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Abstract

Speech signal degradation in real environments mainly results from room reverberation and con-

current noise. While human listening is robust in complex auditory scenes, current speech segregation

algorithms do not perform well in noisy and reverberant environments. We treat the binaural segregation

problem as binary classification, and employ deep neural networks (DNNs) for the classification task.

The binaural features of the interaural time difference and interaural level difference are used as the main

auditory features for classification. The monaural feature of gammatone frequency cepstral coefficients

is also used to improve classification performance, especially when interference and target speech are

collocated or very close to one another. We systematically examine DNN generalization to untrained

spatial configurations. Evaluations and comparisons show that DNN based binaural classification produces

superior segregation performance in a variety of multisource and reverberant conditions.
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I. INTRODUCTION

THE performance gap between human listeners and speech segregation systems remains large in

noisy and reverberant environments despite extensive research in speech segregation. A typical auditory

environment contains multiple concurrent sources that change their locations constantly and are reflected

by the walls and surfaces in a room environment. The auditory system excels in hearing out the target

source from a sound mixture under such adverse conditions. Simulating this perceptual ability, or solving

the cocktail party problem [8], remains a huge challenge. A solution to the speech segregation problem

is essential to an array of applications in hearing prostheses, robust speech recognition, spatial sound

reproduction, and mobile communication.

Inspired by human auditory scene analysis [5], computational auditory scene analysis (CASA) [36]

approaches the segregation problem on the basis of perceptual principles. A commonly used computational

goal in CASA is the ideal binary mask (IBM) [38], which is a two-dimensional matrix of binary labels

where 1 indicates that the target signal dominates the corresponding time-frequency (T-F) unit and 0

otherwise. Recent speech perception research shows that IBM segregation produces large improvements

of speech intelligibility in noise for normal-hearing listeners [6], [22], [3] and hearing-impaired listeners

[2], [37]. Such improvements persist when room reverberation is present [32], [21].

The effectiveness of ideal binary masking implies that the segregation problem may be pursued a

binary classification problem, as first formulated by Roman et al. [29], [30] in the binaural domain.

The formulation of segregation as supervised classification has recently led to monaural IBM estimation

algorithms producing the first demonstrations of speech intelligibility improvements for both normal-

hearing [20] and hearing-impaired listeners [12]. It should be noted that these monaural classification

algorithms have not considered room reverberation, and tested variations from training noises are limited.

In this study, we address the problem of speech segregation in both noisy and reverberant environments

in the binaural setting. A considerable advantage of the classification based approach is that the distinction

between monaural and binaural segregation lies only in extracted features, and joint binaural and monaural

segregation can be readily addressed by simply concatenating binaural and monaural features. The latter

point, we believe, is an important one as such joint analysis is traditionally considered in different stages

[26], [34], [41]. Classification based on both monaural and binaural cues would allow an opportunistic use

of available cues in a variety of adverse conditions, characteristic of human listening [9]. The proposed

classification approach to binaural segregation includes monaural cues in the classification, which are

expected to be crucial when target and interfering sources are collocated or close to one another.
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As in any classification task, the use of discriminative features is essential for successful classification.

Monaural features such as pitch, amplitude modulation spectrogram, mel-frequency cepstral coefficients,

and gammatone frequency cepstral coefficients (GFCCs) have been employed in classification-based

segregation [20], [13], [39]. Binaural cues contribute to auditory scene analysis [4], [5]. In particular,

the IBM can also be estimated using the binaural cues of interaural time difference (ITD) and interaural

level difference (ILD) [29] assuming that target and interfering sources originate from different spatial

directions. Binaural mechanisms are also believed to contribute to sequential grouping in reverberant

environments [9]. However, when the target and interfering sources are collocated or nearby, binaural

cues will not be useful. On the other hand, monaural features are not affected by spatial configuration of

sound sources, and can therefore complement binaural segregation. In this paper, we primarily employ

ITD and ILD cues for classification [29], [24], but also use the monaural cue of GFCC [42] to further

enhance binaural segregation. GFCC has been shown to be a good single feature in a recent evaluation

[39].

Fig. 1. Schematic diagram of the proposed binaural DNN classification system.

In addition to features, the use of an appropriate classifier is obviously important for T-F unit classifica-

tion. A variety of classifiers has been explored in classification-based segregation including kernel density

estimation [29] and histograms [14] in the binaural domain, and Gaussian mixture models (GMM) [33],

[20] , support vector machines [13], multilayer perceptrons (MLP) [19], and deep neural networks (DNNs)

[40] in the monaural domain. In this study, we employ DNNs [16] due to their compelling performance

in speech and signal processing, including its recent successful use in monaural classification [40].

