classify T-F units

using pitch-based features. Their system obtains good separation results in reverber-

ant conditions. Kim et al. [70] used Gaussian mixture models (GMM) to learn the

distribution of amplitude modulation spectrum (AMS) features for target-dominant

and interference-dominant units and then classified T-F units by Bayesian classifi-

cation. Their classifier led to speech intelligibility improvements for normal-hearing

listeners. Kim and Loizou [69] further proposed an incremental training procedure

to improve speech intelligibility, which starts from a small initial model and updates

the model parameters as more data become available.

From the classification point of view, the first issue to address is feature extrac-

tion. The features used should distinguish target-dominant units from interference-

dominant units. Pitch, or harmonic structure, is a prominent feature in voiced speech.

Some previous studies show that pitch-based features are very effective for IBM es-

timation and robust to various forms of signal corruption [54], [63]. However, pitch-

based features cannot address unvoiced speech separation because unvoiced speech

lacks harmonic structure. On the other hand, AMS contains information for discrim-

inating both voiced and unvoiced speech from nonspeech intrusions [126], [70]. We

propose to combine these two types of features and construct a larger feature set

for classification, which is expected to be discriminative in both voiced and unvoiced

speech and generalize to different noise types.

Another important issue for classification is classifier design. Previously, MLPs

[56], [63] and GMMs [70] have been explored for classification based speech separation.
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In this study, we propose to use SVMs, which find an optimal (i.e., largest margin)

hyperplane to classify data [127]. Typically, the output of the discriminant function

of an SVM is a real number, the absolute value of which indicates the distance from

the optimal hyperplane. The threshold of 0 is commonly used to binarize the output

to calculate the label of each datum. In this study, we introduce a rethresholding

technique to improve classification results and maximize a different measure called the

hit rates minus false-alarm rates. In addition, we incorporate an auditory segmenta-

tion method to group more target-dominant units and remove interference-dominant

units [63].

The chapter is organized as follows. In the next section, we present an overview

of the proposed system. Section 2.3 describes how to extract auditory features. A

detailed description of SVM classification is presented in Section 2.4. Section 2.5

describes the auditory segmentation stage. The systematic evaluation results and

comparison are given in Section 2.6. We discuss related issues and conclude the

chapter in Section 2.7.

2.2 System overview

Fig. 2.1 shows the diagram of the proposed system, which consists of several stages.

The first stage of the system is auditory peripheral analysis. An input mixture signal

x(t) is resampled to 16000 Hz and analyzed by a 64-channel gammatone filterbank,

with their center frequencies distributed from 50 Hz to 8000 Hz [135]. This filterbank

is a standard model of cochlear filtering and is derived from psychophysical studies of
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Figure 2.1: Diagram of the proposed speech separation system.

the auditory periphery [99]. In each channel, the output is divided into 20-ms time

frames with 10-ms overlapping between consecutive frames. This processing produces

a decomposition of the input signal into a two-dimensional T-F representation, or

cochleagram [135]. Each T-F unit in the cochleagram corresponds to a frequency

channel and a time frame.

The next stage, feature extraction, extracts two types of features from each T-F

unit: pitch-based features [57] and AMS features [125]. After the feature extraction

stage, we train SVMs to classify T-F units as either target-dominant or interference-

dominant. Due to frequency specific characteristics of the input signal, one SVM

is trained for each channel independently. Finally, in the auditory segmentation

stage, we perform cross-channel correlation and onset/offset analysis to generate T-

F segments. The T-F units in a segment primarily originate from the same sound

source and therefore we group them into either the target or interference stream

based on unit classification results. The final binary mask represents an estimate

of the IBM and is used to resynthesize separated target speech. The resynthesis is
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basically performed by summing the filter responses in target-dominant units and

compensating for phase shifts across the filterbank [135].

2.3 Feature extraction

2.3.1 Pitch-based features

Let uc,m denote a T-F unit for channel c and frame m and x(c, t) denote the filter

response for channel c at time t. To extract pitch-based features for uc,m, the nor-

malized autocorrelation function (ACF), A(c,m, τ), is computed at each lag τ [135]:

A(c,m, τ) =
∑

n x(c,mTm − nTn)x(c,mTm − nTn − τTn)
√

∑

n x
2(c,mTm − nTn)

∑

n x
2(c,mTm − nTn − τTn)

(2.1)

Here, n denotes discrete time, Tm = 10 ms is the frame shift and Tn is the sampling

time. We use input mixtures sampled at 16 kHz in this study, which gives Tn = 0.0625

ms. The above summation is over 20 ms, the length of a time frame. We also

compute envelope ACF, AE(c,m, τ), similar to Eq. (2.1), which captures amplitude

modulation information in high frequency channels.

For voiced speech, uc,m is considered target-dominant if the corresponding re-

sponse or response envelope has a period close to that of the target speech, i.e., pitch

period τS(m) [54]. In this case, A(c,m, τ) will have a peak close to τS(m). There-

fore, we can use the ACF and the envelope ACF at the pitch lag, A(c,m, τS(m)) and
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AE(c,m, τS(m)), to construct pitch-based features. These two features have been

demonstrated to be effective for discriminating voiced speech [57].

As commonly done in automatic speech recognition, we calculate delta features

in order to encode feature variations. Specifically, for m ≥ 2, time delta fea-

ture ∆AM(c,m, τS(m)) is simply set to A(c,m, τS(m)) − A(c,m − 1, τS(m)); and

∆AM(c, 1, τS(m)) is set to ∆AM(c, 2, τS(m)) for convenience. We compute frequency

delta feature ∆AC(c,m, τS(m)) in the same way. The pitch-based feature vector is

then given by:

xACF (c,m) =






















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(2.2)

When we extract the pitch-based features, the pitch period τS(m) needs to be

specified. In order to remove the influence of pitch errors on the speech separation

system, we use Praat [10] to extract the ground-truth pitch from the premixed speech

in the training phase.

In the test phase, we extract pitch from mixtures by a pitch tracker. Specifically,

we use the recently proposed tandem algorithm [57] which iteratively estimates pitch

and computes a binary mask. To further improve pitch tracking results, we generate

the initial pitch estimate for the tandem algorithm by utilizing the multipitch tracker
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of [64] which works well when more than one voiced sound are present. The tandem

algorithm produces accurate pitch estimation results under most conditions, but for

some mixtures, the generated pitch contours overlap in the time domain. So we

need to further group pitch contours into the target track. We first remove those

pitch contours shorter than 50 ms or out of the plausible pitch range for the specific

speaker; the plausible ranges of the female and male speakers are set to [150, 400 Hz]

and [80, 300 Hz], respectively. For two overlapping pitch contours, we retain the one

closer to the average pitch frequency (250 Hz for the female speaker and 130 Hz for

the male speaker). To exclude residual interference pitch contours, we first employ a

simple energy-based method to detect voiced frames. Specifically, we label a frame as

strongly voiced if the normalized log energy of the frame is greater than 0.6, voiced

if the energy is between 0.4 and 0.6, and unvoiced otherwise. Then a pitch contour is

selected if more than 15% frames of this contour are strongly voiced or 35% frames

are either voiced or strongly voiced. This simple selection method eliminates most

interference pitch contours and produces the final pitch estimation result.

Note that, since unvoiced frames lack harmonic structure, we simply put 0 as the

values of the corresponding vector. In this way, the pitch-based features will not play

a role in unvoiced frames, and classification in those frames will instead rely on AMS

features.
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2.3.2 AMS features

AMS features exist in both voiced and unvoiced speech, which contain information

on both center frequencies and modulation frequencies within each analysis frame

[126]. We use the same method of AMS extraction described in [70]. Specifically,

we first extract the envelope from the filter response within each T-F unit. The

envelopes are computed by full-wave rectification and then decimated by a factor of

4. The decimated envelope is then Hanning windowed with zero-padding, and a 256-

point fast Fourier transform (FFT) is computed. The FFT computes the modulation

spectrum in each T-F unit, with a frequency resolution of 15.6 Hz. Next, the FFT

magnitudes are multiplied by 15 triangular-shaped windows spaced uniformly across

the 15.6-400 Hz range and summed to produce 15 modulation spectrum amplitudes,

which represent the AMS feature vector. We denote them by M1(c,m), ...,M15(c,m).
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Similarly, we calculate delta features ∆MT and ∆MC across frames and channels

respectively, as in [70]. The AMS feature vector is given by:

xAMS(c,m) =


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
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
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(2.3)

The total dimensionality of the AMS feature vector xAMS(c,m) is 3 × 15 = 45.

Finally, the pitch-based feature vector and the AMS feature vector are combined into

a 51-dimensional feature vector for each T-F unit. The combined features are used

as the input to the classifier.

2.4 SVM classification

Given the extracted features, the task now is to classify T-F units to either target-

dominant or interference-dominant. As mentioned earlier, one SVM is trained for

each filter channel. By applying a kernel trick, an SVM maps a feature vector xi into

a higher dimensional feature space where a hyperplane is derived to maximize the
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margin of class separation. In this study, we choose the radial basis function kernel,

K(xi,xj) = exp(−γ||xi − xj||
2).

In the training phase, given a set of pairs (xi, yi), where xi is a feature vector and

yi is the corresponding binary label, the SVM requires a solution to the following

optimization problem:

min
w,ξ

1

2
‖w‖2 + C

∑

i

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0.

(2.4)

where w is the weight vector of the hyperplane. ξ is a nonnegative variable measuring

the deviation of a data point from the hyperplane. C controls the trade-off between

complexity of the SVM and the number of nonseparable points. φ is the vector of

a set of nonlinear functions which transform the input space to a feature space of

higher dimensionality. b is the bias. The parameters C and γ must be specified, and

we choose them using 5-fold cross-validation in each channel separately. The SVM

library LIBSVM [16] is used in our experiments.

Once the SVM training is completed, we use the trained models to classify T-F

units. The discriminant function for classification is given as follow:

f(x) = wTφ(x) + b =
∑

i∈sv
αiyiK(x,xi) + b (2.5)

where SV denotes the set of support vector indices in training data. αi is a Lagrange

multiplier, which can be determined in the training phase. For a textbook treatment

of SVM, the reader is referred to [43].
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The output of the discriminant function is a real number and the binary label of

each datum is typically given by the sign of this output. We find that this standard

method tends to under-label target-dominant units for several reasons. First, with

unbalanced training samples, the SVM hyperplane is often skewed to the minority,

i.e., the class with fewer data [1, 143]. For typical IBM estimation, the input SNR

is around 0 dB and the interference is broadband noise. In this situation, target-

dominant units are much fewer than interference-dominant units because the speech

energy is more concentrated in the cochleagram than that of noise. The unbalanced

data likely cause the trained SVMs to misclassify some 1s to 0s. The second reason is

that we use different pitch trackers to extract pitch-based features in the training and

test phases, which makes the hyperplane obtained from the training data not exactly

match that of the test data. More discussion on this point will be given in Section

2.7. Additionally, the standard SVM aims to minimize the classification error, but

one of the goals of this study is to maximize HIT−FA.

For the above reasons, we propose to apply rethresholding as a post-training strat-

egy, which is used in the decision phase without affecting the training phase. This

technique has been successfully used in some other applications [13], [120]. Given a

feature vector x, the discriminant function gives an algebraic distance from x to the

optimal hyperplane [43]:

r =
f(x)

‖w‖
(2.6)

Therefore, those data with small |f(x)| are close to the trained hyperplane and thus
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easy to be misclassified if the hyperplane is skewed. We adopt a channel-specific

threshold to label f(x). Specifically, we select the threshold θc that maximizes the

HIT−FA rate in channel c in a validation set with 10 sentences, and then use the

new threshold to binarize f(x):

y(x) =















1, if f(x) > θc

0, otherwise

(2.7)

Other approaches can be used to adapt the hyperplane. For example, one can use

f(x) to estimate the posteriori probability P (y = 1|f(x)), and use P (y = 1|f(x)) =

0.5 as a criterion to classify data [100]. Another method is to find the threshold

which makes the percentage of each class matches the percentage in the training

data. We have tried both methods, but they do not perform better than the simple

cross-validation method.

With SVM classification, our system generates an estimated IBM by combining

the classification results in all the channels. As an example, Fig. 2.2 illustrates

the separation results for a noisy speech signal. Fig. 2.2(a) shows the cochleagram

of a female utterance, “A man in a blue sweater sat at the desk,” from the IEEE

corpus [110]. Fig. 2.2(b) shows the cochleagram of a factory noise. The cochleagram

of their mixture at 0 dB is shown in Fig. 2.2(c). By comparing the energy of each

T-F unit in Figs. 2.2(a) and (b), we obtain the IBM shown in Fig. 2.2(d) where 1

is indicated by white and 0 by black, and LC is -5 dB. Fig. 2.2(e) shows the binary

mask generated by the standard SVMs without rethresholding. The SVMs correctly

classify most T-F units in both voiced and unvoiced speech intervals, but miss some
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Figure 2.2: (Color online) IBM estimation. (a) Cochleagram of a female utterance.
(b) Cochleagram of a factory noise. (c) Cochleagram of the mixture at 0
dB. (d) IBM for the mixture. (e) SVM-generated mask without rethresh-
olding. (f) SVM-generated mask with rethresholding. (g) Estimated IBM
after auditory segmentation. (h) Cochleagram of the masked mixture by
the estimated IBM.
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target-dominant units. By applying rethresholding, the system recovers many target-

dominant units as shown in Fig. 2.2(f). This recovery comes at the expense of adding

some scattered interference-dominant units.

2.5 Auditory segmentation

As shown in Fig. 2.2, an SVM-generated mask is close to the IBM, but still misses

some target-dominant units and contains some interference-dominant units. We fur-

ther improve estimated IBMs by auditory segmentation, which refers to a stage of

processing that breaks the auditory scene into contiguous T-F regions each of which

contains acoustic energy mainly from a single sound source [See also [63], [57], [58]].

With the voicing of a frame determined as described in Section III.A, we utilize

cross-channel correlation to segment T-F units for voiced intervals [135]. The cross-

channel correlation measures the similarity between the responses of two adjacent

filters. The units with high cross-channel correlation indicate that they are likely

from the same sound source. We calculate the cross-channel correlation of u(c,m) as

follow:

C(c,m) =
1

L

L−1
∑

τ=0

Â(c,m, τ)Â(c+ 1, m, τ) (2.8)

where Â(c,m, τ) denotes a normalized autocorrelation function with zero mean and

unit variance, and L is the maximum delay for the plausible pitch frequency range

from 70 to 400 Hz. For low frequency channels (below 2000 Hz), only units with suf-

ficiently high cross-channel correlation (≥ 0.95) are iteratively merged into segments.
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We use a similar way to calculate the cross-channel correlation of envelope response

CE(c,m) and use it to segment units in high frequency channels (above 2000 Hz).

Since unvoiced speech lacks harmonic structure, we utilize onset/offset analysis

[55] to segment T-F units within unvoiced intervals. Onsets and offsets correspond to

sudden acoustic energy increases and decreases, respectively. Segments are formed by

matching pairs of onset and offset fronts. In addition, a multiscale analysis is applied

to integrate segments at several time-frequency scales [55].

With obtained segments, we first treat all the segments shorter than 50 ms (or

5 frames) as the interference. We then label each remaining segment wholly as the

target (i.e. mask value 1) if more than half of the segment energy is included in the

classified target units in Section 2.4. If a segment fails to be labeled as the target in

this way, the individually classified T-F units within the segment are still included in

the target stream. This results in the final estimated IBM, and the separated target

speech can be resynthesized from this mask [135]. Fig. 2.2(g) shows a binary mask

after auditory segmentation. We can see that most isolated interference-dominant

units are removed from the mask and some missed target-dominant units are grouped

at the same time. The cochleagram of the masked mixture by the estimated IBM is

shown in Fig. 2.2(h). Note the similarity of Fig. 2.2(h) and Fig. 2.2(a).
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2.6 Evaluation and comparison

2.6.1 Systematic evaluation

We evaluate the performance of our system by using the IEEE corpus [110], which

contains 720 sentences spoken by two speakers, one male and one female. All ut-

terances are downsampled from 25 kHz to 16 kHz. For the training set, we choose

100 utterances mixed with 3 types of noise—N1: speech-shaped noise, N2: factory

noise, N3: 20-talker babble noise—at -5, 0 and 5 dB SNR. The test set consists of

60 utterances mixed with the 3 types of noise at -5 and 0 dB. There is no overlap

between the training and the test utterances. Each utterance is mixed with a noise

sample randomly cut out from the original noise recording. The LC is set to -5 dB

for all 64 channels to generate IBMs. These choices are motivated by those in [70]

where the same speech corpus and noises were used.

To quantify the performance of our system, we compute the HIT rate which is

the percent of the target-dominant units in the IBM correctly classified, and the

FA rate which is the percent of the interference-dominant units in the IBM wrongly

classified. It has been shown that HIT−FA is highly correlated to human speech

intelligibility [80], [70]. We also compute the classification accuracy, which is the

percent of misclassified units.

Tables 2.1 and 2.2 show the average results for the female utterances and the male

utterances, respectively. As shown in the tables, our system achieves relatively high
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Table 2.1: Classification results for female utterances mixed with different noises at
different input SNRs

Speech-shaped Factory Babble

-5 dB 0 dB -5 dB 0 dB -5 dB 0 dB

HIT 0.601 0.699 0.600 0.705 0.614 0.690
Proposed FA 0.041 0.039 0.086 0.071 0.171 0.161

HIT−FA 0.560 0.660 0.514 0.634 0.439 0.529
Accuracy 0.903 0.896 0.861 0.870 0.775 0.786

HIT 0.597 0.610 0.574 0.604 0.539 0.563
Kim et al. FA 0.207 0.162 0.267 0.224 0.272 0.246

HIT−FA 0.390 0.448 0.307 0.380 0.267 0.317
Accuracy 0.763 0.782 0.706 0.731 0.684 0.689

Table 2.2: Classification results for male utterances mixed with different noises at
different input SNRs

Speech-shaped Factory Babble

-5 dB 0 dB -5 dB 0 dB -5 dB 0 dB

HIT 0.541 0.674 0.561 0.667 0.590 0.660
Proposed FA 0.098 0.081 0.153 0.125 0.234 0.192

HIT−FA 0.442 0.593 0.408 0.542 0.355 0.468
Accuracy 0.852 0.863 0.805 0.827 0.729 0.762

HIT 0.573 0.576 0.545 0.558 0.460 0.491
Kim et al. FA 0.195 0.150 0.241 0.204 0.251 0.225

HIT−FA 0.379 0.427 0.304 0.354 0.210 0.266
Accuracy 0.773 0.789 0.728 0.742 0.688 0.686
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HIT rates and relatively low FA rates even at these low input SNRs. Under all con-

ditions, the accuracy results are greater than 75% for the female utterances and 70%

for the male utterances. These results demonstrate that our system produces high

quality estimated IBMs. Here, the babble noise results are relatively lower than oth-

ers, mainly because it is more difficult to group pitch contours under these conditions.

We also observe that the pitch determination performance of the male utterances is

slightly lower than that of the female utterances, causing the classification results for

the male utterances not as good as those for the female utterances. We note that,

without auditory segmentation, the average HIT−FA results in Tables I and II are

lower by 2% for the female utterances and 5% for the male utterances.