In the following section, we present an overview of our DNN classification-based binaural speech

segregation system. Section III describes how to extract binaural and monaural features and perform

DNN classification. The evaluation methodology, including a description of comparison methods, is

given in Section IV. We present the evaluation results in Section V, including on trained and untrained

source locations. Extensive comparison with several related systems is also presented in this section. We

conclude the paper in Section VI.
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II. SYSTEM OVERVIEW

The proposed DNN classification-based binaural speech segregation system is illustrated in Fig. 1.

The same two auditory filterbanks are used to decompose the left-ear and right-ear input signals into

the T-F domain. The output in each frequency channel is then divided into 20 ms T-F units. A T-F unit

corresponds to a certain channel in a filterbank at a certain time frame. This peripheral analysis produces

a time-frequency representation of the sound mixture.

Binaural features are calculated from each pair of corresponding T-F units in the left-ear and right-ear

signal. Monaural features are extracted from the left-ear signal. We extract binaural and monaural features

of ITD, ILD and GFCC at the T-F unit level. GFCC features are usually derived at the frame level. By

treating the signal in each T-F unit as the input, conventional frame-level feature extraction is then carried

out to calculate feature values in each T-F unit [39].

We train DNN to utilize the discriminative power of the entire feature set in a noisy and reverberant

environment. As binaural and monaural features vary with frequency [29], [15], we train a DNN classifier

for each frequency channel. The training labels are provided by the IBM. In testing, the DNN output is

interpreted as the posterior probability of a T-F unit dominated by the target and a labeling criterion is

used to estimate the IBM. All the T-F units with the target label (unity) comprise the segregated target

stream.

III. FEATURE EXTRACTION AND CLASSIFICATION

A. Auditory periphery

We use the gammatone filterbank [27] for auditory peripheral processing as shown in Fig. 1. The

bandwidths of the gammatone filterbank are set according to equivalent rectangular bandwidths, and a

filter’s impulse response is described as

g(c, t) =

 tn−1e−2πb(fc)t cos(2πfct), if t ≥ 0

0, otherwise
(1)

where c denotes a filter channel, and we use a total of 64 channels for each ear model. The center

frequency of the filter, fc, varies from 50 Hz to 8000 Hz. b(fc) indicates the bandwidth. The filter order,

n, is 4. This peripheral analysis is widely used in CASA.

With the gammatone filterbanks, the input mixture is first decomposed into the time-frequency domain.

The response of a filter channel is further transduced by the Meddis model of the auditory nerve [25].

Finally, the signal in each channel is divided into time frames. Here we use 20-ms frame length with
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10-ms frame shift. The resulting T-F representation is called a cochleagram [36]. With a 16 kHz sampling

rate, the signal in the T-F unit in channel c and frame m, x(c,m), has 320 samples.

B. Binaural feature extraction

With the binaural input signals, we extract the two primary binaural features of ITD and ILD. ITD is

calculated from the normalized cross-correlation function (CCF) between the two ear signals, denoted as

l, r for left and right ear respectively. CCF , indexed by time lag τ , for a T-F unit pair is described in

the following,

CCF (c,m, τ) =∑
k

(xcm,l(k)− x̄cm,l)(xcm,r(k − τ)− x̄cm,r)√∑
k

(xcm,l(k)− x̄cm,l)2
√∑

k

(xcm,r(k − τ)− x̄cm,r)2
.

(2)

In the above equation, τ varies between -1 ms and 1 ms, and k indexes a signal sample in the T-F

units. The overbar indicates averaging. For the 16 kHz sampling rate, we obtain 32-dimensional (32D)

CCF features for each pair of T-F units.

For comparison, we also calculate a single ITD feature for each T-F unit pair. The ITD is estimated

as the lag corresponding to the maximum in the cross-correlation function as [29],

ITD(c,m) = argmax
τ

CCF (c,m, τ). (3)

ILD corresponds to the energy ratio in dB, and is calculated for each unit pair as

ILD(c,m) = 10 · log10

∑
k

x2cm,l(k)∑
k

x2cm,r(k)
. (4)

The above feature gives a single ILD value over the 20-ms frame. We also break the unit feature into

two values, each corresponding to a 10-ms duration. We call the resulting two-value feature 2D ILD.