In order to provide an indication of generalizability, we also test our system on

two unseen noises, N4: white noise and N5: cocktail-party noise; different from the

babble noise, the cocktail party noise mostly contains nonspeech background noise.

Table 2.3 gives the results. From the table, one can see that our system achieves 58%

HIT−FA rate for female speaker and 48% for male speaker on average, which are close

to those with the noises in Tables 2.1 and 2.2. We believe that the generalizability

of our system mainly results from the use of pitch-based features (See the following

discussion associated with Table 2.6 and Section 2.6.2).

The proposed system utilizes pitch-based features and AMS features to classify

T-F units. To investigate the relative merit of each feature type, we use each type to

train a classifier. The training and the test corpora are the same as those for combined

features. As pitch exists only in voiced speech intervals, the system with pitch-based
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Table 2.3: Classification results for new noises
Female Speaker Male Speaker

White Cocktail-party White Cocktail-party

-5 dB 0 dB -5 dB 0 dB -5 dB 0 dB -5 dB 0 dB

HIT 0.694 0.726 0.543 0.663 0.718 0.771 0.460 0.616
Proposed FA 0.073 0.083 0.070 0.063 0.167 0.177 0.146 0.152

HIT-FA 0.622 0.642 0.473 0.600 0.551 0.595 0.314 0.464
Accuracy 0.888 0.870 0.833 0.840 0.813 0.811 0.781 0.780
HIT 0.483 0.564 0.554 0.585 0.466 0.542 0.498 0.538

Kim et al FA 0.258 0.256 0.291 0.244 0.168 0.148 0.356 0.326
HIT-FA 0.225 0.308 0.263 0.342 0.298 0.394 0.142 0.212
Accuracy 0.698 0.700 0.670 0.696 0.768 0.777 0.617 0.634

features is trained only during voiced intervals. Similar to the system with combined

features, the ground-truth pitch is used in the training phase and the estimated pitch

is used in the test phase. For comparison, we evaluate HIT−FA results in voiced

speech intervals which are determined by ground-truth pitch. Auditory segmentation

is not included in all systems. Tables 2.4 and 2.5 compare the HIT−FA results for

individual feature types. On average, the system with combined features achieves

the best HIT−FA rate, which outperforms the AMS features by 3.3% and pitch-

based features by 2.2%. Table 2.6 shows the comparison for new noises. In this case,

the system with AMS features performs lower than that with combined features by

around 20%. In contrast to AMS features, pitch-based features are robust to unseen

noises, and achieve comparable results with combined features. This comparison

suggests that the capacity of generalization of the proposed system mainly derives

from pitch-based features. AMS features capture mixture envelopes which tend to be

sensitive to different noises.
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Table 2.4: Comparison of systems with different features for female utterances
HIT−FA Speech-shaped Factory Babble

-5 dB 0 dB -5 dB 0 dB -5 dB 0 dB

Combined 0.518 0.632 0.504 0.603 0.436 0.462
AMS 0.506 0.600 0.433 0.527 0.412 0.462

Pitch-based 0.514 0.607 0.511 0.600 0.341 0.385

Table 2.5: Comparison of systems with different features for male utterances
HIT−FA Speech-shaped Factory Babble

-5 dB 0 dB -5 dB 0 dB -5 dB 0 dB

Combined 0.369 0.535 0.376 0.511 0.346 0.430
AMS 0.388 0.446 0.373 0.426 0.363 0.412

Pitch-based 0.340 0.526 0.406 0.571 0.274 0.383

Table 2.6: Comparison of systems with different features for new noises
Female Speaker Male Speaker

White Cocktail-party White Cocktail-party

-5 dB 0 dB -5 dB 0 dB -5 dB 0 dB -5 dB 0 dB

Combined 0.590 0.620 0.469 0.591 0.554 0.633 0.278 0.408
AMS 0.206 0.341 0.311 0.408 0.225 0.363 0.233 0.295

Pitch-based 0.603 0.642 0.382 0.552 0.608 0.674 0.258 0.397

37



Although our system is trained and tested on the IEEE corpus containing only

one female and one male speaker, the classification system is expected to be speaker

independent as the features used, i.e. AMS and pitch-based features, are not extracted

in a speaker dependent way. To verify this, we directly use the trained models from

the IEEE corpus, without change, to test on a new corpus from the TIMIT corpus

[151] which contains different speakers. Specifically, for a system of each gender, the

training set contains only one speaker from the IEEE corpus, but the test set contains

10 different speakers from the TIMIT corpus, each of which produces one utterance

mixed with the three noises at -5 and 0 dB SNR. The test results on TIMIT utterances

are given in Tables 2.7 and 2.8. As shown in the tables, although the test set uses

different speakers, the separation results are only slightly lower than those shown in

Tables 2.1 and 2.2. On average, there is 3.4% degradation for female speakers and

2.9% for male speakers in terms of HIT−FA rates, demonstrating that the system can

generalize to different speakers. On the other hand, there is some gender dependency

as male and female voices show distinct feature values (particularly pitch values).

Gender dependency, however, is not a big limitation as one can readily train a male

model and a female model, and gender detection is a relatively easy task [144].

2.6.2 Comparison with Kim et al.’s system

[70] proposed a speech separation system which obtains high HIT−FA rates for noisy

IEEE utterances and demonstrates improved speech intelligibility in listening tests.

Here, we compare our system with theirs in terms of HIT−FA. To implement their
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Table 2.7: Classification results for female speakers on the TIMIT utterances
Speech-shaped Factory Babble

-5 dB 0 dB -5 dB 0 dB -5 dB 0 dB

HIT 0.636 0.700 0.587 0.723 0.579 0.653
TIMIT FA 0.127 0.066 0.125 0.114 0.173 0.146

HIT−FA 0.509 0.635 0.462 0.609 0.405 0.508
Accuracy 0.835 0.875 0.824 0.845 0.773 0.788

Table 2.8: Classification results for male speakers on the TIMIT utterances
Speech-shaped Factory Babble

-5 dB 0 dB -5 dB 0 dB -5 dB 0 dB

HIT 0.611 0.679 0.594 0.667 0.572 0.641
TIMIT FA 0.191 0.104 0.195 0.156 0.245 0.234

HIT-FA 0.419 0.576 0.399 0.511 0.327 0.407
Accuracy 0.777 0.841 0.768 0.798 0.713 0.723

system, we use AMS features to train a 256-component GMM for each binary label

in each channel and test their system on the same corpus as used in evaluating our

system. The results from their system are given in Tables 2.1-2.3.

From Tables 2.1 and 2.2, one can see that our system significantly outperforms

theirs in terms of HIT−FA and accuracy. The average improvements are 17% for

the HIT−FA rate and 9% for accuracy. Table 2.3 shows that their system does not

generalize well to the two unseen noises, where the HIT−FA rates obtained are all

lower than 40%. We have computed 95% confident intervals of HIT−FA means under

all conditions, all of which are less than 2.5% for the proposed system and 2% for Kim

et al.’s system. These analyses show that the performance differences are statistically

significant.
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As we have seen above, these comparisons show that our system significantly out-

performs Kim et al.’s system. We should point out that the amount of training data

used in the above comparison may be inadequate for the GMM classifiers used in

Kim et al., which have more parameters than the SVM classifiers used in our sys-

tem. In addition, their system uses a 25-channel frontend and the above comparison

uses a 64-channel frontend. While the reliance on a large amount of training data

should be considered as a limitation, these differences nonetheless may put Kim et

al.’s system in an unfavorable situation. To rectify this situation, we perform a fur-

ther comparison using exactly the same frontend processor, same features, and same

training methodology as in Kim et al., except for the classifiers. Specifically, we first

downsample utterances from 25 kHz to 12 kHz, and then use the 25-channel mel-scale

filterbank as in Kim et al.’s system. Only AMS features are extracted from each T-F

unit. The training set includes 390 IEEE sentences, each of which is mixed with

the 3 noises at 3 input SNRs as described in the previous subsection. The test set

includes 60 sentences mixed with 3 noises at -5 and 0 dB. The LC is set to -8 dB

for the lower 15 frequency channels and -16 for the higher 10 frequency channels.

No auditory segmentation is applied in our system. For a rigorous comparison, we

train our SVM-based system and directly use the program code with trained GMMs

provided by them to estimate the IBM.

Tables 2.9 and 2.10 show the comparative results. Our system obtains greater than

60% HIT−FA rates for the female utterances and greater than 50% HIT−FA rates for

the male utterances. Compared to GMMs, SVMs improve HIT−FA rates under most
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Table 2.9: Classification results with AMS features for female utterances
Speech-shaped Factory Babble

-5 dB 0 dB -5 dB 0 dB -5 dB 0 dB

HIT 0.775 0.829 0.743 0.823 0.808 0.831
SVM FA 0.084 0.101 0.129 0.139 0.158 0.166

HIT−FA 0.691 0.728 0.614 0.684 0.650 0.665
HIT 0.808 0.796 0.819 0.814 0.814 0.784

GMM FA 0.133 0.147 0.240 0.219 0.166 0.164
HIT−FA 0.676 0.650 0.580 0.595 0.648 0.620

Table 2.10: Classification results with AMS features for male utterances
Speech-shaped Factory Babble

-5 dB 0 dB -5 dB 0 dB -5 dB 0 dB

HIT 0.677 0.748 0.652 0.753 0.766 0.768
SVM FA 0.067 0.071 0.152 0.154 0.183 0.163

HIT−FA 0.611 0.678 0.501 0.598 0.563 0.605
HIT 0.760 0.763 0.769 0.770 0.777 0.757

GMM FA 0.158 0.156 0.262 0.234 0.220 0.196
HIT−FA 0.602 0.608 0.508 0.535 0.558 0.561

conditions, except for the factory noise at -5 dB for the male utterances where results

are comparable. Statistically, the 95% confident intervals of the HIT−FA means for

the proposed system are around ±1.5%, while those for the GMM system are ±2%

on average.

2.7 Discussion and conclusion

In this study, we have proposed SVM-based classification for IBM estimation. As a

discriminative classifier, the SVM does not model the distribution of the observed

features but directly gives a predictive model conditioned on the observed data. The

SVM aims to not only minimize the classification error but find a hyperplane with the
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largest margin, which potentially improves generalizability. In contrast, the GMM

specifies a joint probability density function over observed data and labels, and tends

to make more assumptions than discriminative classifiers. We also attempted to use

MLPs as classifiers, but observed that the performance is poorer than either that of

SVMs or GMMs.

By using rethresholding, we obtain improved classification results. As standard

SVMs tend to under-label T-F units, this method mainly increases HIT rates and

hence improves HIT−FA rates. Although rethresholding introduces some scattered

interference-dominant units, it is easy to remove these units by auditory segmenta-

tion. Note that the setting of thresholds is application-dependent. In this study,

we find that a small validation set is sufficient to find appropriate thresholds and

they are robust to the choice of validation set. Noth that, although one can apply

rethresholding to GMM based classification, the performance is still lower than that

of SVM in our experiment.

Feature extraction plays an important role in classification. Pitch offers a major

cue to separated voiced speech from other sounds. However, determination of pitch

in noisy conditions is a difficult task. Although we can use the ground-truth pitch

to generate pitch-based features in the training phase, we have to estimate pitch

from mixtures in the test phase. We have tried to use the same pitch tracker to

estimate pitch in both training and test phases, which generates matched features in

the training and test phases. However, the models trained using the estimated pitch

do not perform better than those using the ground-truth pitch extracted from clean
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speech. A pitch tracker has important influence on classification results. With better

pitch estimation, our system should perform even better.

AMS features are easy to extract and exist in both voiced and unvoiced speech.

As indicated in the results of Section 2.6, the generalizability of AMS features appears

not as good as pitch-based features. Another limitation of AMS features is that they

can only address nonspeech interference. For mixtures of two voices, AMS features

are not able to distinguish them, but with multipitch tracking pitch-based features

are still discriminative even though this chapter does not deal with separation of

two voices. The combination of two types of features constitutes a complementary

feature set, which performs better than either type alone. In addition, as the extracted

features capture speech characteristics rather than speaker characteristics, the system

is speaker-independent as shown in the Section 2.6.1.

In summary, we approach monaural speech separation as binary classification.

Our system extracts pitch-based and AMS features from T-F units and utilizes SVMs

to classify them. An auditory segmentation stage further improves classification re-

sults. Systematic evaluations show that our system yields accurate classification

results. As demonstrated in [80] and [70], HIT−FA rates are correlated with speech

intelligibility. Since our system achieves higher HIT−FA rates than Kim et al.’s sys-

tem, it seems reasonable to expect that our system can lead to improved intelligibility.
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CHAPTER 3

ON GENERALIZATION OF CLASSIFICATION BASED

SPEECH SEPARATION

In the previous chapter, we have proposed to use a supervised learning approach to

speech separation. However, in a supervised learning framework, if the distribution

of the training set does not match that of the test set, the test performance of the

trained model is not guaranteed. This chapter presents methods that require only a

small training corpus and can generalize to unseen conditions. The system utilizes

support vector machines to learn classification cues and then employs a rethresholding

technique to estimate the IBM. A distribution fitting method is used to generalize

to unseen signal-to-noise ratio conditions and voice activity detection based adap-

tation is used to generalize to unseen noise conditions. Systematic evaluation and

comparison show that the proposed approach produces high quality IBM estimates

under unseen conditions. The work presented in this chapter has been published

in the Proceedings of the 2012 IEEE International Conference on Acoustic, Speech,

and Signal Processing [38] and IEEE Transactions on Audio, Speech, and Language

Processing [40].
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3.1 Introduction

Speech communication usually takes place in complex acoustic environments. In

the previous chapter, we have described a supervised learning approach to estimate

the IBM for speech separation. However, for supervised learning to be effective,

the distribution of the training set needs to match that of the test set. For speech

separation, if input SNRs or background noises in test mixtures are not seen in the

training set, the trained classifier will unlikely achieve good classification results.

Hence, it is important to investigate the generalization capability of such classifiers.

In this chapter, we propose an approach to estimate the IBM under unseen SNR or

noise conditions. The proposed approach consists of an SVM training stage followed

by a rethresholding step. We utilize SVMs to produce initial classification boundaries

and then derive new thresholds to classify T-F units in unseen acoustic environments.

The new thresholds are adaptively computed based on the characteristics of test

mixtures, and they are expected to generalize to new SNR or noise conditions. For

unseen SNRs, by analyzing statistical properties, we determine the new thresholds by

fitting the distribution of SVM outputs. For unseen noises, a voice activity detector

is incorporated to construct a development set and then derive the thresholds.

The chapter is organized as follows. In the next section, we present an overview

of the proposed system. Sections 3.3 and 3.4 describe how to generalize the SVM

system to unseen SNR and noise conditions, respectively. Systematic evaluation and
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comparison are given in Section 3.5. We discuss related issues and conclude the

chapter in Section 3.6.

3.2 System overview

VAD

Rethresholding

Threshold 

Determination Adaptation Stage

SegmentationSVM Outputs

Mixture
Separated 

Speech

Figure 3.1: Diagram of the proposed system.

Figure 3.1 shows the diagram of the proposed system, which consists of a training

phase and a test phase. In the training phase, the speech and the noise are used to

create the IBM, which provides the desired output for training. The features in each

T-F unit are extracted from the mixture and then used to train an SVM model in

each frequency channel. In the test phase, we first use the trained SVM to initially

classify T-F units, and then utilize a rethresholding technique to generalize the system

under different test conditions. Auditory segmentation is used to further improve the

estimated mask and separated speech is finally resynthesized by using the estimated

IBM.
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3.2.1 Feature extraction

An input mixture s(t) is first fed into a 64-channel gammatone filterbank whose center

frequencies are distributed from 50 Hz to 8000 Hz [134]. This filterbank is derived

from psychophysical studies of auditory periphery and is a standard model of cochlear

filtering [99]. In each channel, the output is windowed into 20-ms time frames with

10-ms frame shift, forming a cochleagram. We use uc,m to denote a T-F unit in the

cochleagram, which corresponds to frequency channel c and time frame m.

Given the cochleagram of the mixture, we extract acoustic features from each

T-F unit. In [36], a combination of pitch-based features and AMS features [126] is

used to effectively classify T-F units under the noise matched condition. For SNR

generalization, since we only consider the matched noises, it is reasonable to adopt

the same combined features into our system.

For noise generalization, AMS features may not be an appropriate choice, be-

cause they do not show good performance under unseen noise conditions [36], [137].

According to a recent comparison of features [137], we use relative spectral transform-

perceptual linear prediction (RASTA-PLP) features [46] to perform classification un-

der unseen noise. With the pitch based features, the combined features are expected

to perform good discriminative capacity on various noises.

Delta features are found to be helpful in speech separation as they encode feature
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variations [70], [36]. We concatenate the original features with their time delta fea-

tures and frequency delta features into a combined feature vector for classification.

In Section 3.5, we discuss feature extraction in details.

3.2.2 SVM and rethresholding

Similar to Chapter 2, we use SVM to classify T-F units to target-dominant or

interference-dominant classes. In order to facilitate the rethresholding stage, we use

probabilistic SVMs to model the posterior probability that a T-F unit label Y is

assigned 1 given the feature vector, denoted as P (Y = 1|x). A separate SVM is

trained for each frequency channel because the characteristics of the speech signal

in different channels can be very different. In the training phase, we use the radial

basis function kernel, K(xi,xj) = exp(−γ||xi − xj||
2) and the parameters are chosen

by 5-fold cross-validation. To obtain a probabilistic representation, we use a sigmoid

function to map an SVM decision value to a number between 0 and 1, which is then

interpreted as the posterior probability of the target [100]:

P (Y = 1|x) =
1

1 + exp (αf(x) + β)
(3.1)

where the parameters α and β denote the shape of the sigmoid function, which are

fit using maximal likelihood estimation in the training phase. To fit the sigmoid

function, we first define a new training set (fi, ti), where ti is the target probability

defined by the target label yi:

ti =
yi + 1

2
(3.2)
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The parameters α and β are estimated by minimizing a cross-entry loss function:

L = −
∑

i

ti log(pi) + (1− ti) log(1− pi) (3.3)

where

pi =
1

1 + exp(αfi + β)
(3.4)

The SVM library LIBSVM [16] is used in our experiments to estimate the param-

eters and produces probability outputs. With the compact representation, one can

derive new thresholds within [0, 1] instead of [−∞,∞].

In the test phase, the decision value for each T-F unit is calculated from the

discriminant function as follow:

f(x) =
∑

i∈sv
aiyiK(x,xi) + b (3.5)

where SV denotes the set of support vector indices in training data and yi is the

label corresponding to xi. ai is a Lagrange multiplier and b is the bias, both of which

can be determined in the training phase. The decision value f(x) is a real number

between (−∞,+∞), which is then mapped to a number within [0, 1] representing the

posterior probability of the unit being target-dominant using Eq. (3.1). Note that

Eq. (3.1) is a monotonic bijective function but the original threshold f(x) = 0 does

not necessarily correspond to P (Y = 1|x) = 0.5.