C. Monaural feature extraction

To obtain monaural GFCC features, the left-ear unit response, xcm,l, is treated as an ordinary signal

and first decomposed by the same 64-channel gammatone filterbank. Then, we decimate fully rectified

filter responses to 100 Hz along the time dimension, resulting in an effective frame shift of 10 ms. The

magnitude of the decimated filter output is then loudness-compressed by a cubic root operation to G(i, j),
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which is a 2D matrix along frequency and time respectively. Finally, discrete cosine transform (DCT) is

applied to the compressed signal to yield GFCC [42],

GFCC(c,m, j) =

√
2

C
·
C−1∑
i=0

G(i, j) cos[
jπ

2C
(2i+ 1)]. (5)

where C = 64 refers to the number of frequency channels. The energy of speech signals is distributed

towards lower frequencies. As suggested in Zhao et al. [42], we use 36D GFCC features (the first 36

components) for each T-F unit in this paper.

The above binaural and monaural features characterize different properties of the speech signal. For

classification, the features are concatenated together to form a long feature vector. Depending on features

used, we maximally obtain a 70D feature with 32D-CCF, 2D-ILD and 36D-GFCC for each T-F unit pair.

D. DNN classification

Each subband DNN classifier consists of an input layer, two hidden layers, and an output layer [40].

The extracted feature vector within each T-F unit pair is used as the DNN input. The real valued input

is suitable for modeling acoustic features.

DNN training requires appropriate initialization. It is well known that random initialization is usually

unsatisfactory. We follow the approach in [40], where DNN is pre-trained with restricted Boltzmann

machines (RBMs). Boltzmann machines are stochastic generative models that can be used to find more

abstract representations in input patterns. RBMs are two-layer Boltzmann machines with connections

only between the visible and the hidden layer. Visible units corresponding to the input layer are assumed

to be Gaussian random variables with unit variance, so the real valued input is first Gaussian normalized

and then fed into the DNN. Each hidden layer contains 200 binary neurons, which are Bernoulli random

variables. The output layer has only one neuron with a binary label where 1 indicates that the target

speech dominates a T-F unit and 0 otherwise.

The joint probability of visible and hidden units is given below,

p(v, h) =
exp(−E(v, h))

Z
. (6)

E(v, h) =
1

2

∑
i

(vi − ai)
2 −

∑
j

bjhj −
∑
i,j

wijvihj . (7)

E(v, h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i,j

wijvihj . (8)
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where v and h denote the visible and the hidden layer, respectively, and Z is called the partition function.

E is an energy function, defined in (7) for a Gaussian-Bernoulli RBM for training the first hidden layer,

and in (8) for a Bernoulli-Bernoulli RBM for training the other layers. In (7) and (8), vi and hj are the

ith and jth units of v and h, and ai and bj are the biases for vi and hj , respectively. In addition, wij is

the symmetric weight between hj and vi.

Mini-batch gradient descent with the batch size of 256 is used for training, including a momentum

term with the momentum rate set to 0.5. The learning rate for RBM pre-training is set to 0.001 for the

first hidden layer, and 0.1 for the other layers. After RMB pre-training, the standard back-propagation

algorithm is applied for supervised fine-tuning. Here, the learning rate decreases linearly from 1 to 0.001

in 50 epochs. For more technical discussions and implementation details about DNN training, we refer

the interested reader to [16], [40].

IV. EVALUATION METHODOLOGY

A. Experimental Setup

For both training and evaluation setup, we generate binaural mixtures that simulate pickup of multiple

speech sources in a reverberant space. A reverberant signal is generated using binaural impulse responses

(BIRs). We use two sets of BIRs to evaluate the proposed system. The ROOMSIM package [7], which

uses measured head related transfer functions from the KEMAR dummy head in combination with the

image method for simulating room acoustics, is used to generate the first BIR set, referred to as BIR Set

A. In addition, we use a recorded BIR set, referred to as BIR Set B, which was collected using the head

and torso simulator (HATS) in four reverberant rooms (A, B, C and D) at the University of Surrey [18].

These speech and noise signals are convolved with BIRs to generate individual sources in a room with

corresponding reverberation, and summed at each ear to create the binaural mixture input.

In BIR Set A, the dimension of a simulated room is 6m×4m×3m (length, width, height). The position

of the listener is fixed at 2.5m× 2.5m× 2m. Reflection and absorption coefficients of the wall surfaces

are uniform. The reflection paths of a particular sound source are obtained using the image model for a

small rectangular room [1]. The reverberation times (T60) are approximately 0.3s and 0.7s. We also use

the anechoic setting as a baseline. All sound sources are presented at the same distance of 1.5 m from

the listener (in the available space of each room configuration). We generate BIRs for azimuth angles

between 0◦ and 360◦, spaced by 5◦. All elevation angles are zero degree. Speech utterances and babble

noise are convolved with selected BIRs to generate the mixtures with defined SNRs. These audio signals
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are originally sampled at 16 kHz. We upsample them to 44.1 kHz to match the sampling rate of the

BIRs, and then downsample to 16 kHz for peripheral and subsequent processing.

In BIR Set B, the reverberant rooms of A, B, C and D have different sizes and reflective characteristics,

and their reverberation times are 0.32s, 0.47s, 0.68s, and 0.89s, respectively. In this set, BIRs are measured

for azimuths between −90◦ and 90◦, spaced by 5◦, at a distance of 1.5 m from the HATS. The sampling

rate of the BIRs is 16 kHz, and we apply them to speech and noise signals directly.

Training utterances come from the training set of the TIMIT corpus [10], and the test utterances from

the test set. Hence there is no overlap between the training and test utterances. The babble noise from the

NOISEX corpus [35], about 4 minutes long, is divided into two parts with the first part (106s) used in

training and the second part (128s) in testing. Thus there is no overlap in training and test noise segments

either. To create a mixture, a noise segment is randomly cut from the training or testing part to match

the length of a target utterance.

As described later, our evaluation is conducted in 2-source, 3-source, and 5-source configurations. To

isolate location-based segregation from localization, we fix the target source at azimuth 0◦, i.e. just in

front of the dummy head. More details on training configurations will be given in Section V.A. Regardless

of configuration, we generate 500 binaural mixtures to train the DNN classifiers, and use 50 sentences

to evaluate the performance of the proposed algorithm in each test condition. Irrespective of test SNRs,

training mixtures always have 0 dB SNR. The input SNR is measured at the left ear, by treating the

reverberant target speech as the target signal in reverberant cases [31].

B. Evaluation Criterion

To measure the classification-based segregation performance of our system, we use HIT−FA as our

main evaluation criterion. The HIT rate is the percent of correctly classified target-dominant T-F units

in the IBM, and the FA (false-alarm) rate is the percent of wrongly classified interference-dominant T-F

units. The local SNR criterion (LC) in the IBM definition is set to 0 dB. The HIT−FA rate has been

shown to be well correlated to human intelligibility [20].

In addition to this measure of classification accuracy, we adopt the IBM-modulated SNR metric to

account for the underlying signal energy of each T-F unit. The resynthesized speech from the IBM is

used as the ground truth since the IBM is the ground truth of DNN classification [17]:

SNR = 10 · log10

∑
t
sI(t)

2∑
t
(sI(t)− sE(t))2

. (9)
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Here, sI and sE denote the signals resynthesized from the IBM and an estimated IBM, respectively.

C. Comparison Systems

We compare the performance of the proposed method with four representative binaural separation

methods. Roman et al.’ method [31] performs binaural segregation in multi-source reverberant environ-

ments. They extract the reverberant target signal from a multisource reverberant mixture by utilizing the

location information of the target source. Their system combines target cancellation through adaptive

filtering and a binary decision to estimate the IBM.

Another comparison system is DUET [28] which is a popular blind source separation method and

produces a binary mask. It assumes that the time-frequency representation of speech is sparse, the so-called

W-disjoint orthogonality. It can separate an arbitrary number of sources using only two microphones.

The recent system of Woodruff and Wang [41] formulates the IBM estimation problem as a search

through a multisource state space across time, where each multisource state encodes the number of active

sources, and the azimuth and the pitch of each active source. A set of MLPs are trained to assign a T-F

unit to one of the active sources in each multisource state. They use a hidden Markov model framework to

estimate the most probable path through the multisource state space. This system is particularly relevant

as it combines binaural and monaural (pitch) cues.

A joint localization and segregation approach [23], dubbed MESSL, uses spatial clustering for source

localization. Given the number of sources the system iteratively modifies GMM models of interaural

phase difference and ILD to fit the observed data using an expectation-maximization procedure. Across

frequency integration is handled by linking the GMM models in individual frequency bands to a principal

ITD. In order to compare with the other systems that all produce binary masks as output, we binarize

the MESSL output. Note that the binarization does not reduce MESSL’s output SNR.