Generally speaking, standard probabilistic SVMs use P = 0.5 as the threshold to

perform classification. In this study we train with a fixed input SNR or using a small

number of noise types and wish to generalize to a variety of unseen conditions. In
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this case, we do not expect the trained SVMs to produce good classification results

in unseen conditions.

In [36], we proposed a rethresholding technique to improve SVM classification

results, which has been successfully used for text classification [13], [120]. One reason

for the use of rethresholding is that there exists a mismatch between the training

set and the test set. Under unmatched conditions, the optimal hyperplane for the

training set likely deviates from the optimal hyperplane for the test set. In this study,

we propose to use rethresholding to adjust trained hyperplanes in order to generalize

to unseen SNR or noise conditions.

Specifically, we first need to find a channel-specific threshold θc that maximizes

the classification accuracy in channel c, and then use the new threshold to binarize

P (Y = 1|x):

Y =















1, if P (Y = 1|x) > θc

0, otherwise

(3.6)

Our experiments show that with properly chosen thresholds, the system can sig-

nificantly improve classification. For SNR generalization, the system is trained on 0

dB. Therefore, the key problem is how to determine the new threshold θc for each

channel c. In [36], a small validation set is used to determine the thresholds. But

this strategy cannot be used in this study, because the statistical properties of the

test set are very different from those of the training set and unknown. Thus, we need

to develop new strategies for rethresholding under unseen SNR or noise conditions,

which are described in detail in Section 3.3 and Section 3.4, respectively.
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3.2.3 Auditory segmentation

The rethresholded mask gives a good estimate of the IBM, but it still misses some

target-dominant units and contains some interference-dominant units. To further

improve the rethresholded mask we utilize auditory segmentation which takes into

consideration contextual information beyond individual T-F units. We adopt the

same segmentation method as in 2.5.

To summarize, given a noisy speech signal, we first extract features in the T-F

domain and then use SVM to produce initial classification for each T-F unit. Then, we

use rethretholding to adapt SVM output under different conditions. Finally, auditory

segmentation is used to improve the estimated IBM. The following sections describe

how to apply rethresholding under different conditions.

3.3 Generalization to different input SNRs

For SNR generalization, the training set contains mixtures at a single input SNR and

the system will be tested on mixtures at different input SNRs. In this case, if we

directly use θ = 0.5 as the threshold, the system does not generalize well to unseen

SNRs. We refer to the threshold that maximizes some classification accuracy as the

optimal threshold. We observe that in unmatched SNR conditions, the use of the

optimal threshold in each channel can substantially improve the classification result

relative to the default threshold of 0.5. In other words, if we can find thresholds
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close to the optimal one, the system is expected to generalize well under unseen SNR

conditions.

Furthermore, we observe that, although the optimal threshold varies in differ-

ent SNR conditions, SVM outputs have similar distribution shapes and the optimal

thresholds are located at similar positions relative to the distribution shapes. As

a typical example, Fig. 3.2 shows the histograms of the SVM outputs in the 18th

channel for a female utterance, “A man in a blue sweater sat at the desk,” from the

IEEE corpus [110] mixed with speech-shaped noise. The system is trained on 100

IEEE sentences mixed with speech-shaped noise, factory noise and babble noise at

0 dB and SVM outputs are generated at -10, -5, 0, 5 and 10 dB input SNRs. The

figure shows that there exists a peak K on the left side (P < 0.6) of each histogram.

Also, the SVM ouputs on the left side for different SNRs have similar distribution

shapes which gradually become sharper as the input SNR increases. Further, the

optimal threshold θ shown as the solid vertical line in each histogram is increasingly

close to the peak K as the distribution becomes shaper. If we only consider the SVM

outputs on the left side of the histogram, the optimal threshold always occurs at the

tail end of the distribution under each input SNR condition. This motivates us to use

the same distribution function to fit SVM outputs at different SNRs with different

parameter values.

One can perform distribution fitting in two ways: fit all SVM outputs less than

0.6 or SVM outputs between K and 0.6. We have explored several reasonable dis-

tributions as the candidates to fit SVM outputs and use the Kolmogorov-Smirnov
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Figure 3.2: Histograms of the SVM outputs in the 18th channel with different input
SNRs. The solid curve denotes the half-Cauchy distribution used to fit
the SVM outputs. A vertical line indicates the optimal threshold and a
dashed vertical line the estimated optimal threshold by using distribution
fitting.
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(K-S) statistics [11] to test the goodness of fit. Three distributions are tested: the

generalized extreme value distribution (GEV) is used to fit all SVM outputs less than

0.6, whereas the half-Cauchy and the half-Laplace distributions are used to fit the

SVM outputs within [K, 0.6]. The probability density functions are:

GEV: f(x;µ, σ, ξ) =
1

σ
[1 + ξ(

x− µ

σ
)]

−1

ξ
−1 exp{−[1 + ξ(

x− µ

σ
)]−

1

ξ } (3.7)

Half-Cauchy: f(x;µ, σ) =



















2

πσ[1 + (x−µ

σ
)2]
, if x ≥ µ

0, otherwise

(3.8)

Half-Laplace: f(x;µ, σ) =















1

σ
exp (−

x− µ

σ
), if x ≥ µ

0, otherwise

(3.9)

where, µ, σ, ξ are parameters determined by maximal likelihood estimation.

Fig. 3.3 shows the K-S statistic test results in each channel, averaging over 10

IEEE sentences mixed with the three noises at five SNR levels. From the figure, all

three distributions achieve relatively low K-S statistics, meaning that the candidate

distributions fit the data well. The best one is the half-Cauchy distribution which

has the lowest K-S statistics in most channels. Consequently, we use the half-Cauchy

distribution in our method. As shown in Fig. 3.2, under each SNR condition, the

solid curve denotes the probability density function of a half-Cauchy distribution,

which well fits the SVM outputs between K and 0.6.

Therefore, given SVM outputs in one channel, we estimate parameters of a half-

Cauchy distribution to fit the outputs by maximal likelihood estimation. Based on

the fitted distribution function F and the observation that the optimal threshold
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Figure 3.3: Kolmogorov-Smirnov statistics for three distributions

θ is located at the tail end of the distribution, the corresponding cumulative prob-

ability ρ = F (θ) should be close to 1. This turns optimal threshold estimation to

another problem: given F with unknown parameters Ω = {µ, σ} and a predetermined

cumulative probability ρ, we can first estimate Ω based on SVM outputs and then

approximate the optimal threshold by calculating the inverse cumulative distribution

function θ = F−1(ρ; Ω). Here, ρ is set to 0.9, which is chosen from a validation set.

Incidentally, we choose 0.6 instead of 0.5 as the upper bound of the SVM outputs

to fit the distribution because we want to include more samples for the fitting. The

number of SVM outputs less than 0.6 is very unlikely too small (i.e., less than 5% of

the total SVM outputs) to well fit a distribution function, because human speech con-

tains pauses which should produce sufficient interference-dominant units (i.e., SVM

outputs less than 0.6) in the mixture. In the case that few SVM outputs can be
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used to fit the distribution, we simply set the threshold to the original value 0.5.

Note that, although we only use those SVM outputs less than 0.6 to fit a distribution

function, it does not mean that 0.6 is the upper bound of the estimated threshold.

The threshold only depends on the parameters of the fitted distribution function and

can be any value in [0, 1].

To summarize, we use the following algorithm to estimate the optimal threshold

θ in each channel:

1. Given the SVM outputs, we uniformly divide [0, 1] into 100 bins and derive the

histogram of SVM outputs. For those bins less than 0.6, we choose the bin with

the highest frequency as the peak K.

2. We use the half-Cauchy distribution F with unknown parameters Ω to fit the

SVM outputs within [K, 0.6] and use maximal likelihood to estimate Ω;

3. We estimate the optimal threshold using inverse cumulative distribution func-

tion θ = F−1(ρ; Ω).

The dashed line shown for each histogram in Fig. 3.2 denotes the estimated op-

timal threshold based on distribution fitting, which is close to the optimal threshold.

Finally, we use the threshold calculated from the algorithm to binarize the SVM out-

puts in each channel and obtain a rethresholded mask. This mask is further improved

by an auditory segmentation procedure and form an estimated IBM. It is worth em-

phasizing that this method estimates optimal thresholds only based on SVM outputs

of the mixture without the knowledge of the input SNR.
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3.4 Generalization to different noises

Another important issue is generalization to unseen noises. We also use rethresholding

to generalize the system to unseen noises as we have observed that optimal thresholds

significantly improve the classification results.

Although distribution fitting is able to generalize the trained models to unseen

SNR conditions, it does not work well for unseen noise conditions because the char-

acteristics of noises can be very different and no pattern of the histograms appears

to fit all noises. Fig. 3.4 shows histograms of SVM outputs in the 18th channel

corresponding to four female utterances mixed at 0 dB with (a) speech-shaped noise

and (b) rock music. Both noises are not seen in the trained SVM model (see Section

3.5.2 for more details). The solid vertical line indicates the optimal threshold in each

histogram. We can compare the histograms in (a) and (b) in each row. Although the

same sentence is used to generate the SVM outputs, they have very different distribu-

tions as the noises are different. On the other hand, for those mixtures with the same

type of noise, the optimal thresholds have close values: around 0.5 for speech-shaped

noise and 0.8 for rock music. The histograms for speech-shaped noise in this figure

are quite different from those in Fig. 3.2 for two reasons: (1) speech-shaped noise

is contained in the training set in Fig. 3.2 but not in the training set in Fig. 3.4;

(2) the system in Fig. 3.2 uses AMS and pitch-based features for SNR generaliza-

tion but the system in Fig. 3.4 uses RASTA-PLP and pitch-based features for noise

generalization.
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Figure 3.4: Histograms of the SVM outputs in the 18th channel. Four different utter-
ances mixed with (a) speech-shaped noise and (b) rock music. The solid
vertical line in each panel denotes the optimal threshold.

The above analysis suggests that, if mixtures come from the same kind of noise,

it is reasonable to apply the same threshold to all these mixtures in each channel. In

other words, although it is impossible to directly obtain the optimal thresholds for

a test mixture as the IBM is not accessible, if we can somehow access part of the

noise, we can use the noise part to construct a development set including a reference

mixture and the corresponding IBM to calculate the optimal thresholds. The optimal

thresholds obtained from the development set are expected to perform well on the
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test mixture because the same type of noise is used in both mixtures. Obviously,

to construct the development set clean speech is needed, which can be an arbitrary

utterance. We randomly choose a single utterance, “Shake the dust from your shoes,

stranger,” from the IEEE corpus and use this one to construct the development sets

for all test mixtures.

To obtain noise portions from a test mixture, we propose to apply voice activity

detection (VAD) in an adaptation stage to perform rethresholding. VAD is used

to identify noise-only frames which are then mixed with the above clean speech to

construct a development set. The thresholds chosen from the development set are

used to produce a binary mask. Fig. 3.5 illustrates the computational flow.

VAD

Rethresholding

Threshold 

Determination Adaptation Stage

SegmentationSVM Outputs

Mixture
Separated 

Speech

Figure 3.5: Diagram of VAD based rethresholding for generalization to unseen noises.

As shown in the figure, given a test mixture, we use the trained SVMs to output

the posterior probability of speech dominance for each T-F unit. In parallel, we

use Sohn et al.’s VAD algorithm [119] to detect noise frames. This standard VAD

algorithm uses a statistical model-based method to produce the likelihood of speech
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presence for each frame. In our corpus, speech pause accounts for around 30% of

frames, so we select 30% of the frames with the lowest likelihoods as the candidates

of noise frames. To avoid spurious noise frames caused by VAD errors, we further

use detected pitch in the feature extraction stage in Section 3.2.1 to improve the

VAD results: a candidate of noise frame is removed if a pitch is detected in this

frame. In addition, since very short noise sections are not useful for constructing a

development set, we exclude those noise sections whose lengths are shorter than 50

ms (or 5 frames).

With detected noise frames and the one clean utterance, we mix them into a

reference mixture. This mixing, however, requires that the noise frames and the

clean utterance have the same length. In this study, both the test mixture and the

clean utterance last around 2 seconds, and as a result the total length of detected

noise frames is usually significantly shorter than the length of the clean utterance.

To match the utterance length, we first concatenate detected noise frames to a noise

section and then repeatedly duplicate the noise section until the total length is equal

to that of the utterance. The resulting noise section and the clean utterance are used

to construct a development set. We find that, although a longer test mixture (> 10

seconds) can provide more noise frames without duplication, it does not give better

results than a 2-second mixture.

After we construct a development set containing a single mixture, we calculate

optimal thresholds θ based on the reference mixture and its IBM. That is, we apply

our trained models to the reference mixture to calculate SVM outputs and use the
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corresponding IBM to choose the optimal threshold θ in terms of accuracy in each

frequency channel. With the obtained θ and SVM outputs of the test mixture, it is

straightforward to use Eq. (3.6) to produce a rethresholded mask. Finally, we employ

a segmentation step to further improve IBM estimation.

3.5 Evaluation and comparison

3.5.1 Generalization results for unseen SNRs

We first evaluate the capacity of our system to generalize to unseen SNRs. As we men-

tioned above, we utilize pitch-based features, AMS features and their delta features for

SNR generalization. For pitch-based features, we calculate the normalized autocor-

relation function A(c,m, τ) at pitch period τS(m). For voiced speech, A(c,m, τS(m))

measures how well the unit response is consistent with the target pitch, which has

been proven to be an effective feature for speech separation [54], [63]. To remove

the influence of pitch errors in the training phase, we use Praat [10] to extract the

ground-truth pitch from the premixed speech in the training phase, and use the pitch

tracker in [65] to extract the estimated pitch from the mixture in the test phase. Sim-

ilarly, we also compute autocorrelation from the envelope of the response to obtain

AE(c,m, τS(m)) as a feature to capture amplitude modulation information.

We calculate delta features in the following manner: in the time dimension,

for m ≥ 2, the time delta feature ∆AM (c,m, τS(m)) = A(c,m, τS(m)) − A(c,m −

1, τS(m)); ∆AM(c, 1, τS(m)) is simply set to ∆AM (c, 2, τS(m)) for convenience. We

61



compute the frequency delta feature ∆AC(c,m, τS(m)) in the same way. Therefore,

between response and envelope autocorrelation we get a 6-dimensional pitch-based

features xP .

We use the same method as in [36] to extract AMS features. Specifically, the

envelope from the filter response within each T-F unit is extracted. The envelope is

Hanning windowed and zero-padded for a 256-point FFT. The resulting FFT mag-

nitudes are integrated by 15 triangular windows, generating a 15-dimensional AMS

feature. Similarly, we calculate delta features across time frames and frequency chan-

nels. In each T-F unit, the pitch-based feature vector xP and the AMS feature vector

xA are combined into a feature vector and used for the classification under different

SNR conditions.

The features are extracted from the IEEE corpus [110]. Similar to Kim et al. [70],

the training set consists of 100 female utterances mixed with three types of noise:

speech-shape noise, factory noise and babble noise at 0 dB. For the test set, we

choose 10 new utterances mixed with the same three types of noise at -10, -5, 0, 5

and 10 dB.

In order to quantify the performance of our system, we compute the HIT rate

which is the percent of the target-dominant units in the IBM correctly classified, and

the false-alarm (FA) rate which is the percent of the interference-dominant units in

the IBM wrongly classified. We use the difference between HIT and FA, HIT−FA,

as an evaluation criterion since it has been shown to be correlated to human speech

intelligibility [80], [70] and has been adopted in earlier studies [70], [36].
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Fig. 3.6 shows the average HIT−FA results over the three noises under each

input SNR condition. The triangle line indicates the original HIT−FA rates without

rethresholding. With the optimal thresholds, the HIT−FA rates are boosted by 10%

absolute on average, which clearly shows the advantage of rethresholding. By using

distribution fitting based rethresholding, we improve the HIT−FA results by 9% for

low input SNR conditions (-10 and -5 dB) and 10% for high SNR conditions (5 and

10 dB). The result in the matched SNR condition is also improved, probably because

the ground-truth pitch is used in the training phase but the estimated pitch is used

in the test phase. This pitch discrepancy would lead to an optimal threshold different

from the original threshold 0.5 (as shown in Fig. 3.2), so the HIT−FA rate could be

improved by rethresholding even under matched SNR conditions. No segmentation is

used in this comparison. It is interesting to note that, the distribution fitting based

rethresholding outperforms the optimal rethresholding under the -10 dB condition.

This is because the optimal threshold is chosen to maximize the accuracy in each

channel, which does not necessarily maximize the corresponding HIT−FA rate for

the whole mask (see [36]).

The above results show the advantage of rethresholding in our system. We now

compare our system with three recent speech separation systems. The first one is an

IBM estimation system proposed by Kim et al. [70]. As mentioned in Section 3.1,

this system extracts AMS features and utilizes GMM classifiers to estimate the IBM,

and it has been demonstrated to improve speech intelligibility in human listening

tests. Their system is trained on the same 100 utterances mixed with the same three

63



−10 −5 0 5 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Input SNR (dB)

H
IT

−
F

A

 

 

Original
DistFit
Optimal

Figure 3.6: Distribution fitting based SNR generalization results in terms of HIT−FA.
The line with triangles denotes the original SVM results, the line with
circles the distribution fitting based rethresholding results, and the line
with squares the results using optimal thresholds.

noises, but three SNR levels of at -5, 0 and 5 dB SNR as reported in [70]. We train

a 256-component GMM for each class in each channel. The second one is a state-

of-art speech enhancement system based on noise tracking proposed by Hendriks

et al. [45]. This system assumes that both the speech and noise DFT coefficients

have a complex-Gaussian distribution and utilizes an MMSE estimator of the noise

magnitude-squared DFT coefficients to estimate noise power spectral density. The

clean speech DFT coefficients are estimated from a magnitude-DFT MMSE estimator

presented in [28]. With these estimates, one can calculate the speech and noise energy

within a time-frequency unit in the linear DFT domain. Since our IBM is defined in

the gammatone filterbank domain, we need to convert the speech and noise energy
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in the linear DFT domain to the corresponding energy estimates in the gammatone

filterbank domain [92]. Without loss of generality, we consider the energy E of a T-F

unit uc,m in the gammatone filterbank domain:

E(c,m) =
∑

n

|yc[n]|
2 =

1

K

K−1
∑

k=0

|Yc[k]|
2

=
1

K

K−1
∑

k=0

|X [k]|2 · |Gc(k)|
2

(3.10)

where yc[n] denotes a filtered time domain signal in frequency channel c and frame m,

and Yc[k] are the DFT coefficients of yc[n], where K is set to 512 in our experiments.

The second equation is due to Parseval’s theorem [95]. Gc is the frequency response

function of the gammatone filter in channel c. X [k] is a DFT coefficient of the original

signal, which can be estimated by Hendriks et al.’s system. For each T-F unit in the

gammatone filterbank domain, we use Eq. (3.10) to calculate the speech and noise

energy respectively, and then compute the local SNR to generate the binary mask.

The third method is a model-based system using a general framework proposed by

Ozerov et al. [97]. This method utilizes NMF to perform separation. We use 10 IEEE

sentences to train a 64-component speaker NMF model and the same three noises to

train a 16-component noise NMF models. Since the NMF-based method produces the

separated speech signal and noise signal in the time domain directly, we decompose

these two signals to the T-F domain and calculate local SNRs to form a binary mask

for comparison.