For Roman et al., Woodruff-Wang, and MESSL systems, we use the implementations provided by

their respective authors. The DUET implementation comes from its author’s book [28]. All comparison

system parameters are adjusted to get the optimal results. To run DUET and MESSL, we provide them

the correct number of sources.

V. EVALUATION AND COMPARISON

A. DNN classification using binaural features only

We first examine the case without monaural GFCC features. This also facilitates comparison with other

binaural segregation algorithms. We use BIR Set A to train and test CCF and ILD features systematically.
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Fig. 2. Two-source segregation for trained azimuths at 0-dB SNR.

First, we train and test our system with one interference at the azimuth of 45◦ (i.e. to the left side), and

the test SNR of 0 dB. Fig. 2 shows the classification results for a few T60s and compares three kinds

of binaural features. With reverberation increasing, the results of all feature kinds decrease, and the gap

between 34D features (CCF+2D-ILD) and other two lower dimensional features becomes greater. The

HIT−FA rate of the 34D features is 6% (absolute) better than the two-value ITD+ILD features in the

anechoic condition, and 34% better at T60 = 0.7s. In heavily reverberant conditions, strong reflections

make the target segregation difficult with only two-dimensional binaural features. CCF features are robust

to reverberation. In comparison, 2D ILD performs slightly better than 1D ILD.

We present HIT−FA and SNR results for two-source segregation at -5 dB in Table I. The results are

obtained in the anechoic condition with the interference placed at 45◦. As in Fig. 2, 34D features yield

the best performance. The 32D CCF features provide more detailed information about the binaural input

than the 1D ITD feature. 2D ILD also performs slightly better than 1D ILD on all evaluation criteria.

Fig. 3 illustrates the cochleagram results for a TIMIT test utterance mixed with the babble noise at -5

dB. As shown in the figure, 34D features give the best performance and recover nearly all of the target

speech energy even in this very low SNR condition. Because of their superior performance, we will use

34D binaural features in subsequent evaluations.

To examine the performance difference between trained and untrained azimuths, we evaluate the system

in 2, 3 and 5 sound sources. In the two-source condition, the single interference is located at 45◦. In the
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TABLE I. Results on two-source segregation at -5 dB for trained azimuths with different kinds of binaural features.

Binaural feature HIT (%) FA (%) HIT−FA (%) Output SNR (dB)

CCF+2D-ILD 91.13 1.86 89.28 14.21

ITD+2D-ILD 87.17 3.08 84.09 10.13

ITD+1D-ILD 86.97 3.64 83.32 9.60

(a) (b)

(c) (d) (e)

Fig. 3. Segregation illustration for a TIMIT utterance mixed with a babble noise at -5 dB. (a) Cochleagram of the mixture.

(b) Cochleagram of the target utterance. (c) Cochleagram of separated speech with CCF+2D-ILD features. (d) Cochleagram of

separated speech with ITD+2D-ILD features. (e) Cochleagram of separated speech with ITD+1D-ILD features.

three-source condition, the two interfering sources are located at the azimuth angles of 45◦ and −45◦.

Finally, in the five-source condition, the four interfering sources are located at the azimuths of 45◦, −45◦,

135◦ and −135◦.

We train the DNN in two scenarios. In the unmatched training scenario, the interference sources are

systematically varied between 0◦ and 350◦, spaced by 10◦. More specifically, in 2-source configurations,

the single interference is varied systematically. In 3-source configurations, one interference is randomly

chosen from the left side and the other interference randomly chosen from the right side. In 5-source
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(a) (b) (c)

Fig. 4. HIT−FA performance at trained and untrained azimuths in anechoic and two reverberant conditions. We train and test

with 0-dB mixtures. (a) 2-source segregation. (b) 3-source segregation. (c) 5-source segregation.

configurations, each of the 4 interfering sources is chosen from a unique quadrant (i.e. the 90◦ range)

of the azimuth space, with the 4 quadrants together covering the entire space. In both 3- and 5-source

configurations, we see that all multiples of 10◦ of the azimuth space have been used during training. In this

unmatched training scenario, test (evaluation) results are obtained from untrained interference locations.

In the matched training scenario, test interference locations are the same as used in training the DNN.

Figure 4 shows the classification results in both scenarios. As shown in the figure, the performance gap

between trained and untrained azimuths is not large. In the two-source condition, the untrained-azimuth

results are lower than the trained-azimuth results by 7.49% in HIT−FA. This average HIT−FA gap is

7.55% in the three-source condition, and 5.54% in five-source condition.

To more closely compare between trained and untrained azimuths, Fig. 5 shows 2-source segregation

results in the anechoic condition by systematically varying training and test azimuths. In Fig. 5(a), the

interference azimuth used in training varies between 0◦ and 350◦, spaced by 10◦. In testing, we place

the interference at the azimuths between 0◦ and 355◦ in 5◦ steps. In this way, half of the interference

azimuths are used in training whereas the other half are not. As shown in Fig. 5(a), the HIT−FA rates are

above 80% for most interference azimuths and close to 90% for some azimuths. When the interference

locations are close or opposite to the target sound, at azimuths of 0◦, 5◦, 175◦, 180◦, 185◦ and 355◦, the

HIT−FA rates are down to as low as 25%. This is to be expected as the proposed system operates on

the basis of binaural cues only, which have trouble distinguishing an azimuth in the front from its mirror

azimuth in the back. Overall, the trained locations yield a little higher HIT−FA rates than the nearby

untrained locations. At the better ear side (i.e. right side), for the interference located between 185◦
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(a)

(b)

Fig. 5. HIT−FA performance for two-source segregation at various interference training azimuths and 0-dB SNR. (a) 36

interference azimuths are used in training. (b) 4 interference azimuths are used in training.

and 355◦, the performance differences between trained and untrained locations are small. In Fig. 5(b),

we train our system at 4 interference azimuths of 60◦, 120◦, 240◦ and 300◦, but evaluate interference

azimuths at every 5◦. As expected, these trained locations produce the four peaks of HIT−FA rates,

which gradually decrease as the test interference moves away from the trained locations. Comparing the

results in Fig. 5(a) and Fig. 5(b), it is clear that the more the trained angles cover the azimuth space, the

better the trained system performs at untrained angles.

The next evaluation tests the system performance by varying the input SNR. In this evaluation we use
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TABLE II. Two-source binaural segregation results with respect to input SNR.

Input SNR (dB) HIT (%) FA (%) HIT−FA (%) Accuracy (%) Output SNR (dB)

-15 80.96 2.06 78.91 97.00 1.79

-10 86.46 4.16 82.30 94.86 6.46

-5 89.10 4.40 84.70 94.43 10.72

0 92.68 7.23 85.45 92.74 14.34

5 94.30 9.41 84.89 92.03 17.29

10 94.64 10.89 83.75 91.91 18.45

the babble noise at azimuth between 0◦ and 350◦ spaced by 10◦ to train the DNNs. Then an untrained

interference angle at 45◦ is used to test the system. No reverberation is considered. Note that only the

input SNR of 0 dB is used in training. The classification and SNR results are shown in Table II. The

proposed system produces excellent performance in terms of HIT−FA and SNR. As the input SNR

decreases, the HIT−FA rate decreases gradually. With the input SNR of -15 dB, the HIT−FA rate of

78.91% is still high; as a reference, this result is higher than the monaural segregation method at -5 dB

SNR [20]. Our informal listening indicates that we can recognize segregated speech in this very low

SNR condition.

We now compare our classification system and three related systems in Table III. The test results from

our system in the anechoic condition are generated from the untrained interference azimuths. Note that

the input SNR of -5 dB is not used in training. The proposed system produces the best results in all test

conditions. The MESSL results are better than those of the other two comparison systems, both of which

also produce improved SNRs in all test conditions.

TABLE III. SNR (dB) performance comparisons in multisource segregation with no reverberation and the input SNR of -5 dB

No. of sound sources Proposed Roman et al. MESSL DUET

2 10.72 3.37 5.86 2.17

3 4.65 1.16 3.06 1.78

5 3.96 0.5 3.37 1.59

B. Incorporation of monaural features

We first evaluate whether GFCC features enhance classification performance. The first feature set is

34D binaural-only features, and the second feature set includes 36D monaural GFCC features to form
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Fig. 6. HIT−FA performance for two-source segregation on the 0-dB test set.