As shown in Fig. 3.7, the proposed system slightly outperforms the NMF-based

method (by around 4% on average) in terms of HIT−FA rates. The other two systems
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Figure 3.7: HIT−FA rates with respect to input SNR levels. The error bars indicate
95% confidence intervals of the means.

perform considerably worse. To indicate statistical significance, we also show 95%

confidence intervals in the figure, which are calculated from a normal distribution

fitted by obtained results. Note that, Kim et al.’s system is trained on -5, 0 and 5

dB input SNRs, and it is supposed to achieve good performance at the three trained

input SNRs.

We should point out that Hendriks et al.’s system is not designed to estimate

the IBM. We have also implemented a binary masking system proposed by Jensen

and Hendriks [62] for comparison. Their system derives a gain function based on

the same spectral magnitude MMSE as in Hendriks et al. but generates an optimal

binary mask in the MMSE sense, which is a binarization based on gain thresholds.

We first calculate a gain threshold for each T-F unit and convert it to an energy
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threshold in the DFT domain. Eq. (3.10) is then used to calculate the corresponding

energy threshold for each T-F unit in the gammatone filterbank domain. With the

cochleagram of the mixture and the calculated energy thresholds, we can generate

an optimal binary mask in the gammatone filterbank domain. However, their system

achieves lower HIT−FA rates than the one based on Hendriks et al. described above.

One important reason is that Jensen and Hendriks aim to obtain the optimal binary

mask in the MMSE sense rather than the ideal binary mask used in our study. This

suggests that there are differences between an optimal-binary-mask estimator and an

ideal-binary-mask estimator. Even though Jensen and Hendriks [62] reported that

estimated optimal binary masks do not lead to significant improvements of speech

intelligibility, the same cannot be said of estimated IBMs [70].

The comparisons above focus on unit classification accuracy, where we need to

convert the energy estimates from Hendriks et al. in the DFT domain and the sep-

arated signals from the NMF-based method in the time domain to the gammatone

filterbank domain. To eliminate the effects of conversion, we use inverse FFT to

resynthesize estimated speech energy in the DFT domain to the waveform. We also

resynthesize from the estimated IBMs of Kim et al. and the proposed system to

waveform [134]. With the resynthesized signal, we measure the output SNR of the

separated speech as follows [54]:

SNR = 10 log10

∑

n s
2
I(n)

∑

n[sI(n)− sE(n)]
2

(3.11)

For Kim et al. and the proposed system, sI(n) and sE(n) indicate the signals
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Figure 3.8: SNR gains with respect to input SNR levels. The error bars indicate 95%
confidence intervals of the means.

resynthesized using the IBM and the estimated IBM, respectively. For Hendriks et

al.’s system, sI(n) and sE(n) indicate the clean speech and the signal resynthesized

using the estimated speech energy, respectively. For the NMF-based method, sI(n)

and sE(n) indicate the clean speech and the separated speech signal, respectively. To

quantitatively evaluate the performance, an SNR gain is computed by subtracting

the output SNR of separated speech by the input SNR before separation. Fig. 3.8

shows the SNR gains. The proposed system achieves considerable SNR gains at all

input SNRs. Although the SNR gains of all systems decrease gradually as the input

SNR increases, the other three systems have more significant degradation at higher

input SNRs.
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3.5.2 Generalization results for unseen noises

We utilize pitch-based features, RASTA-PLP features and their delta features for

SNR generalization. To get RASTA-PLP features, after the power spectrum is

warped to the Bark scale, we log-compress the resulting auditory spectrum, filter

it by the RASTA filter, and expand it by an exponential function. Subsequently,

PLP analysis is taken on this filtered spectrum. The original RASTA-PLP feature

is a 13-dimensional vector and we also calculate the delta features for RASTA-PLP

across time frames and frequency channels to generate a 39-dimensional RASTA-PLP

feature vector xR. The pitch-based feature vector xP and the RASTA-PLP feature

vector xR are finally combined and a 45-dimensional feature vector for each T-F unit

is used as the input to the classifier for noise generalization.

To evaluate generalization to unseen noises, we choose 30 female utterances from

the IEEE corpus mixed with 5 types of noise out of a 100 nonspeech noise set [52]

at 0 dB SNR to train the system. To construct a representative training set, we use

a clustering based noise selection scheme to choose training noises. Intuitively, we

want to include the most diverse noises as the training set, i.e., the distribution of

features extracted from the training noises should cover the feature space as much

as possible. For noise selection, we only consider RASTA-PLP features since pitch-

based features do not exist in unvoiced speech. We first pass each noise waveform

through a gammatone filterbank and then extract RASTA-PLP features from each

T-F unit. Then, the mean of the RASTA-PLP features is calculated over all units
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for each type of noise. Therefore, each noise is represented by a 13-dimensional

feature vector. We then apply the K-means (K=5 in this experiment) clustering

to these 100 feature vectors and thus 100 noises are divided into 5 clusters. For

each cluster, we select one noise that has the shortest distance to the cluster center

as the representative. Therefore, 5 representative noises are used in the training set.

Compared with random noise selection, this clustering-based noise selection produces

3% improvement in terms of HIT−FA.

To test our system, we use 10 new female utterances mixed with the 10 types of

noise—N1: speech-shape noise, N2: factory noise, N3: fan noise, N4: bird chirp, N5:

white noise, N6: cocktail party noise, N7: rain noise, N8: rock music, N9: wind noise,

N10: clock alarm—at 0 dB. The test noises cover both stationary and nonstationary

noises and have very different frequency characteristics, and none of them are in the

training set.

Fig. 3.9 shows the HIT−FA results of the proposed system. For each noise, the left

two bars show the original SVM results using a threshold of 0.5 and the rethresholding

results using the optimal thresholds, respectively. The figure shows that the optimal

rethresholding substantially improves HIT−FA and achieves an average improvement

of 7.3%, which suggests the utility of rethresholding for generalization. The VAD

based rethresholding improves HIT−FA rates under all unseen noise conditions and

the average improvement is 5.9%. With segmentation, the proposed system further

improves IBM estimation, and it outperforms the original one by 7.4% making it
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Figure 3.9: Noise generalization in terms of HIT−FA. “Original” denotes the original
SVM results without rethresholding, “Optimal” the rethresholding results
using optimal thresholds, and VAD denotes the VAD based rethresholding
results. VAD+Seg denotes the results using VAD based rethresholding
followed by segmentation.

comparable to the optimal rethresholding results. These results demonstrate that,

with a little adaptation, our system generalizes well to different noise conditions.

Since our system utilizes nonspeech intervals detected by the VAD algorithm to

adapt the thresholds, we also adopt a similar strategy in Ozerov et al. [96] for the

model-based system where the noise model is adapted by the detected nonspeech

intervals. In our experiment, we first train a 64-component speaker NMF model

using 10 IEEE sentences (see Sect. 3.5.1). In the test phase, we use the same VAD

algorithm as in the proposed system to extract noise frames from the mixture, and

then use these noise frames to train a 16-component noise NMF model. Finally,

we use the obtained speaker model and noise model as priors to separate speech.
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In addition, we compare with the systems described in Section 3.5.1. Fig. 3.10

shows the comparative results in terms of HIT−FA rates. As shown in the figure,

the proposed system achieves the highest HIT−FA rates except for N1, N5 and N9

where NMF-based system performs slightly better. On average, the proposed system

outperforms the NMF-based method by around 5%, which is statistically significant

from confidence intervals.
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Figure 3.10: Noise generalization comparisons in terms of HIT−FA. The proposed
method denotes VAD based rethresholding followed by segmentation.
The error bars indicate two-side 95% confidence intervals of the means,
with only one side shown for clarity.

As described in Section 3.5.1, we can resynthesize waveform signals for the four
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systems and calculate SNR gains. Fig. 3.11 shows such results. Our system improves

SNRs by 5 dB to 12 dB, depending on noise type, and it performs better than Kim

et al. by 3.7 dB, Hendriks et al. by 3.4 dB, and NMF-based system by 2.1 dB on

average.
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Figure 3.11: Noise generalization comparisons in terms of SNR gain.

3.6 Discussion

Monaural speech separation is a fundamental problem in speech processing. Super-

vised learning algorithms have been shown to be effective for speech separation, but a
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major issue for supervised learning is the capacity of generalization to unseen condi-

tions, as the training set and the test set can have dissimilar properties. If this issue

is not addressed, one cannot expect the trained model to perform well in unmatched

conditions.

This study builds on SVM classification. An SVM outputs binary labels according

to decision values, which in essence give a distance measure to the decision hyperplane,

corresponding to the confidence of classification. Under many unseen conditions,

the trained SVM model does not completely fail, but the optimal hyperplane just

skews from the trained hyperplane to some extent. Our analysis suggests that it

is possible to improve classification results by adjusting the hyperplane, which is

equivalent to using a new threshold to binarize output values. Therefore, the key idea

of generalization in this study is to use rethresholding to adapt the trained model

to unseen conditions and the generalization issue becomes how to find appropriate

thresholds. Recent research on dataset shift in classification deals with the mismatch

problem between the training data and the test data [89]. In our study, shifted data

lead to changes of P (Y |x), resulting in a shift of the optimal decision boundary. In

this case, rethresholding is equivalent to adjusting SVM outputs P (Y |x). It would

be interesting to explore the formulation of rethresholding as dataset shift in future

work.

In this study, we convert decision values to posterior probabilities. With the

probabilistic interpretation of SVM outputs, a straightforward idea to deal with gen-

eralization is to perform probabilistic inference using prior knowledge. However, too
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many unpredictable variables affect the probabilistic inference, and it is very difficult

to directly use the Bayesian formula to derive an appropriate threshold. Instead, we

use probabilities to provide initial classification and incorporate statistical properties

of the test mixture to classify T-F units. Here, we prefer probabilities to decision

values because the probabilistic representation provides a uniform range of [0, 1] for

rethresholding. We should state that rethresholding is not able to completely resolve

the generalization issue, because even optimal thresholds may not be good enough,

e.g., to achieve greater than 80% HIT−FA rates. However, as rethresholding directly

focuses on the outputs of the trained model and does not require extra training, it is

easy to incorporate into existing systems for improved generalization.

Under unseen SNR conditions, although the trained hyperplanes cannot be di-

rectly used to classify T-F units, the statistical properties of SVM outputs exhibit

similarity at different SNRs, which provides a basis to adjust the hyperplanes. Al-

though one can train SNR-dependent models for speech separation under different

SNRs, the system would be complicated and it needs an SNR detector which is not

a trivial problem. The proposed distribution fitting based rethresholding determines

the thresholds only based on the test mixture and does not require any input SNR

estimation.

This distribution fitting method does not work under unseen noise conditions, as

no distribution is able to characterize the SVM outputs of various noises. Indeed, we

tried a function approximation approach that learns a mapping from SVM outputs

to optimal thresholds. However, such a mapping is not applicable to all noise types.
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Instead, we use VAD to detect a small amount of noise and construct a development

set to choose thresholds. Obviously, the performance of our system depends on the

VAD algorithm. To improve VAD results, we utilize detected pitch to remove spurious

noise frames. This strategy provides a reliable set of noise frames. This is confirmed

in our experiments where clean speech, rather than noisy speech, is used to produce

ideal VAD results. The experiments do not show significantly better performance by

using the ideal VAD results. Therefore, our pitch-improved VAD method is not a

bottleneck of the proposed system.

Obviously, features play a crucial role in classification. We use pitch-based features

and AMS features for unseen SNR generalization, as this combination has proven to

be effective under matched noise conditions. For noise generalization, we use pitch-

based features and RASTA-PLP features, both of which capture speech information

and are robust to different noise conditions. Other features may also show robust

performance under different noisy conditions, but here we are only concerned with

generalization based on trained classifiers and do not focus on the selection of robust

features (see [137]). We point out that, since AMS features and RASTA-PLP features

are not able to distinguish different voices and the VAD algorithm can only detect

nonspeech intervals in a noisy mixture, our system cannot be applied to separate

multiple talkers.

In this study, we address the generalization problems to different SNRs and differ-

ent noises separately. In practice, both situations may need to be considered simul-

taneously. In such situations, rethresholding may still be applicable. Future research
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is required to address this more challenging case, and may involve some form of SNR

detection to jump start the separation process.

To conclude, we aim to design a speech separation system that requires minimal

training but is generalizable to unseen conditions. The proposed system trains SVMs

to provide initial classification and then uses the rethresholding technique to estimate

the IBM. To determine the thresholds under unseen SNR conditions, we use a dis-

tribution fitting method. For unseen noise conditions, we use a VAD algorithm to

produce noise-only frames and determine the thresholds from a small development set.

Auditory segmentation is incorporated to further improve the rethresholded mask.

The experiments and comparisons show that the proposed approach achieves good

generalization in unmatched conditions.
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CHAPTER 4

LEARNING INVARIANT FEATURES FOR SPEECH

SEPARATION

In the previous chapter, a rethresholding approach is used to address the generaliza-

tion problem for supervised IBM estimation. However, rethresholding can only be

performed after seeing a certain length of new mixtures, and thus is not suitable for

real-time applications. We propose to use a novel metric learning method to learn

invariant speech features in the kernel space. As the learned features encode speech-

related information that is robust to different noise types, the system is expected to

generalize to unseen noise conditions. The work presented in this chapter has been

published in the Proceedings of the 2013 IEEE International Conference on Acoustic,

Speech, and Signal Processing [39].

4.1 Introduction

One issue in supervised classification is that the training data and the test data are

expected to extracted from the same distribution. When the distribution changes, the
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trained models may not produce reasonable results in the test dataset. To generalize a

speech separation system to unseen noise conditions, one can build a massive training

set including a large variety of noises. However, such training is very computationally

expensive and it would be impossible to include all noises in a training set. Previous

chapter described a rethresholding approach for generalization, which is a model

adaption approach and can be performed only after seeing certain length of new

mixtures.

In this chapter, we use a more desirable approach to address the generalization

problem. We propose to learn invariant speech features in the kernel space using

Information-theoretic Metric Learning (ITML) [20]. Because the learned kernel en-

codes invariant information related only to speech, a classifier trained on this kernel

should be able to generalize to unseen noise types. We train an SVM based on the

learned kernels and successfully classify test data under new noise conditions. Note

that we only consider speech separation from non-speech interference in this study.

In the next section, we relate our approach to existing work on speech separation

and metric learning. The overall framework of the system is given in Section 4.3.

Section 4.4 describes how to learn the kernel and incorporate it into the SVM. We

evaluate the system in Section 4.5 and conclude in Section 4.6.

4.2 Related work

Supervised learning has been recently used to classify T-F units, including MLP [63],

GMM [70], and SVM [37], [59]. These approaches mostly deal with the situations in
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which the test noises are included in the training set. However, if noises are not seen

in the training phase, the probabilistic properties of the extracted features in the test

set may differ significantly from those in the training set and the trained models may

not work well under these noise conditions.

In machine learning, transfer learning and domain adaptation aim to compensate

for data shift, i.e., a change in the feature distribution from the training set to the test

set [102]. Relevant methods have been developed in the natural language processing

(NLP) [19] and computer vision communities [114], [74], [23], which can be roughly

categorized as classifier adaptation and feature transformation. The former approach

utilizes the target domain information to adapt the parameters of classifiers [23]. In

the speech separation field, Ozerove et al. [96] and our previous study [38], [40] utilize

noise only intervals to collect noise information for model adaptation. Because the

adaptation needs to detect the noise intervals in the test mixtures, it is difficult to

apply to real-time processing.

On the other hand, feature transformation utilizes metric learning methods to

transfer the input features between domains and then apply a classifier [19], [114],

[74]. The advantage of this approach is that the learned features can be domain-

independent, which enables it to deal with novel problems with new feature types or

dimensionalities [104], [74]. For speech separation, one important property is that the

features extracted from speech are usually much more stable than those from noises.

In other words, if we can capture the common speech characteristics independent

of noise types, it is possible to utilize them to separate speech under various noise
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conditions. In this chapter, we learn invariant speech features across different noise

conditions, which allow for generalization to new noises without any prior knowledge

of the noise.

4.3 Speech separation using kernel SVM

4.3.1 Feature extraction

An input signal s(t) is first passed through a 64-channel gammatone filterbank span-

ning from 80 Hz to 5000 Hz. The response of each filter channel is then divided

into 20-ms time frames with 10-ms frame shift, forming a cochleagram [134]. We use

uc,m to denote a T-F unit for frequency channel c and time frame m. For each T-F

unit, we extract acoustic features including AMS, RASTA-PLP, mel-frequency cep-

stral coefficients (MFCC), and pitch-based features. Further, for every dimension of

the features, we calculate delta features across time frames and frequency channels to

capture variation information. The concatenation of these features have been proven

to be effective in speech separation [137] and are used in this chapter.

4.3.2 SVM classification with learned kernels

Because of the different spectral properties of speech, we train an SVM in each channel

to estimate the IBM. Previous studies directly use extracted features to train the SVM

and yield accurate classification results under matched noise conditions [37], [137].
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In order to generalize the system to unseen noise conditions, we aim to learn a non-

linear transformation φ : Rd → R
d′ to map original features into a high dimensional

space, where d and d′ denote the dimensionality of the original space and the kernel

space respectively. Here, the underlying idea of the feature transformation is that for

two data points from different noise conditions (domains), the learned transforma-

tion should maximizes the distances between them if they have different labels and

minimizes the distances if they have the same label. This class-based cross-domain

constraint will be applied during the transformation learning.

Furthermore, because the SVM can be viewed as a kernel machine, instead of

explicitly computing φ(x), we only need to compute a kernel function κ such that

κ(xi,xj) = φ(xi)
Tφ(xj) [127]. Therefore, we first learn a kernel using data from

multiple noise conditions and then apply the learned kernel to the SVM for supervised

learning. In the test phase, each data point is also kernelized for classification. We

will discuss kernel learning in detail in the next section.

Finally, the SVM labels T-F units in each channel to form an estimated IBM.

The separated speech is resynthesized using the cochleagram of the mixture and the

estimated IBM [134].
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4.4 Domain-invariant kernel learning

4.4.1 Cross-domain constraints

In this section, we discuss how to learn domain-invariant features in the kernel space.

For a general metric learning problem, given a data set X = [x1, . . . ,xn],xi ∈ R
d,

one aims to learn an appropriate Mahalanobis distance parameterized by a positive

definite matrix W between xi and xj :

dW (xi,xj) = (xi − xj)
TW (xi − xj) (4.1)

Since W is symmetric positive definite, by factorizing W as W = GTG, we can

equivalently view the distance dW = ||Gxi − Gxj ||
2, that is, the transformation G

serves as a linear transformation applying to data points.

Since the linear transformation is not powerful enough for our application, we are

interested in working in the kernel space, where we use a non-linear function φ to

map input into a high-dimensional space. Then, the distance is:

dW (φ(xi), φ(xj)) = (φ(xi)− φ(xj))
TW (φ(xi)− φ(xj)) (4.2)

To learn the desired metric, we use the data to create pairwise similarity and

dissimilarity constraints. To improve the generalizability in our study, we generate

the constraints across different domains based on the labels. Suppose that the training

set consists of multiple domains Dm, m = 1, . . . ,M , corresponding to multiple noise

conditions, and a data point in the domain Dm is denoted as xDm

i with its label yDm

i .