70D joint binaural and monaural features in each T-F unit pair. Fig. 6 compares two-source segregation

in the anechoic condition where interference azimuth varies in the training and test between 0◦ and

350◦, spaced by 10◦. As shown in the figure, the joint feature set gives the better performance at all

interference azimuths. When the interference is close to the target speech, i.e. at 180◦, the HIT−FA rate

of the binaural feature set drops to 24.11%, and the joint feature set improves the results to 42.40%, or

by nearly 20%. Similar improvement occurs at the interference azimuth of 0◦. When the interference is

10 degrees or more away from the target speech, the joint feature set performs slightly better (about one

percent).

With reverberation time T60 = 0.3s, we evaluate the proposed and comparison systems in 2, 3 and 5

source conditions. This comparison also includes the Woodruff-Wang algorithm [41], which is designed

for reverberant source segregation and incorporates a monaural pitch cue. The SNR results are given

in Table IV. Our system produces the best results in all test conditions, almost 5 dB better than the

other systems. The performance of the proposed system is not affected by the number of the interfering

sources. All of the comparison systems also produce SNR improvements in all test conditions. Compared

to TABLE III, reverberation drops the SNR performance of the comparison systems by about 2 dB.

Next, we use BIR Set A with T60 of 0.3s to test the generalization of the 70D joint feature set in the

reverberant condition. As in Fig. 5(a), we use the interference azimuths between 0◦ and 350◦ spaced by

10◦ to train the DNNs. We then place the interference at the azimuths between 0◦ and 355◦ in 5◦ steps to

evaluate the trained system. As shown in Fig. 7(a), the HIT−FA rates are above 47% at all interference
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TABLE IV. SNR (dB) performance comparisons in multisource segregation with T60 = 0.3s and the input SNR of -5 dB

No. of sound sources Proposed Woodruff-Wang Roman et al. MESSL DUET

2 5.53 1.58 -2.06 2.73 0.14

3 5.42 0.17 -1.61 -0.23 0.49

5 5.53 0.92 -2.14 0.55 0.54

azimuths and close to 70% for most of the test azimuths. When the interference azimuths are close to

the target sound or its mirror angle, at azimuths of 0◦, 5◦, 175◦, 180◦, 185◦ and 355◦, the HIT−FA rates

are down to 50%. Note that, in this reverberant condition the untrained locations yield similar HIT−FA

rates to the nearby trained locations. The disappearance of the small gap seen in Fig. 5(a) is due to the

use of GFCC features, which are insensitive to azimuth. In Fig. 7(b), we train the system at 6 azimuths

of 0◦, 60◦, 120◦, 240◦, 300◦ and 360◦. This way of training produces the four high peaks of HIT−FA at

the trained azimuths of 60◦, 120◦, 240◦, and 300◦. The HIT−FA rates decrease as the test interference

locations move away from the trained azimuths. Comparing the results in Fig. 7(a) and Fig. 7(b), it is

clear that with more trained angles, the trained system performs better at untrained angles, similar to

Fig. 5.

We now compare the proposed system with the four comparison systems in the 5-source environment

with different levels of reverberation. We use BIR Set A with T60 = 0.3s and 0.7s in addition to the

anechoic condition. The SNR results from our algorithm and the comparison methods are plotted in

Fig. 8. As shown in the figure, the joint feature DNN classification system yields the best results at all

reverberation levels. When reverberation increases, the performance of the proposed system decreases

rather gradually from 10.37 dB to 7.49 dB. The joint features perform 2 dB better than binaural-only

features. The performance gap between our system and comparison systems becomes larger in reverberant

conditions. In the anechoic condition, the MESSL and Woodruff-Wang methods produce 7.54-dB and

7.45-dB SNR improvements, respectively, which are better than Roman et al. (4.10 dB) and DUET (5.41

dB). But they drop more quickly as T60 increases (2.70 dB and 2.20 dB improvements at T60 = 0.7s).

In heavily reverberant conditions, the four comparison systems show similar results.

C. Evaluation with recorded BIRs

In the following experiments, we use the measured BIR Set B to evaluate our system for 2-source

segregation. The babble noise located between −90◦ and 90◦ spaced by 10◦ is used to train the DNNs.

January 20, 2014 DRAFT



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2014 17

(a)

(b)

Fig. 7. HIT−FA performance for two-source segregation at various interference training azimuths with joint features in the

reverberant condition at 0 dB. (a) 36 interference azimuths are used in training. (b) 6 interference azimuths are used in training.

Fig. 8. SNR comparisons in the 5-source environment where speech utterances are mixed with the babble noise at 0 dB.

We first compare the binaural-only feature set and the joint feature set in the four reverberant rooms.