To learn the domain-invariant transformation, we use the following cross-domain
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constraints. For a pair of data points xi and xj from two different domains Da and

Db, we create the constraints:

dW (φ(xDa

i ), φ(xDb

j )) ≤ u, if yDa

i = yDb

j

dW (φ(xDa

i ), φ(xDb

j )) ≥ l, if yDa

i 6= yDb

j

(4.3)

where u and l are parameters representing the distance thresholds. As we create

cross-domain constraints for every pair of domains, there are totally
(

M

2

)

pairs of

domains for constraints.

These cross-domain constraints enforce the algorithm to learn a metric such that

the data points with the same label should be close to each other no matter which

domains they belong to. By applying the constraints to every pair of domains, the

learned transformation captures not only the domain shift between any two of them

but also the common information shared by all these domains. Since the data in dif-

ferent domains correspond to speech mixed with different noises, the transformation

presumably encodes speech-related information that is independent to noise types.

4.4.2 Kernel learning with ITML

Given the constraints in Eq. (4.3), our problem is to learn a positive-definite matrix

W that parameterizes the Mahalanobis distance. We adopt the ITML [20] algorithm

and discuss its kernelized version in this subsection. The algorithm uses the LogDet

divergence Dld to regularize W against a specified positive definite matrices W0:

Dld(W,W0) = trace(WW−1
0 )− log det(WW−1

0 ) (4.4)
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and the metric learning problem is:

min
W�0

Dld(W,W0)

s.t. dW (φ(xDa

i ), φ(xDb

j )) ≤ u, if yDa

i = yDb

j

dW (φ(xDa

i ), φ(xDb

j )) ≥ l, if yDa

i 6= yDb

j

a, b ∈ {1, . . . ,M}

(4.5)

Therefore, we are interested in finding a metric W that is close to an original metric

W0 but satisfies our desired constraints. Note that, we create the constraints for

every pair of domains, which is different from previous cross-domain metric learning

[74, 114], where only one pair of domains is considered.

We now consider kernelizing the problem. Given a set of data points, letK0 denote

the input kernel matrix for the data, that is, K0(i, j) = κ0(xi,xj) = φ(xi)
Tφ(xj). In

this study, we choose the Gaussian kernel to introduce nonlinearity, i.e., κ0(xi,xj) =

exp(−
||xi−xj ||2

2σ2 ). We use K(i, j) to denote the kernel we want to learn, i.e., K(i, j) =

κ(xi,xj) = φ(xi)
TWφ(xj). Therefore, according to Eq. (4.2), we have:

dW (φ(xi), φ(xj))

=φ(xi)
TWφ(xi)− 2φ(xi)

TWφ(xj) + φ(xj)
TWφ(xj)

=K(i, i) +K(j, j)− 2K(i, j)

(4.6)

In addition, to avoid an infeasible solution in Eq. (4.5), we incorporate a slack

variable ξ to provide a tradeoff between minimizing the divergence between K and
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K0 and satisfying the constraints. Finally, the non-linear metric learning problem

can be formulated to a kernel learning problem:

min
K�0,ξ

Dld(K,K0) + γDld(diag(ξ), diag(ξ0))

s.t. K(i, i) +K(j, j)− 2K(i, j) ≤ ξi,j, if yi = yj

K(i, i) +K(j, j)− 2K(i, j) ≥ ξi,j, if yi 6= yj

(xi, yi) ∈ Da, (xj, yj) ∈ Db, and a, b ∈ {1, . . . ,M}

(4.7)

where, γ is the tuning parameter. The entries in ξ0 are set to u for similarity con-

straints and l for dissimilarity constraints.

To solve this optimization problem, we follow the approach given in [20] which

employs Bregman projections to iteratively compute the kernel [74]:

Kt+1 ← Kt + βKt(ei − ej)(ei − ej)
TKt (4.8)

where ei is the standard basis vector with a 1 in the ith coordinate and β is a

parameter computed in the algorithm.

Once we learn the kernel K, it is straightforward to use Eq. (4.6) to compute

the distance between two points xi and xj that are in the training set. But for new

data points z1 and z2 that are not in the training set, we need to compute the kernel

function κ(z1, z2). Here, we directly give the equation to compute the kernel for a

pair of arbitrary data points z1 and z2:

κ(z1, z2) = κ0(z1, z2) + kT
1K

−1
0 (K −K0)K

−1
0 k2

(4.9)

Here, ki = [κ0(zi,x1), . . . , κ0(zi,xn)]
T , and xi is the data point in the training set

used to learn the kernel. For details of the kernel learning algorithm, see [20] and [61].
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4.5 Experiments

We now evaluate our kernel learning based separation system. The IEEE corpus [110]

is used to train and test the system. The input SNR is -5 dB and LC is set to -10

dB, which pose a very challenge problem. To learn the domain-invariant kernel, we

first choose 10 utterances mixed with 5 types of noise out of a 100 non-speech noise

corpus [52]. Thus, there are around 3,000 data points for each noise condition. We

randomly choose a subset of around 100 data points in each condition to create the

cross-domain constraints, so 100×100×
(

5
2

)

= 100, 000 pairs of constraints are used in

the kernel learning. We set the distance thresholds u and l to 5% and 95% percentile

of the distribution of the observed distances between pairs of points respectively.

The slack variable γ and the variance of the Gaussian kernel σ are tuned using cross

validation. After we learn the kernel, we train the SVM using another 30 utterances

mixed with the same 5 noises. According to Eq. (4.9), we compute the kernel for

these data for SVM training.

To test the system, we use 10 utterances mixed with 12 types of noise—N1: white

noise, N2: cocktail party noise, N3: rock music, N4: telephone, N5: fan noise, N6:

clock alarm, N7: traffic noise, N8: crowd noise with clap, N9: bird chirping with

water flowing, N10: wind noise, N11: rain noise, N12: babble noise. The test noises

cover both stationary and non-stationary noises and have very different frequency

characteristics. None of the utterances and the noises are seen in the kernel learning

and SVM training phase.
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As an example, Fig. 4.1 illustrates mask estimation results for an utterance mixed

with an unseen crowd noise with clap at -5 dB using the SVM with the Gaussian

kernel and the SVM with the learned domain-invariant kernel respectively. It is clear

that the Gaussian kernel SVM leads to severe classification errors because the noise

is significantly different from those in the training set. By using kernel learning the

system yields a substantially better mask due to the robustness of the learned kernel

against different noise types.

We compute HIT−FA to quantify the performance of our system. Table 4.1

shows the average classification accuracy and the HIT−FA rates over all 12 noises.

We compare the Gaussian kernel SVM (G-SVM) and the SVM with learned domain-

invariant kernel (KL-SVM). In the left two columns of the table, in order to eliminate

the impact of pitch errors we use ground-truth pitch extracted from the premixed

speech [10] to generate the pitch-based features. In the right two columns, we use

a pitch estimator [32] to extract pitch from mixtures. Both experiments clearly

show that learning the domain-invariant kernel significantly boosts the classification

accuracy and the HIT−FA rates under new noise conditions.

Table 4.1: Average classification accuracy and HIT−FA rates.

Ground-truth Pitch Estimated Pitch
G-SVM KL-SVM G-SVM KL-SVM

Accuracy 0.742 0.794 0.703 0.746
HIT−FA 0.469 0.537 0.390 0.456
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(c) Domain-invariant kernel SVM mask

Figure 4.1: IBM estimation results. (a) IBM for the mixture. (b) Estimated IBM
using the Gaussian kernel SVM. (c) Estimated IBM using the domain-
invariant kernel SVM. White regions represent 1s and black 0s.

We further compare the proposed method with two other speech separation ap-

proaches. The first one is a state-of-the-art speech enhancement algorithm based on

a minimum mean-squared error (MMSE) estimator proposed by Hendriks et al. [45].

The second one is our previous approach which uses the rethresholding technique

to adapt the SVM classification under different noise conditions [40]. The proposed

approach in this comparison uses the estimated pitch. As shown in Fig. 4.2, the

proposed approach achieves the highest HIT−FA under every noise condition. On
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average, the proposed approach outperforms Hendriks et al. by 14 percentage points

and our previous system by 4 percentage points. We point out that, our previous

system needs noise information extracted from the test mixture to adapt the trained

model, while the proposed approach can be directly applied to the test mixture and

does not need to collect information from the new noise, which is a considerable

advantage.
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Figure 4.2: HIT−FA comparison under unseen noise conditions

4.6 Conclusion

In this study, we have proposed to learn a domain-invariant kernel to encode speech-

related information that is robust to different noise types. With the learned kernel,

the speech separation system can be applied to new noise conditions without any

prior information of the noise.
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CHAPTER 5

DEEP NEURAL NETWORKS BASED SPECTRAL

MAPPING FOR SPEECH DEREVERBERATION AND

DENOISING

The previous chapters mainly deal with speech separation from background noise.

But, in real-world environments, human speech is usually distorted by both reverber-

ation and background noise, which have negative effects on speech intelligibility and

speech quality. They also cause performance degradation in many speech technology

applications, such as automatic speech recognition. Therefore, the dereverberation

and denoising problems must be dealt with in daily listening environments. In this

chapter, we perform dereverberation and denoising using supervised learning. A DNN

is trained to directly learn a spectral mapping from the magnitude spectrogram of

corrupted speech to that of clean speech. The proposed approach substantially at-

tenuates the distortion caused by reverberation and noise, which is simple but yet ef-

fective. Systematic experiments show that the proposed approach leads to significant

improvement of predicted speech intelligibility and quality scores, as well as speech
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recognition rates in reverberant noisy conditions. Part of the material presented in

this chapter has been published in the Proceedings of the 2014 IEEE International

Conference on Acoustic, Speech, and Signal Processing [41].

5.1 Introduction

In real-world environments, the sound reaching the ears comprises the original source

(direct sound) and its reflections from various surfaces. These attenuated, time-

delayed reflections of the original sound combine to form a reverberant signal. In

reverberant environments, speech intelligibility is degraded substantially for hear-

ing impaired listeners [73], and normal hearing listeners when reverberation is se-

vere [109]. In addition, room reverberation when combined with background noise is

particularly disruptive for speech perception. Reverberation and noise also cause sig-

nificant performance degradation in ASR [72] and SID systems [113], [150]. Given the

prevalence of reverberation and noise, a solution to the dereverberation and denoising

problems will benefit many speech technology applications.

Reverberation corresponds to a convolution of the direct sound and the room

impulse response (RIR), which distorts the spectrum of speech in both time and

frequency domains. Thus, dereverberation may be treated as inverse filtering. The

magnitude relationship between an anechoic signal and its reverberant version is

relatively consistent in different reverberant conditions, especially within the same

room. Even when reverberant speech is mixed with background noise, it is still

possible to restore speech to some degree from the mixture, because speech is highly
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structured. These properties motivate us to utilize supervised learning to model the

reverberation and mixing process. In this chapter, we propose to learn the mapping

from the corrupted speech to its anechoic, premixed version. The mapper can be

trained where the input is the spectral representation of the corrupted speech and

the desired output is that of the anechoic clean speech.

DNNs have shown strong learning capacity [49]. A stacked denoising autoencoder

(SDA) [130] is a deep learning method, and it can be trained to reconstruct the raw

clean data from the noisy data, where hidden layer activations are used as learned

features. Although SDAs were proposed to improve generalization, the main idea

behind SDAs motivated us to utilize DNNs to learn the mapping from the corrupted

data to clean data. A recent study [139] used DNNs to denoise acoustic features in

each time-frequency unit for speech separation. Our approach, on the other hand,

deals with reverberant and noisy speech and the mapping directly applies to frame-

level spectral features.

The chapter is organized as follows. In the next section, we discuss related speech

dereverberation and denoising studies. We then describe our approach in detail in

Section 5.3. The experimental results are shown in Section 5.4. We discuss related

issues and conclude the chapter in the last section.

5.2 Relation to prior work

Many previous approaches have been proposed to deal with speech dereverbera-

tion [93]. Inverse filtering is one of the commonly used techniques [87]. Since the
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reverberation effect can be described as a convolution of clean speech with the room

impulse response, the inverse filtering based approach first determines an inverse filter

that can reverse the effects of the room response, and then estimates the anechoic

signal by convolving the reverberant signal with the inverse filter. However, in many

situations, the inverse filter cannot be determined directly and must be estimated,

which is a hard problem. Further, this approach assumes that the RIR function

is minimum-phase that is often not satisfied in practice [94]. Wu and Wang [146]

utilized a two-stage approach including inverse filtering and spectral subtraction to

deal with early reverberation and late reverberation separately, which relies on an

accurate estimate of the inverse filter in one microphone scenarios. Other studies

dealt with dereverberation by exploiting the properties of speech such as modulation

spectrum [5], and harmonic structure [145], [106].

Recent studies show that the IBM can be extended to suppress reverberation and

improve speech intelligibility [73], [108], [109]. The IBM based approaches treat the

direct sound or direct sound plus the early reflections as the target and the rest as

the masker, and the dereverberated signal is resynthesized from the binary mask.

Therefore, the IBM can still be considered as an effective computational goal for

dereverberation. Hazrati et al. [44] proposed to estimate a binary mask based on a

single variance-based feature against an adaptive threshold and yielded intelligibility

improvements for cochlear implantees. In principle, the IBM based approach can deal

with both reverberation and noise simultaneously; however, few previous studies aim

to estimate the IBM for both dereverberation and denoising. Jin and Wang [63] use
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an MLP to estimate the IBM for speech separation but the target is the reverberant

noise-free speech.

5.3 Algorithm description

We describe the algorithm in this section, including three subsections: feature ex-

traction, model training, and post-processing.

5.3.1 Spectral features

We first extract features for spectral mapping. Given a time domain input signal

s(t), we use short time Fourier transform (STFT) to extract features. We first divide

the input signal into 20-ms time frames with 10-ms frame shift, and then apply fast

Fourier transform (FFT) to compute log spectral magnitudes in each time frame.

For a 16 kHz signal, we use 320-point FFT and therefore the number of frequency

bins is 161. We denote the log magnitude in the kth frequency and the mth frame as

X(m, k). In order to incorporate temporal dynamics, we include the spectral features

of neighboring frames into a feature vector. Therefore, the input feature vector for

the DNN feature mapping is:

x̃(m) = [x(m− d), . . . ,x(m), . . . ,x(m+ d)]T (5.1)

where d denotes the number of neighboring frames in each side and is set to 5 in this

study. So the dimensionality of the input is 161× 11 = 1771.
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The desired output of the neural network is the spectrogram of clean speech in the

current frame m, denoted by a 161-dimensional feature vector y(m), whose elements

correspond to the log magnitude in each frequency bin at the mth frame.

5.3.2 DNN based spectral mapping

We train a deep neural network to learn the spectral mapping from reverberant, or

reverberant and noisy, signals to clean signals.

The DNN in this study includes three hidden layers, as shown in Fig. 5.1. The

input for each training sample is the log magnitude spectrogram in a window of

frames, and the number of input units is the same as the dimensionality of the

feature vector. The output is the log magnitude spectrogram in the current frame,

corresponding to 161 output units. Each hidden layer includes 1600 hidden units.

The number of hidden layers and hidden units are chosen from a development set.

The objective function for optimization is based on mean square error. Eq. 5.2 is

the cost for each training sample:

L(y,x;Θ) =

C
∑

c=1

(yc − fc(x))
2 (5.2)

where C = 161 corresponds to the index of the highest frequency bin, y = (y1, . . . , yC)
T

is the desired output vector, and fc(·) is the actual output of the cth neuron in the

output layer. Θ denotes the parameters we need to learn. To train the neural net-

work, the input is normalized to zero mean and unity variance, and the output is

normalized into the range of [0, 1]. The activation function in the hidden layers is
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Figure 5.1: Structure of the DNN based spectral mapping.

the rectified linear function and the output layer uses the sigmoid function, shown in

Eqs. 5.3 and 5.4 respectively:

f(x) = max(0, x) (5.3)

f(x) =
1

1 + e−x
(5.4)

The weights of the DNN are randomly initialized without pretraining. We use
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backpropagation with mini-batch stochastic gradient descent to train the DNNmodel,

and the actual cost in each mini-batch is computed from the summation over multiple

training samples using Eq. 5.2. The optimization technique uses adaptive gradient

descent along with a momentum term [24].

The output of DNN is the estimated log magnitude spectrogram of clean speech.

With the capacity of learning internal representations, DNN promises to be able to

encode the spectral transformation from corrupted speech to clean speech and help

to restore the magnitude spectrogram of clean speech.

5.3.3 Post-processing

After DNN generates magnitude spectrogram estimates, we need to resynthesize time-

domain signals using inverse FFT.

A straightforward method to reconstruct time-domain signals is to directly apply

inverse short-time Fourier transform (iSTFT) using the DNN-generated magnitude

and the phase from unprocessed time-domain signals. However, the original phase

of noise-free speech is corrupted, and the corruption usually introduces perceptual

disturbances and leads to negative effects on sound quality. In addition, STFT is

computed by concatenating Fourier transforms of overlapping frames of a signal, and

thus is a redundant representation of the time-domain signal. For a spectrogram-like

matrix in the time-frequency domain, it is not guaranteed there exists a time-domain

signal whose STFT is equal to that matrix [34], [76]. In other words, the magnitude

spectrogram of the resynthesized time-domain signal could be different from the one
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we intended to resynthesize a signal from. This inconsistency should be taken into

account for synthetic or modified spectrograms, like our DNN-generated magnitudes.

In order to minimize the incoherence between the phase and the magnitude from

which we want to reconstruct a signal, we use an iterative procedure to reconstruct

a time-domain signal as given in Algorithm. 1 [34]:

Algorithm 1 Iterative signal reconstruction

Input: Target magnitude Y 0, noisy phase φ0 and iteration number N
Output: Time-domain signal s
1: Y ← Y 0, φ← φ0, n← 1
2: while n ≤ N do

3: sn ← iSTFT(Y, φ)
4: (Y n, φn)← STFT(sn)
5: Y ← Y 0

6: φ← φnk

7: n← n + 1
8: end while

9: s← sN

Here, N = 20 in our study. The algorithm iteratively updates the phase φ at each

step by replacing it with the phase of the STFT of its inverse STFT, while the target

magnitude Y 0 is the DNN-generated output, which is always fixed. The iteration

aims to find the closest realizable magnitude spectrogram consistent with the given

magnitude spectrogram.

We use above post-processing to reconstruct a time-domain signal as a waveform

output of our system.
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Fig. 5.2 shows an example of the spectral mapping for a female sentence “A man

in a blue sweater sat at the desk”. Figs. 5.2(a) and (b) show the log magnitude

spectrogram of the clean speech and the reverberant speech with T60 = 0.6 s. The

corresponding DNN output is shown in Fig. 5.2(c). As shown in Fig. 5.2(c), the

smearing energy caused by reverberation is largely removed or attenuated, and the

boundaries between voiced and unvoiced frames are considerably restored, showing

that the DNN output is a very good estimate of the spectrogram of the clean speech.

Fig. 5.2(d) is the magnitude spectrogram of the time-domain signal resynthesized

from the magnitude in Fig. 5.2(c) and reverberant phase. Comparing Figs. 5.2(c)

with (d), the spectrogram in Fig. 5.2(d) is not as clean as the DNN output in

Fig. 5.2(c) because of the use of reverberant phase and inconsistency of STFT. Fig.

5.2(e) is the spectrogram of the time-domain signal using post-processing, where the

spectrogram is improved by iterative signal reconstruction.

5.4 Experiments

5.4.1 Metrics and parameters

We quantitatively evaluate our approach by two objective measurements of speech

intelligibility: frequency-weighted segmental speech-to-noise ratio (SNRfw) [84] and

short-time objective intelligibility measure (STOI) [122]. Specifically, SNRfw is a
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Figure 5.2: DNN dereverberation results. (a) Log magnitude spectrogram of clean
speech. (b) Log magnitude spectrogram of reverberant speech with T60 =
0.6 s. (c) DNN outputs. (d) Log magnitude spectrogram of resynthesized
signal. (e) Log magnitude spectrogram of resynthesized signal with post-
processing.

speech intelligibility indicator, computing a signal-to-noise estimate for each critical

band:

SNRfw =
10

M

M
∑

m=1

∑K
k=1W (k) log10

|S(m,k)|2

|S(m,k)−Ŝ(m,k)|
∑K

k=1W (k)
(5.5)

where W (k) is the weight placed on the kth frequency band, K is the number of

bands, M is the total number of frames in the signal, S(m, k) is the critical-band
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magnitude of the clean signal in the kth frequency band at the mth frame, and

Ŝ(m, k) is the corresponding spectral magnitude of the processed signal in the same

band.

STOI is recently proposed to predict speech intelligibility. It computes the cor-

relation between temporal envelopes of the clean and processed speech in short-time

segments as an intelligibility indicator, ranging from 0 to 1. STOI has been shown to

have high correlation with speech intelligibility of human listeners [122].

In addition, we evaluate speech quality using Perceptual Evaluation of Speech

Quality (PESQ) [105], which computes disturbance between clean speech and pro-

cessed speech using cognitive modeling as a speech quality score. The range of PESQ

score is from −0.5 to 4.5.

As we mentioned in Section 5.3.1, we utilize context information using a con-

catenation of features from 5 frames in each side of the current frame. Temporal

information is an important property for speech signals, and thus adding these neigh-

boring frames should be helpful to learn a spectral mapping. We have conducted

experiments using different window sizes. Comparing with the 11-frame window, the

SNRfw results of a 7-frame window and a 3-frame window degrade by around 0.5 dB

and 2.5 dB, respectively.

The architecture of the DNN influences its learning performance. We have con-

ducted experiments using different numbers of hidden layers. A DNN with three

hidden layers performs slightly better than that with two hidden layers in terms of

SNRfw (by 0.2 dB), and better than that with a single hidden layer (by 1.1 dB).
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5.4.2 Dereverberation
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Figure 5.3: DNN based dereverberation results: (a) SNRfw, (b) STOI, (c) PESQ.
“Unproc” denotes the results for unprocessed reverberant speech.
‘Hazrati et al.” and “Wu-Wang” denote two baselines as described.
“DNN” denotes the proposed spectral mapping approach without post-
processing. “DNN-post” denotes the proposed spectral mapping ap-
proach with iterative signal reconstruction processing.

We first evaluate dereverberation performance in this section. To mimic room

acoustics, we generate a simulated room corresponding to a specific T60 [35] and

randomly create a set of RIRs under this T60 condition. To train the system, we

use three reverberation times of 0.3, 0.6, and 0.9 s, and for each T60 we generate 2

different RIRs. We use 200 anechoic utterances from the IEEE corpus [110] to form

the training set. Therefore, there are 200 × 3 × 2 = 1200 reverberant sentences in

the training set. The test set includes 60 reverberant sentences, corresponding to 20

speech utterances, three T60s, and one RIR. Neither the utterances nor RIRs are used

in the training set.
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We compare the proposed approach with two dereverberation algorithms. Hazrati

et al. [44] proposed a recent dereverberation approach, utilizing a variance-based fea-

ture from the reverberant signal and comparing its value against an adaptive threshold

to compute a binary mask for dereverberation. Wu and Wang [146] used estimated

inverse filters and spectral subtraction to attenuate early reverberation and late re-

verberation, respectively.

In Fig. 5.3, we show the evaluation results in terms of frequency-weighted SNR,

STOI, and PESQ, as well as those of the comparison systems. For SNRfw results

shown in Fig. 5.3(a), the DNN based approach significantly improves SNRfw relative

to the unprocessed reverberant speech by 4 dB on average. The post-processing

further boosts SNRfw by around 1 dB. Comparing with Hazrati et al. and Wu

and Wang, our DNN based methods achieve highest SNRfw scores. Consistent with

SNRfw, Fig. 5.3(b) shows that the proposed methods yield high STOI scores under

each reverberation time, higher than the unprocessed and the other two approaches

by more than 0.25. As shown in Fig. 5.3(c), the proposed approach does not boost

PESQ scores for the conditions of T60 ≤ 0.6 s, partly because mild reverberation

does not lead to significant sound quality degradation. When the reverberation time

is long, the PESQ score is boosted by our approach as shown in the condition of

T60 = 0.9 s.

Since our approach is a supervised learning method, it is important to evaluate

its generalizability. We generate another set of RIRs with T60 from 0.2 to 1.0 s,

with the increment of 0.1 s. Note that, none of RIRs in this experiment are seen in
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Figure 5.4: Generalization results in different T60 s. “DNN” denotes the DNN based
spectral mapping approach without post-processing, and “Unprocessed”
the results for original reverberant speech.

the training set as they are created from different rooms. We compare unprocessed

signals with our DNN based approach without post-processing. Fig. 5.4 shows the

generalization results of SNRfw for different T60s. Compared with the unprocessed

reverberant speech, the proposed approach substantially improves SNRfw in each

T60 and the advantage becomes increasingly larger as T60 increases, demonstrating

that our approach generalizes well to new reverberant environments in a wide range.

Fig 5.4 also shows the DNN processed results for anechoic speech, corresponding to

T60 = 0 s in the figure.

Although mild to moderate reverberation does not significantly impact speech

perception for normal hearing listeners, an adverse effect occurs when reverberation

is severe [109]. We have also conducted dereverberation experiments for strong rever-

beration conditions, when T60 s is greater than 1.0 s. Similar to the above experiment,
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Figure 5.5: DNN based dereverberation results under strong reverberation condi-
tions: (a) SNRfw, (b) STOI, (c) PESQ. “Unproc” denotes the results
for unprocessed reverberant speech. “DNN” denotes the proposed spec-
tral mapping approach without post-processing. “DNN-post” denotes the
proposed spectral mapping approach with iterative signal reconstruction
processing.

we use the same utterances to generate reverberant sentences with T60 set to 1.2 s,

1.5 s, and 1.8 s. The training and test sets use different utterances and different

RIRs. Experimental results are shown in Fig. 5.5. Comparing with unprocessed sen-

tences, the DNN based methods significantly improve SNRfw and STOI scores. Note

that, unlike moderate reverberation conditions as shown in Fig. 5.3, PESQ scores

are boosted in each reverberation time as shown in Fig. 5.5(c). In these conditions,

the post-processing achieves consistently better performance for each metric.

5.4.3 Dereverberation and denoising

Our approach can deal with not only reverberation but also background noise. We

can use the same supervised approach to perform dereverberation and denoising si-

multaneously. In this situation, the input to the neural network is the log magnitude
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spectrogram of reverberant and noisy speech, and the output is the log magnitude

spectrogram of anechoic clean speech.

We conduct experiments for dereverberation and denoising. We generate a sim-

ulated room corresponding to a specific T60 and randomly create a set, {rT , rI , rM},

representing the locations of the target, the interference and the microphone inside

the room, respectively [63]. From these locations, a reverberant mixture r(t) is con-

structed by

r(t) = hT (t) ∗ s(t) + αhI(t) ∗ n(t) (5.6)

where, hT (t) and hI(t) are the RIR of the target and the interference at the micro-

phone location, respectively. “∗” denotes convolution. We use α as a coefficient to

control the SNR of the mixture.

We simulate three acoustic rooms with different sizes and their T60s are 0.3, 0.6,

and 0.9 s, respectively. The training set contains reverberant mixtures including 600

reverberant sentences mixed with 3 noise types: speech-shaped noise, factory noise

and babble noise [70] at 0 dB SNR. Here, the SNR is computed as the ratio of the

energy of reverberant noise-free signal to that of reverberant noise-only signal. To

test the system, 60 new reverberant utterances are mixed with the three training

noises and three new noises, white noise, cocktail party noise, and crowd noise in

playground [53], under each T60 but using different RIRs.
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Figure 5.6: SNRfws for seen noises: (a) babble noise, (b) factory noise, (c) speech-
shaped noise. “Unproc” denotes the results for unprocessed reverberant
speech. “DNN” denotes the proposed spectral mapping approach with-
out post-processing. “DNN-post” denotes the proposed spectral mapping
approach with iterative signal reconstruction processing.
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Figure 5.7: SNRfws for new noises:: (a) white noise, (b) cocktail-party noise, (c)
crowd noise in playground.

Fig. 5.6 and Fig. 5.7 show SNRfw results for seen noises and new noises, respec-

tively. The DNN based method increases SNRfw by 4.5 dB for seen noises and post-

processing further yields 0.5 dB improvement. The proposed methods also achieve

significant improvement for new noises, and the average advantage is around 3 dB,

showing good generalization of the proposed approach.
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Figure 5.8: STOI scores for seen noises: (a) babble noise, (b) factory noise, (c) speech-
shaped noise.
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Figure 5.9: STOI scores for new noises:: (a) white noise, (b) cocktail-party noise, (c)
crowd noise in playground.

STOI scores are shown in Fig. 5.8 and Fig. 5.9, and DNN and DNN with post-

processing have similar performances. On average, both increase STOI scores by

around 0.15 for seen noises and 0.13 for new noises.

As shown in Fig. 5.10 and Fig. 5.11, PESQ results are improved by the proposed

approach for both seen noises and new noises. For seen noises, the average PESQ

scores for unprocessed, DNN, and DNN with post-processing sentences are 1.06, 1.31,

109



0.3 0.6 0.9
0

0.5

1

1.5

2

T
60

P
E

S
Q

 

 

Unproc
DNN
DNN−post

(a)

0.3 0.6 0.9
0

0.5

1

1.5

2

T
60

P
E

S
Q

 

 

Unproc
DNN
DNN−post

(b)

0.3 0.6 0.9
0

0.5

1

1.5

2

T
60

P
E

S
Q

 

 

Unproc
DNN
DNN−post

(c)

Figure 5.10: PESQ scores for seen noises: (a) babble noise, (b) factory noise, (c)
speech-shaped noise.

0.3 0.6 0.9
0

0.5

1

1.5

2

T
60

P
E

S
Q

 

 

Unproc
DNN
DNN−post

(a)

0.3 0.6 0.9
0

0.5

1

1.5

2

T
60

P
E

S
Q

 

 

Unproc
DNN
DNN−post

(b)

0.3 0.6 0.9
0

0.5

1

1.5

2

T
60

P
E

S
Q

 

 

Unproc
DNN
DNN−post

(c)

Figure 5.11: PESQ scores for unseen noises:: (a) white noise, (b) cocktail-party noise,
(c) crowd noise in playground.

1.45, respectively. For unseen noises, they are 1.13, 1.14, 1.21, respectively. These

results demonstrate that the proposed approach improves speech quality when speech

is corrupted by both noise and reverberation.

5.4.4 Robust speech recognition

The above evaluations show that our DNN based spectral mapping significantly atten-

uates reverberation and noise and produces good estimates of magnitude spectrogram
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of clean speech. As ASR algorithms only utilize magnitude spectrogram, our approach

is expected to improve ASR performance in reverberant and noisy conditions.

In this evaluations, we use the 2nd CHiME challenge corpus to evaluate ASR

performance [129]. In the CHiME-2 corpus, the utterances are taken from the speaker-

independent 5k vocabulary subset of the Wall Street Journal (WSJ0) corpus. Each

utterance is convolved with a fixed binaural room impulse response corresponding to

a front position at a distance of 2 m, and then mixed with binaural recordings of real

room noise over a period of days in the same family living room at 6 SNRs of -6,

-3, 0, 3, 6, 9 dB. Since our study focuses on monaural speech processing, only single

channel signals (left ear) are used.

DNN based 

dereveberation 

and denoising 

Noisy 
speech

Feature extraction
ASR system 

(GMM-DNN)

Word 

sequences

Enhanced 
speech

Figure 5.12: Diagram of an ASR system with a DNN based front-end for dereverber-
ation and denoising.

To perform ASR, the proposed approach is treated as a front-end to enhance

all sentences in both training and test datasets as shown in Fig. 5.12. We first

randomly choose 3000 sentences from the CHiME-2 training set to train our DNN
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based dereverberation and denoising model. With the trained DNN model, we per-

form dereverberation and denoising for all sentences in the CHiME-2 training and

test datasets, and resynthesize time-domain signals to construct new training and

test datasets. No post-processing is used in this experiment. We then train ASRs

model using the new training set containing only processed sentences, and test the

ASR model using the new test set. The baselines are ASRs model trained and tested

using original sentences including both clean and reverberant noisy sentences in the

CHiME-2 corpus.

We use Kaldi toolkit [101] to train two ASR systems, each of which is trained

using original sentences and processed sentences, respectively. The first ASR system

is a standard GMM-HMM based system using MFCC features with triphone three-

state model. Speaker adaptive training [2] is performed during the training stage.

Another system is a hybrid ASR system, which uses alignments achieved from the

GMM-HMM system and then trains DNNs with Mel-frequency filter bank features.

This training scheme is motivated by [123], which achieves excellent performance on

the CHiME-2 corpus. Sequence training [71] is also incorporated into this system.

We evaluate ASR performance in terms of word error rates (WERs). As shown

in Fig. 5.13, for both GMM and hybrid ASR systems, the systems trained on pro-

cessed sentences achieve lower WERs than those trained on original sentences across

all SNR conditions. DNN based dereverberation and denoising considerably boosts

ASR performance in low SNRs, where the improvements are 11.7% (absolute) for

the GMM system and 3.3% for the hybrid system in -6 dB SNR. The advantage
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Figure 5.13: ASR results. “Original / GMM” and “Processed / GMM”denote the re-
sults for the GMM-HMM systems using original sentences and processed
sentences, respectively. “Original / Hybrid” and “Processed / Hybrid”
denote the results for the hybrid systems using original sentences and
processed sentences, respectively.

gradually decreases as the SNR increases, because the performance decrement caused

by reverberation and noise becomes smaller. On average, the improvements from

original sentences are 9.5% for the GMM system and 2.0% for the hybrid system,

demonstrating that our approach can be used as a front-end to improve ASR per-

formance. We mention that the ASR experiments aim to show the advantage of the

DNN based dereverberation and denoising rather than reaching the state-of-the-art

results, which can be achieved in [91].

5.5 Discussion

We have proposed a supervised learning approach to perform dereverberation and de-

noising. The DNN is trained to learn a spectral mapping between corrupted speech
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and clean speech. Since temporal dynamics provides rich information for speech, the

feature in this study is a concatenation of spectral features in a window. A more

fundamental approach to utilize temporal information is to use an RNN, which is a

natural extension of a feedforward network. An RNN aims to capture long-term tem-

poral dynamics using time-delayed self-connections and is trained sequentially. We

have trained RNN models for spectral mapping, and yielded around 0.2 dB improve-

ment in terms of SNRfw. Although this improvement is not significant, it is worth

exploring RNNs in future work, for example, long short-term memory (LSTM) [51].

In our experiment, we train the DNN model using the IEEE corpus, which includes

only one speaker. In order to test speaker dependency, we have also conducted

experiments using the TIMIT corpus [151], where multiple speakers, including both

male and female, are contained in the training dataset. We have tested the model for

new speakers and achieved similar performance as that with the IEEE corpus. Note

that, in our ASR experiments in Section 5.4.4 using the CHiME-2 corpus training and

testing were conducted in a speaker-independent manner, showing that our approach

is robust to different speakers.

It is worth mentioning that we have attempted to train a DNN based mapping

on the cochleagram using the gammatone filterbank [134]. In this case, an element of

an input vector corresponds to the log energy of each T-F unit of corrupted speech,

while that of an output vector corresponds to the log energy of each T-F unit of clean

speech. The DNN based cochleagram mapping also produces accurate cochleagram

estimates, and the results are comparable with the spectrogram mapping.
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In our ASR experiments, we resynthesize time-domain signals from DNN outputs

and then perform speech recognition based on processed signals. According to our

experiments, although the iterative signal reconstruction improves predicted speech

intelligibility and quality scores, it does not lead to significant improvement for ASR

performance. Comparing Fig. 5.2(c) with Fig. 5.2(e), the DNN output is still better

than the spectrogram of the reconstructed signal, suggesting that we may extract

MFCC or Mel filterbank features directly from the DNN output without resynthe-

sis. As the DNN output is a better spectral representation than the spectrogram of

resynthesized signals, we expect it can yield better ASR performance. This should

be explored in a future work.

To sum, we have proposed to use DNNs to learn a spectral mapping from corrupted

speech to clean speech for dereverberation, and dereverberation plus denoising. To

our knowledge, this is the first study employing supervised learning for the problem

of speech dereverberation. This novel approach is conceptually simple. Our super-

vised learning approach significantly improves dereverberation, as well as denoising,

performance in terms of predicted speech intelligibility and quality scores, and boosts

ASR results in a range of reverberant and noisy conditions.
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CHAPTER 6

NEURAL NETWORK BASED PITCH TRACKING

Pitch determination is a fundamental problem in speech processing, which has been

studied for decades. However, it is challenging to determinate pitch in strong noise

because the harmonic structure is corrupted. In this chapter, we estimate pitch us-

ing supervised learning, where the probabilistic pitch states are directly learned from

noisy speech data. We investigate two alternative neural networks modeling pitch

state distribution given observations. The first one is a DNN, which is trained on

static frame-level acoustic features. The second one is a RNN which is trained on se-

quential frame-level features and capable of learning temporal dynamics. Both DNNs

and RNNs produce accurate probabilistic outputs of pitch states, which are then con-

nected into pitch contours by Viterbi decoding. Our systematic evaluation shows that

the proposed pitch tracking algorithms are robust to different noise conditions and

can even be applied to reverberant speech. The proposed approach also significantly

outperforms other state-of-the-art pitch tracking algorithms. A preliminary version

presented in this chapter has been published in the Proceedings of the 2014 IEEE

International Conference on Acoustic, Speech, and Signal Processing [42]. We have
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also submitted a manuscript to IEEE Transactions on Audio, Speech, and Language

Processing.

6.1 Introduction

Pitch, or fundamental frequency (F0), is one of the most important characteristics of

speech signals. A pitch tracking algorithm robust to background interference is critical

to many applications, including speaker identification [4] and speech separation [37].

Although pitch tracking has been studied for decades, it is still challenging to estimate

pitch from speech in the presence of strong noise, where the harmonic structure of

speech is severely corrupted.