The noise is located at the untrained azimuth of 15◦, producing 0 dB mixtures. As shown in Fig. 9,
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the HIT−FA rate difference between these two feature sets is, on average, 3.2%. The maximum gap is

5.86% in Room B with T60 = 0.47s.

Fig. 9. Two-source segregation with binaural-only and binaural-monaural features in four reverberant rooms at the input SNR

of 0 dB.

Fig. 10 illustrates the segregation results for a TIMIT test utterance mixed with babble noise at 0 dB

in Room C with T60 = 0.68s. The joint features recover most of the target speech in this condition,

producing a similar cochleagram to that of the target speech.

(a) (b) (c)

Fig. 10. Segregation illustration for a TIMIT utterance mixed with babble noise in Room C at 0-dB SNR. (a) Cochleagram of

the reverberant mixture. (b) Cochleagram of the reverberant target utterance. (c) Cochleagram of separated speech.

We next present more detailed results of the DNN classification system with joint features at the

untrained interference angle of 45◦ in Table V. As shown in the table, the proposed system produces

strong performance in terms of both HIT−FA and SNR. As reverberation increases, the HIT−FA rate
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TABLE V. Two-source segregation results in four reverberant rooms at the input SNR of 0 dB.

Room HIT (%) FA (%) HIT−FA (%) Accuracy (%) Output SNR (dB)

A 83.02 10.51 72.52 87.67 11.56

B 80.07 10.10 69.97 87.04 9.47

C 82.94 8.88 74.06 88.66 10.56

D 78.79 13.72 65.06 83.92 7.98

TABLE VI. SNR comparisons in two-source segregation using measured impulse responses from four reverberant rooms at the

input SNR of -5 dB. T60 (in s) in each room is listed in parentheses.

SYSTEM A (0.32) B (0.47) C (0.68) D (0.89)

Proposed 4.56 2.80 1.61 1.15

Woodruff-Wang 1.75 1.50 0.95 0.65

Roman et al. -1.13 0.97 -0.45 0.15

MESSL 1.86 0.70 0.63 0.58

DUET -2.45 -3.27 -2.96 -3.72

decreases only gradually. Even in Room D with T60 of 0.89s, the HIT−FA is still high. Comparing with

the results in Fig. 9, we note that the larger azimuth separation in Table V increases the HIT−FA rate.

Table VI shows SNR comparisons for the test mixtures at -5 dB. The test azimuth of the babble noise

is the untrained 15◦. Consistent with the results using simulated BIRs, the proposed system gives the

best results in all conditions. Woodruff-Wang and MESSL outperform the other two systems in most of

the conditions.

We have also compared the proposed system with the others for 0-dB mixtures with the interference

located at 15◦ or 45◦. Similar SNR improvements are obtained as for -5 dB mixtures in Table VI. With

interference farther away from the target speech, the performance increases as concluded in Section V.B,

with the only exception of the Roman et al. method that shows little change as this method uses adaptive

filtering to segregate speech.

VI. CONCLUDING REMARKS

In this study, we have proposed a DNN-based classification algorithm with joint binaural and monaural

features for binaural speech segregation in reverberant environments. To our knowledge, this is the first

study that introduces deep neural networks to binaural segregation. The evaluation results show that
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the proposed system achieves substantially better results than four representative binaural separation

algorithms. Even at very low input SNRs and with strong reverberation, the proposed system yields

excellent segregation performance, which decreases only gradually with increased room reverberation.

The results from our evaluation indicate encouraging generalization to untrained spatial configurations.

This is important for supervised learning algorithms. Dependency on trained configurations is a main

limitation of the first supervised classification method of Roman et al. [29], [30] for binaural segregation.

The key to overcome this limitation is to train with a variety of configurations and the apparent general-

ization ability of deep neural networks. Training with a variety of configurations also allows the system

to perform binaural segregation without sound localization, in contrast to localization-based segregation

[36].

We believe that the classification framework is a very promising direction for future development [13].

In this framework, for example, it is straightforward to include monaural features to complement binaural

features for improved segregation, especially when the target and interfering sources are either collocated

or close to one another. We can expect further improvements by including more binaural and monaural

features (see e.g. [39]). The seamless integration of binaural and monaural cues in the classification

framework provides a natural way for the system to leverage whatever discriminant features that exist in

a particular environment to segregate the target signal, a characteristic of human auditory scene analysis

[5], [9].
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