A typical pitch determination algorithm consists of two stages. The first stage

determines pitch candidates or computes the pitch probability for each time frequency

unit. To deal with noise, previous studies either utilize signal processing to attenuate

noise [32], [21] or employ statistical methods to model the harmonic structure [147],

[18], [60]. However, the selection of pitch candidates is often ad hoc, and it may be less

optimal to make a hard decision for pitch candidate selection. Statistical modeling

usually relies on strong assumptions, which make the algorithms difficult to generalize

to complex acoustic environments. In the second stage, the pitch candidates or

probabilities are connected into pitch contours using dynamic programming [32], [18]

or hidden Markov models (HMMs) [147], [65].

It is sensible to formulate the pitch determination problem as an HMM decoding

problem, where a hidden state corresponds to a pitch frequency and an observation
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corresponds to acoustic features. This way, pitch determination is equivalent to

finding the optimal sequence of hidden states given an observation sequence. In an

HMM, a key problem is to estimate the posterior probability given the observation

in each time step. In this study, we propose to supervisedly learn the posterior

probability that a frequency bin is pitched given the observation.

A DNN is a feed-forward neural network with more than one hidden layer [49],

which has been successfully used in signal processing applications [88, 140]. In auto-

matic speech recognition, the posterior probability of each phoneme state is modeled

by a DNN. We adopt this idea for pitch tracking, i.e., we use a DNN to model the pos-

terior probability of each pitch state given the observation in each frame. The DNN

is expected to generate accurate probabilistic outputs due to its powerful learning

capacity.

Further, speech has prominent temporal dependency which provides rich informa-

tion for speech processing. A straightforward method to capture temporal informa-

tion is to include neighboring frames into an expanded feature vector. However, this

technique can only capture the temporal information within a limited span, because

the dimensionality of the feature is proportional to the number of the frames and it

is difficult to train a model with very high dimensional features. To utilize temporal

dynamics, a more systematic approach is to directly encode temporal information into

learning machines. A RNN is an extension of the feedforward neural network, where

the hidden units have delayed self-connections. These recurrent connections allow
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the network to encode temporal information suitable for modeling nonlinear dynam-

ics. Recent studies have shown promising results using RNNs to model sequential

data [131], [85]. Given that speech is inherently a sequential signal and temporal

dynamics is crucial to pitch tracking, we consider RNNs to model the probability

distribution of pitch states.

To recapitulate, we investigate DNN and RNN based supervised methods for

pitch tracking in very noisy speech. With proper training, both DNN and RNN are

expected to produce reasonably accurate probabilistic outputs for pitch states. With

the pitch state probability in each frame, a Viterbi decoding algorithm will be utilized

to form continuous pitch contours (see also [147]).

This chapter is organized as follows. The next section relates our work to previous

studies. Section 6.3 discusses the feature extraction part. The details of the proposed

pitch tracking approach are presented in Section 6.4. The experimental results and

comparisons are presented in Section 6.5. We discuss related issues and conclude the

chapter in Section 6.6.

6.2 Related prior work

Recent studies on robust pitch tracking have explored either harmonic structure in

the frequency domain, periodicity in the time domain, or the periodicity of individual

frequency subbands in the time-frequency domain.

In the frequency domain, harmonic structure exhibits rich information about

pitch. Previous studies extract pitch from the spectrum of speech, by assuming
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that each peak in the spectrum corresponding to a potential harmonic [117], [47].

SAFE [18] utilizes prominent SNR peaks in speech spectra to model the distribution

of pitch using a probabilistic framework. PEFAC [32] combines nonlinear amplitude

compression to attenuate narrowband noise and chooses pitch candidates from the

filtered spectrum.

Another type of approaches utilizes the periodicity of speech in the time domain.

RAPT [124] calculates the normalized ACF and chooses the peaks as the pitch can-

didates. The YIN [21] algorithm uses the squared difference function based on ACF

to identify pitch candidates.

An extension of time-domain approaches extracts pitch using the periodicity of

individual subbands in the time-frequency domain. Wu et al. [147] model pitch period

statistics on top of a channel selection mechanism and use an HMM for extracting

continuous pitch contours. Jin and Wang [65] use cross-channel correlation to select

reliable channels and derive pitch scores from resulting summary correlogram. Huang

and Lee [60] compute a temporally accumulated peak spectrum to estimate pitch. Lee

and Ellis [77] extract the ACF features and train an MLP classifier on the principal

components of the ACF features for pitch detection.

Different from the above methods, we use spectral domain features to provide a

robust representation for pitch tracking in noise. Further, our approach utilizes ad-

vanced classifiers, namely deep neural networks and recurrent neural networks, which

generate accurate probabilistic pitch states and boost the pitch tracking performance.
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In addition, we believe that a large dataset with multiple conditions benefits robust-

ness of the proposed algorithms to noises and reverberation.

6.3 Feature extraction

The proposed pitch tracking algorithms first extract spectral domain features in each

frame, and then employ neural networks to compute the posterior probability of

the pitch state for each frequency bin. With probabilistic outputs, we use Viterbi

decoding to connect pitch states and form final pitch contours.

The features used in this study are extracted from the spectral domain based

on [32]. We compute the log-frequency power spectrogram and then normalize to the

long-term speech spectrum to attenuate noises. A filter is then used to enhance the

harmonicity.

Specifically, a signal is first decomposed to the spectral domain using short time

Fourier transformation. Let Xt(f) denote the power spectral density (PSD) of the

frame t in the frequency bin f . The PSD in the log-frequency domain can be repre-

sented as Xt(q), where q = log f . Then, the normalized PSD can be computed as:

X ′
t(q) = Xt(q)

L(q)

X t(q)
(6.1)

where L(q) represents the long-term average speech spectrum, and X t(q) denotes the
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smoothed averaged spectrum of speech, which is calculated by using a 21-point mov-

ing average filter in the log-frequency domain and averaging over the entire sentence

(2∼4 s duration) in the time domain in this study.

With the normalized spectrum, we further enhance harmonicity for pitch tracking

using a filter with broadened peaks having an impulse response defined as:

h(q) =



















1

γ−cos(2πeq)
−β, if log(0.5)<q< log(K+0.5)

0, otherwise

(6.2)

where β is chosen so that
∫

h(q)dq = 0, and γ controls the peak width which is set

to 1.8.

The convolution X̃t(q) = X ′
t(q) ⋆ h(q) contains peaks corresponding to harmonics

and their multiples and submultiples. Only the spectral components in the plausible

pitch frequency range (60 to 400 Hz in this study) are selected as features. So we

have a spectral feature vector in frame t:

x̃t = (X̃t(q1), . . . , X̃t(qn))
T

Gonzalez and Brookes [32] proposed to extract the spectral feature x̃t for pitch

tracking in noise. Ideally, the pitch, F0, can be found by taking the highest peak in

x̃t. In [32], several highest peaks are chosen for each frame as pitch candidates, and

a dynamic programming algorithm is then used to form pitch contours. Although

the feature vector is designed to deal with noisy speech, rule-based pitch candidate

selection may lose useful information because it simply ignores non-peak spectral
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information. In our study, we treat x̃t as the extracted feature and employ supervised

learning to estimate pitch probability, i.e. to learn the mapping from the features to

the pitch frequencies. We expect supervised learning to yield better results.

Since neighboring frames contain useful information for pitch tracking, we incor-

porate the neighboring frames into the feature vector. Therefore, the final frame-level

feature vector is

xt = (x̃t−d, . . . , x̃t+d)
T

where d is set to 2 in our study.

6.4 Learning pitch state distribution

Instead of selecting pitch candidates, we employ supervised training approach to

learn the posterior probability distribution given the features in each frame. Neural

networks have recently achieved large progress in speech processing, and we propose

to use two kinds of neural networks to model the probability distribution.

6.4.1 DNN based pitch state estimation

Our first method is to use a feedforward DNN. To simplify the computation, we

quantize the plausible pitch frequency range into M frequency bins, corresponding to

M pitch states s1, . . . , sM . Also, we incorporate a nonpitch state s0 corresponding to

an unvoiced speech or speech-free state. We use 24 bins per octave in a logarithmic
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scale to quantize the plausible pitch frequency range into 67 bins. So there are totally

68 states [77].

To train the DNN, each training sample is the feature vector xt in the time frame

t (and its neighboring frames), and the target is an (M + 1)-dimensional vector

of the pitch states st, whose element sit is 1 if the groundtruth pitch falls into the

corresponding frequency bin, and 0 otherwise.

In order to learn the probabilistic output, we use cross-entropy as the objective

function.

L(y,x;Θ) = −

M
∑

m=0

ym ln fm(x) (6.3)

where y = (y0, . . . , yM)T is the desired output and fm(·) is the actual output of the

mth neuron in the output layer. Θ denotes the parameters we need to learn. The

activation function in the hidden layers is the sigmoid function and the output layer

uses the softmax function for probabilistic outputs.

The DNN in this study includes three hidden layers with 1600 sigmoid units in

each layer, and a softmax output layer whose size is set to the number of the pitch

states, i.e., 68 output units. The number of hidden layers and the hidden units are

chosen from cross validation (see also Sect. V.B). We use backpropagation with mini-

batch stochastic gradient descent to train the DNN model, and the actual cost in each

mini-batch is computed from the summation over multiple training samples using Eq.

6.3.

The trained DNN produces the posterior probability of each pitch state i: P (sit|xt).
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6.4.2 RNN based pitch state estimation

The DNN based method utilizes frame-level features to compute the posterior proba-

bilities of pitch states. Although it utilizes neighboring frames to incorporate tempo-

ral information, it is not able to capture long-term temporal dynamics due to the limit

of feature dimensionality. As temporal continuity and variation are important char-

acteristics of pitch, we explore a more intrinsic method to capture temporal context

information.

An RNN is a natural extension of a feedforward network. In an RNN, the depth

comes from not only multiple hidden layers but also unfolding layers through time.

An RNN is capable of capturing the long-term dependencies through connections

between hidden layers. These attributes have inspired us to use RNNs to model pitch

dynamics. One of the key challenges for using RNNs is that training with long-term

dependencies can be quite difficult and some new approaches have been proposed to

address the problem [121]. In our study, we use a classic RNN [26] and learn the

model with truncated backpropagation through time (BPTT) [112], [142].

The RNN has hidden units with delayed connections to themselves, and the output

yo = (y1, . . . , yn)
T of the RNN at the time step t can be represented as:

yo(t) = ψ(WT
o,jhj(t))

hj(t) = φ(vj(t))

vj(t) = WT
j,j−1hj−1(t) +WT

j,jhj(t− 1)

h1(t) = φ(WT
1,ixi(t))

(6.4)
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where φ and ψ are the sigmoid function and the softmax function respectively. Wj,j−1

denotes the weights matrix from the j − 1th hidden layer to the jth hidden layer,

and the numbers of the rows and the columns are equal to the number of the units in

the j− 1th layer and the jth layer, respectively. hj is a column vector corresponding

to the activations of the jth hidden layer. Wj,j denotes the self-connections in the

jth layer. Note that, since each unit only has a recurrent connection to itself, Wj,j

is a diagonal matrix. For a non-recurrent hidden layer, Wj,j = 0. Wo,j specifies

the weight matrix between the last hidden layer and the output layer, and W1,i the

weight matrix between the input layer and the first hidden layer. For a recurrent

hidden layer, the state of a neuron is influenced by not only the external input to the

network but also the network activation from the previous time steps.

With recursion over time on hidden units, an RNN can be unfolded through time

and can be viewed as a very deep network with T layers, where T is the number of

time steps. The structure of the RNN in our study includes two hidden layers. Each

hidden layer has 256 hidden units and only the units in the second hidden layer have

self-connections. The input and the output layers are the same as in the DNN.

To use the truncated BPTT to train the RNN, each training sentence is truncated

into multiple segments with a fixed length of T frames. Each segment is treated as

a sequential training sample and fed into the neural network. To train the network,

the RNN is unfolded for T time steps, and the backpropagated error δj(t) for a

neuron in the recurrent layer j is computed from both the next layer δj+1(t) and the

next time step δj(t+1). Although the truncated BPTT cannot capture the temporal
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information exceeding T time steps, the training is relatively easy. In our experiment,

we set T = 15 and a longer T does not significantly improve the performance.

In the test phase, the output of the RNN is computed sequentially, and the output

of the RNN in the tth frame is the posterior probability P (sit|x1, . . . ,xt), where the

observation is a sequence from the past to the current frame instead of the feature xt

in the current frame.

6.4.3 Viterbi decoding

The DNN or the RNN produces the posterior probability distribution in each time

frame. We then use Viterbi decoding [29], [147] to connect those pitch states according

to neural network outputs.

The Viterbi algorithm utilizes the likelihood and the transition probability to

calculate the cost in order to generate an optimal sequence. The likelihood in each

frame P (xt|s
i
t) is proportional to the posterior probability divided by the prior P (si):

p(xt|s
i
t) ∝

P (sit|xt)

P (si)
(6.5)

where P (sit|xt) is the output of a neural network. The prior P (si) and the transition

matrix are directly computed from the training data. Note that, since we train the

DNN with both pitched and unpitched frames, the prior of the unpitched state P (s0)

is usually much larger than that of each individual pitched state, resulting in the

relatively small likelihood of the unpitched state, and the Viterbi algorithm may

bias towards pitched states. Hence, we introduce a parameter α ∈ (0, 1] multiplying
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Figure 6.1: (Color online) Neural network based pitch tracking. Noisy speech is a
female utterance from the TIMIT corpus “Readiness exercises are almost
continuous”, mixed with factory noise in -5 dB SNR. (a) Spectrogram of
clean speech. (b) Spectrogram of noisy speech. (c) Groundtruth pitch
states. In each time frame, the probability of a pitch state is 1 if it
corresponds to the groundtruth pitch and 0 otherwise. (d) Probabilistic
outputs from the DNN. (e) Probabilistic outputs from the RNN. (f) DNN
based pitch contours. The circles denote the generated pitches, and solid
lines denote the groundtruth pitch. (g) RNN based pitch contours.
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the prior of the unpitched state P (s0) to balance the ratio between the pitched and

unpitched states, which is chosen from a development set. We should also mention

that the output of the RNN is the posterior probability given an observation of a

sequence rather than a single frame, which does not exactly satisfy the assumption

of the HMM and the Viterbi algorithm, but we ignore this for simplicity.

The Viterbi algorithm outputs a sequence of pitch states for a sentence. We

convert the sequence of pitch states to the sequence of frequencies and then use a

3-point moving average for smoothing to generate final pitch contours.

Fig. 6.1 illustrates pitch tracking results using the proposed methods. The ex-

ample is a female utterance from the TIMIT corpus [151], “Readiness exercises are

almost continuous”, mixed with factory noise in -5 dB SNR. Fig. 6.1(a) and (b)

show the spectrograms of clean speech and noisy speech respectively. Comparing

Fig. 6.1(b) with Fig. 6.1(a), the harmonics are severely corrupted by noise, leading

to a major difficulty in pitch tracking. Fig. 6.1(c) shows the groundtruth pitch states

extracted from the clean speech using Praat [10]. As shown in the figure, Praat even

makes a few doubling or halving pitch errors at around 160 ms and 280 ms, but

since these errors are not serious, we do not correct them and still treat them as the

groundtruth. The probabilistic outputs of the DNN and the RNN are shown in Figs.

6.1(d) and (e), respectively. Comparing to Fig. 6.1(c), the probabilities of the correct

pitch states dominate in most time frames in both Figs. 6.1(d) and (e), demonstrating

that the neural networks successfully predict pitch states from noisy speech. In some

time frames (e.g., 100 ms to 120 ms), the RNN yields better probabilistic outputs
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than the DNN, because the RNN is able to better capture the temporal context and

its outputs are smoother than those of the DNN. Figs. 6.1 (f) and (g) show pitch

contours after Viterbi decoding. In the figures, both the DNN and the RNN produce

accurate pitch contours. A few errors occur from 260 ms to 280 ms due to severe

interference.

6.5 Experimental results

6.5.1 Corpus

We evaluate the performance for the proposed approach using the TIMIT database

[151], [65]. The training set contains 250 utterances including 50 male speakers and

50 female speakers. The noises used in the training phase include babble noise from

[52], factory noise, and high frequency radio noise from NOISEX-92 [128]. Each

utterance is mixed with every noise type in three SNR levels: -5, 0, and 5 dB,

therefore the training set includes 250 × 3 × 3 = 2250 noisy sentences. The test

set contains 20 utterances including 10 male speakers and 10 female speakers. All

utterances and speakers are not seen in the training set. The noise types used in

the test set include the three training noise types and six new noise types: cocktail-

party noise, crowd playground noise, crowd music, traffic noise, wind noise, and rain

noise [53]. We point out that although the three training noises are included in the

test set, the noise recordings are cut from different segments. Each test utterance

is mixed with each noise in six SNR levels of -10, -5, 0, 5, 10, and 20 dB. The
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groundtruth pitch is extracted from clean speech using Praat [10]. In addition, we

test the proposed approach using 20 utterances in the FDA evaluation database [7]

where the groundtruth pitch contours were derived from laryngograph data.

We evaluate pitch tracking results in terms of two measurements: detection rate

(DR) [57] and voicing decision error (VDE) [90]. DR is evaluated on voiced frames,

where a pitch estimate is considered correct if the deviation of the estimated F0 is

within 5% of the groundtruth F0, and VDE indicates the percentage of frames are

misclassified in terms of voicing:

DR =
N0.05

Np

, VDE =
Np→n +Nn→p

N
(6.6)

Here, N0.05 denotes the number of frames with pitch frequency deviation smaller

than 5% of the groundtruth frequency. Np→n and Nn→p denote the number of frames

misclassified as unpitched and pitched, respectively. Np and N are the number of

pitched frames in groundtruth and total frames in a sentence, respectively.

6.5.2 Parameter selection

Since the proposed neural networks involve several parameters, we describe how to

choose their values in this subsection. The size of training set influences on the

performance, and we train three DNN models using different training sets with 450,

1350, and 2250 noisy sentences. We compare the pitch tracking results on both

training noise types and new noise types. On average, the selected training set with

2250 noisy sentences performs better than the one with 450 noisy sentences by around
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6.6% in terms of detection rates, and slightly outperforms the one with 1350 noisy

sentences.

Another important factor concerns features. In this study, we first compute the

PSD X(q) in the log-frequency domain, and then generate the normalized PSD X ′(q).

The normalized spectral features are then convolved with a filter with a broadened

impulse response, resulting the final features used in our study X̃(q). To reveal feature

effects, we train three DNN models using different features. The experiments show

that the filtered normalized PSD achieves the best performance, and the normalized

PSD and the original PSD achieve comparable performance. The average detection

rates are boosted by 5.0% for seen noises and 6.9% for unseen noises by using the

filtered normalized PSD.

We have conducted experiments for both DNN and RNN using different numbers

of hidden layers. In our experiments, the DNN with three hidden layers performs

better than that with one hidden layer by 2.6% in detection rate and that with

two hidden layers by 1.3%. The RNN with two hidden layers produces comparable

performance to that with three hidden layers, but outperforms that with one hidden

layer by 3.4%. We have also evaluated different numbers of hidden units, learning

rates, and the numbers of neighboring frames. The parameter values used in this

study are chosen using cross-validation from a development set.
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Figure 6.2: Pitch detection rate comparisons for (a) babble noise, (b) factory noise,
(c) high frequency radio noise.

−10 −5 0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SNR (dB)

D
et

ec
tio

n 
R

at
e

 

 

PEFAC
Jin&Wang
Lee&Ellis
Huang&Lee
DNN
RNN

(a)

−10 −5 0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SNR (dB)

D
et

ec
tio

n 
R

at
e

(b)

−10 −5 0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SNR (dB)

D
et

ec
tio

n 
R

at
e

(c)

−10 −5 0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SNR (dB)

D
et

ec
tio

n 
R

at
e

 

 

PEFAC
Jin&Wang
Lee&Ellis
Huang&Lee
DNN
RNN

(d)

−10 −5 0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SNR (dB)

D
et

ec
tio

n 
R

at
e

(e)

−10 −5 0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SNR (dB)

D
et

ec
tio

n 
R

at
e

(f)

Figure 6.3: Pitch detection rate comparisons for six new noises: (a) cocktail-party
noise, (b) crowd playground noise, (c) crowd music, (d) traffic noise, (e)
wind noise, (f) rain noise.
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6.5.3 Results and comparisons

We compare our approach with four pitch tracking algorithms. PEFAC [32] extracts

normalized spectral features to deal with strong noise and produces competitive pitch

tracking results. The multipitch tracking algorithm of Jin and Wang [65] computes

the autocorrelation function to select reliable channels and then utilizes an HMM

to generate pitch contours (see also [147]). This algorithm is designed to handle

reverberant noisy conditions. The third algorithm was proposed by Huang and Lee

[60]. They compute a temporally accumulated peak spectrum as features and apply

sparse reconstruction to estimate pitch in noise. The fourth algorithm was proposed

by Lee and Ellis [77]. They extract subband autocorrelation and apply principal

component analysis to reduce dimensionality. They train an MLP to estimate pitch.

Note that, like ours the latter two algorithms require training and we use the same

corpus (see Section V.A) to train these models for comparison.

Fig. 6.2 shows the detection rates for three training noises. The detection rates

gradually increase with the increase of SNR. The DNN and the RNN based methods

achieve substantially higher detection rates than others, especially in very low SNR

conditions. The results of the unsupervised PEFAC algorithm are also notable, par-

ticularly for babble noise. Although we do not train the models under the SNR of

-10 dB, the proposed approach still outperforms the others in this very low SNR con-

dition. For the untrained high SNR conditions, the proposed approach also achieves

good performance, although the relative advantage to others is not as large as in
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low SNRs. The proposed approach performs more than 6% better than all others on

average and the advantage is more than 10% when the SNR is below 5 dB. The RNN

performs slightly better than the DNN when the SNRs are greater than -5 dB.

Fig. 6.3 shows the detection rates for six new noises that are not seen in the

training phase. Similar to Fig. 6.2, this figure shows that the proposed approach

yields the best performance in these noise conditions, demonstrating that our super-

vised learning algorithms generalize well to different noisy environments. The average

detection rates for the DNN and the RNN are 75% and 76% respectively, while the

best comparison result is 71% for Lee and Ellis.

−10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

SNR (dB)

V
D

E

 

 

PEFAC
Jin&Wang
Lee&Ellis
DNN
RNN

(a)

−10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

SNR (dB)

V
D

E

(b)

−10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

SNR (dB)

V
D

E

(c)

Figure 6.4: Voicing detection error comparisons for (a) babble noise, (b) factory noise,
(c) high frequency radio noise.

It is desirable for a pitch tracking algorithm to achieve high detection rates and low

voicing detection errors at the same time. Since Huang and Lee’s algorithm does not

produce a pitched/unpitched decision, we only compare our approach with PEFAC,
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Figure 6.5: Voicing detection error comparisons for six new noises: (a) cocktail-party
noise, (b) crowd playground noise, (c) crowd music, (d) traffic noise, (e)
wind noise, (f) rain noise.

Jin and Wang, and Lee and Ellis. Fig. 6.4 and Fig. 6.5 show the VDE results for the

seen and unseen noises, respectively. As shown in the figures, our algorithms produce

lower voicing detection errors than others. On average, the VDEs of the DNN and the

RNN based methods are 17% and 18% across 3 SNRs and 6 noises, and the VDEs of

PEFAC, Jin and Wang, and Lee and Ellis are 23%, 28%, and 24%, respectively. The

results indicate the superiority of the proposed approach on both pitch and voicing

detection.

In the above experiments, the groundtruth pitch is extracted from clean speech
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using Praat, which is prone to some pitch detection errors. We now use the FDA

database [7] to evaluate our approach without any retraining, where the groundtruth

pitch is derived from laryngograph data. Fig. 6.6 shows the average pitch tracking

results over three training noises and four different SNRs. The average detection rates

for the DNN and the RNN are 51% and 50% respectively, which are higher than the

others by around 6%. These and voicing detection results are consistent with those

using Praat detected pitch as groundtruth.
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Figure 6.6: Pitch tracking results for the FDA database. (a) Pitch detection rate.
(b) Voicing detection error.

In Eq. 6.6, the denominator of the detection rate is the number of all pitched

frames in the groundtruth, so it counts false rejects as errors. Other studies [147], [90]
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used gross pitch error (GPE) to evaluate pitch deviation over 20% in the frames where

both the groundtruth and a pitch estimator produce a pitch. We have also used GPE

to compare the performances of different approaches in six SNR conditions. The

DNN and the RNN achieve GPEs of 6.6% and 5.7%, respectively. Lee and Ellis also

achieve GPE of 5.7%. All others have GPEs higher than 9%.

VDE aggregates false rejects and false alarms together. Specifically, false reject

is the percent of unpitched frames in a reference sentence wrongly classified by an

estimator, and false alarm is the percent of pitched frames wrongly classified. Looking

at these two kinds of error separately, the DNN and the RNN achieve low false reject

rates in low SNR levels, that is, they can correctly detect pitched frames even when

noise is very strong. On average, the false reject rates for the DNN and the RNN

are 12% and 10% respectively, and Jin and Wang achieve the next best at 15%. The

false alarm rates for all methods are comparable, below 7% under most conditions.

In terms of computational complexity, the processing time of the proposed ap-

proach is comparable with the other approaches. Most approaches take less than 2

seconds to process a one-second noisy speech signal, except for Jin and Wang which

takes significantly more time.

6.5.4 Extension to reverberant conditions

Reverberation smears the characteristics of harmonic structure and thus makes the

task of pitch tracking more difficult. We apply the proposed approach to reverberant

and noisy speech to evaluate the performance. In voiced speech, the fundamental
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frequency is defined as the rate of vibration of the vocal folds [67]. However, in

reverberant conditions, the received speech is the filtered aggregated signal and the

actual periodicity of the reverberant speech does not necessarily match its anechoic

version. Because some speech processing applications would prefer a pitch estimate

consistent with the harmonic structure of the reverberant speech [63], we consider

the pitch of the reverberant speech as the groundtruth (see [65]).

Because the groundtruth of reverberant speech is different from that of anechoic

speech, we need to retrain the models in reverberant conditions. To simulate room

acoustics, we generate a simulated room corresponding to a specific reverberation

time T60 [35] and randomly create a set of room impulse responses (RIRs) under this

T60 condition. To train the system, we generate three reverberation times: 0.3, 0.6,

and 0.9 s. The training set includes 250 utterances and three noises, both of which

are the same as in the previous subsection. For each T60 condition, an utterance and

a noise signal are convolved with two different RIRs respectively, corresponding to

different source locations, and the two reverberant signals are then mixed at 0 dB

SNR. Therefore, there are 250×3×3 = 2250 reverberant sentences in the training set.

The test set includes 450 sentences, consisting of 50 utterances mixed with the three

training noises in three T60s. Although the three T60s are used in the training set,

the RIRs in the test set are different from those in the training set. The groundtruth

pitch is extracted from reverberant and noise-free utterances using Praat.

We compare our approach with PEFAC and Jin and Wang, because both have

been shown to perform well in reverberation. In Fig. 6.7 and Fig. 6.8, we present
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Figure 6.7: Pitch detection rates for reverberant noisy speech: (a) babble noise, (b)
factoroy noise, (c) high frequency radio noise.
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Figure 6.8: Voicing detection errors for reverberant noisy speech: (a) babble noise,
(b) factoroy noise, (c) high frequency radio noise.

the DR and the VDE results for reverberant and noisy speech with three T60s and

anechoic speech. As shown in the figures, although the performance for noisy re-

verberant speech is lower than that in the anechoic condition, the increase of the

reverberation time starting from 0.3 s does not lead to significant performance degra-

dation. We should point out that the anechoic condition is an unseen condition in

this experiment, because the retrained model only uses reverberant speech. The fact

that these results are broadly comparable to those in Fig. 6.2 and Fig. 6.4 at 0
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dB indicates insensitivity of our supervised approach to reverberation. The proposed

approach performs substantially better than PEFAC and Jin and Wang in terms of

both detection rates and voicing detection errors. Here, the RNN outperforms the

DNN except for the high T60 conditions in the babble noise.
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Figure 6.9: Pitch tracking results on an interactively labeled pitch corpus: (a) detec-
tion rate, (b) voicing detection error.

The above experiments use Praat to extract pitch from reverberant, noise-free

speech as the groundtruth. As done in the previous subsection, we evaluate the

approaches using another pitch evaluation corpus [66] where reference pitch contours

are labeled from reverberant speech by an interactive pitch determination algorithm

[86], combining automatic pitch determination and human intervention. The original
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sentences in the corpus are randomly selected from the TIMIT corpus. Each anechoic

sentence is convolved with RIRs in T60 = 0.3 s and T60 = 0.6 s, respectively (see [65]

for details). We generate reverberant and noisy signals using babble, factory, and

high frequency radio noises at 0 dB SNR, and obtain pitch tracking results without

retraining.

Fig. 6.9 gives the pitch and voicing detection results of our approach and those of

the comparison methods. As shown in the figure, both the DNN and the RNN based

algorithms lead to significantly higher detection rates for all three noises. On average,

the detection rates for the DNN and the RNN are 66.4% and 66.2%, respectively;

while those of the others are all below 57%. In terms of voicing detection errors, the

proposed approach achieves the lowest error rate on average. Broadly speaking, these

results show similar trends to those in Figs. 6.7 and 6.8, and hence suggest that it is

reasonable to use Praat to generate groundtruth pitch for training.

6.6 Discussion

In this study, we use the supervised learning approach to learn the probability dis-

tribution of pitch states. Although supervised learning typically has a generalization

issue, our system appears to exhibit very promising results across multiple unseen

conditions, including different speakers, SNRs, noises, and room impulse responses.

Some of previous supervised learning based pitch tracking algorithms perform well on

trained conditions but need to be retrained in a new acoustic environment [18], [60].

We incorporate multiple conditions into a larger dataset and train a DNN or RNN
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model under different conditions, which potentially benefits the generalization ability

of the system (see also [140]). The success of this multiple condition training is prob-

ably due to extracted robust features as well as the learning capacity of the neural

networks. We have tried to train single condition models for each specific acoustic

environment, and found that single-condition training performs only slightly better

than our multi-conditions training.

Our acoustic features for pitch estimation are computed from the filtered normal-

ized log-frequency power spectrogram. The features use signal processing techniques

to attenuate interference and facilitate subsequent neural network training. We have

attempted to add an ACF based feature [77], but it only yields a slight improve-

ment. In principle, the DNN is capable of learning high-level representation from raw

data [49], [8] and recent advances in speech recognition [79], [22] also demonstrate

that a DNN directly trained on the filter-bank features achieves better performance

than trained on MFCC features. This suggests that, instead of using signal process-

ing to generate features, we may consider raw features for neural network training in

the future.

We have trained both DNN and RNN for pitch state estimation. Since post-

processing can correct some pitch estimation errors from neural network outputs, the

RNN does not produce significantly better results than the DNN in some conditions.

However, the RNN intrinsically captures temporal dynamics, making it well suited

for pitch tracking. As an example, Figs. 6.1(d) and (e) show the difference in pitch

state estimation by the DNN and the RNN, and we can see that the output of the
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RNN is more smooth and continuous. In this study, we use the truncated BPTT to

train the RNN and the longest time step is set to T = 15. A 15-frame truncation

is not a long segment for pitch tracking, as the pitch contours in our study usually

have 30 to 50 frames. We have tried to use 20-frame BPTT to train the models, but

the results are similar, probably because training has reached a saturation point on

our training dataset. Another strategy to train the RNN is to use BPTT on each

sequence rather than a fixed-length segment. With sufficient training data the RNN

is expected to encode longer dynamics, which may lead to performance improvement.

In addition, we use a simple RNN in our study, and it is worth exploring other RNNs

in future work, for example, LSTM [51], which has demonstrated better performance

than the simple RNN in some applications [33].

With neural network outputs, we use the Viterbi algorithm to generate pitch con-

tours in the framework of HMMs. In other words, we assume that 1) the observation

only depends on the hidden state in the current time step, and 2) the hidden state

in the current time step only depends on the previous hidden state. To relax these

assumptions, some studies use conditional random fields (CRFs) to model the se-

quence [75], [30]. We have attempted to use the CRF to generate the best sequence,

but the performance is only slightly better than Viterbi decoding. It may be because

the neural networks yield adequate information and a simple post-processing tech-

nique can achieve good results. Due to its complexity, we do not incorporate the

CRF in our system, but it will be interesting to explore better sequence models for

pitch tracking.
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To conclude, we have proposed DNN and RNN to estimate the posterior probabil-

ities of pitch states for pitch tracking in highly noisy speech. The supervised learning

based approach produces strong pitch tracking results in both seen and unseen noisy

conditions. In addition, the proposed approach can be extended to reverberant con-

ditions.
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CHAPTER 7

CONCLUSION

7.1 Contributions

Monaural speech separation and processing are very challenging, and this dissertation

addresses the problems through supervised learning. Most existing monaural speech

separation and processing algorithms either employ signal processing and make as-

sumptions about the statistical characteristics of signals, or train prior speech or noise

models to reconstruct sound sources. In contrast, our approach is a data-driven ap-

proach, i.e., we use existing data to train models to capture the relationship between

the noisy data and the target, and then use the trained models to predict the speech

information in the test stage. Our novel supervised approach achieves promising

results in many situations. We summarize our contributions in this section.

In Chapter 2, we present classification based speech separation to estimate the

IBM. With effective features and powerful classifiers, our approach significantly boosts

the classification performance. As demonstrated in [80] and [70], HIT−FA rates are

well correlated with speech intelligibility. Since our system achieves higher HIT−FA
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rates than Kim et al.’s system, it is reasonable to expect that our system can lead to

improved intelligibility.

Generalization is a major issue for supervised learning. If the training set and the

test set have different distribution properties, one cannot expect a trained model to

perform well in unmatched conditions. We address this problem in Chapter 3. We

propose to use rethresholding to adaptively adjust the decision boundaries of SVMs,

which is expected to generalize to new SNR or noise conditions. Our generalization

approach can be directly applied to trained models, and does not need prior infor-

mation for unseen conditions. Systematic evaluation and comparison show that the

proposed approach produces high quality IBM estimates under unseen conditions.

In Chapter 4, we revisit the generalization problem in a more fundamental way.

We utilize a metric learning approach for feature transformation, and the new fea-

tures are robust to different noisy conditions. With the learned features, the speech

separation system can be applied to new noise conditions. Evaluations show the

advantage of the proposed approach over other speech separation systems.

Chapter 5 develops a DNN based dereverberation and denoising system. We

propose to use DNNs to learn spectral mapping from reverberant and noisy speech

to clean speech. To our knowledge, this is the first study using supervised learning

for speech dereverberation. This novel approach is simple and effective at the same

time. Our supervised learning approach significantly improves dereverberation and

denoising performance, and boosts ASR results in a range of reverberant and noisy

conditions.
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In Chapter 6, we propose DNNs and RNNs to estimate the posterior probabilities

of pitch states for pitch tracking in highly noisy speech. The supervised learning

based approach produces accurate pitch tracking results in both seen and unseen

noisy conditions. In addition, the proposed approach can be extended to reverber-

ant situations. Our systematic evaluation shows that the proposed pitch tracking

algorithms are robust to different noise and reverberation conditions.

In this dissertation, we first proposed the binary masking based approach for

speech separation and then proposed the spectral mapping based approach for speech

dereverberation. In fact, we have attempted to use binary masking based approach for

speech dereverberation and the performance is slightly worse than spectral mapping

approach. On the other hand, spectral mapping can be used to deal with speech

separation when the noise is mild. However, if the noise is too strong, e.g., SNR is

lower than 0 dB, the mapper may not be able to learn meaningful representation from

the spectrum, mainly because the speech spectrum is severely corrupted by noise and

the pattern of noisy speech is hard to be learned.

7.2 Future work

In this dissertation, we formulate speech separation and processing as a supervised

learning problem, leading to a data driven approach. With the IBM considered as

a computational goal for speech separation, the problem can be converted to binary

classification. Although the IBM is the optimal binary mask, it may not necessarily

be the most suitable target for training and prediction. IBM based speech separation
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has been shown to yield large speech intelligibility improvements, but it may not be

as suitable for speech quality improvements. Other targets may need to be considered

for training to improve both speech intelligibility and quality, for example, the ideal

ratio mask, the magnitude spectrogram of clean speech, or the cochleagram of clean

speech. As shown in Chapter 6, we have used the magnitude spectrogram as the

training target and yielded good performance. Wang et al. [138] have carried out a

systematic study on training targets for speech separation. When using supervised

learning, it is critical to choose a suitable training target. In the context of speech

separation, a training target should lead to improvement of speech intelligibility and

quality, as well as other speech applications. Besides, considering the difficulty of

optimization, it should be amenable to training in practice. More efforts are needed

to design new training targets for speech separation.

For our binary masking based speech separation, pitch is an important feature for

classification, which is estimated using Jin and Wang’s algorithm [64]. Because we

have developed a pitch tracking algorithm in Chapter 6 and yield better performance

than others, it might be useful in improving the results from the classification based

speech separation.

Deep neural networks have shown powerful learning capacity in our studies. With

multiple hidden layers, they effectively model highly nonlinear representation from

raw data. In our experiments, many parameters of neural networks are chosen from

development sets, including number of hidden layers, number of hidden units, hidden

unit types, and learning rates. However, there is no reason to believe that we have
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reached the optimal parameters for the neural networks. Although it is a machine

learning problem to figure out parameter selection, appropriate choices likely depend

on specific applications. Deep learning is still in its infancy. As the progress is being

made in this area, deep learning is expected to solve more challenging problems in

speech processing.

Speech has rich structure, especially, the temporal dynamics. In this dissertation,

we incorporate context information using a window of frames. We have also employed

sequence modeling to capture temporal information, such as HMM, RNN, and CRF.

In addition, a spectral pattern also encodes speech information, for example, harmon-

ics form prominent structure in the spectral domain. We believe that it is promising

to utilize structural information for speech separation and processing, and more work

in this direction will likely lead to further improvements in speech separation and

processing.
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