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Abstract 
A motion segmentation method is proposed for an input 

sequence of random dot and binary images. The method is 
composed of two main stages, inspired by primate visual 
system. The first stage determines local velocity 
information at each location in every image frame using its 
two neighboring image frames. Measurements of a 
particular velocity at all locations form the corresponding 
velocity layer The second stage pe$orms segmentation 
based on the motion information in the velocity layers. 
Each velocity layer provides input to a LEGION (Locally 
Excitatory Globally Inhibitory Oscillator Networks), 
which is a 20 array of neural oscillators. When LEGION 
networks are simulated, the oscillators corresponding to 
the region of a uniform velocity oscillate in synchrony, 
whereas the regions with different velocities tend to attain 
different phases. Final output is displayed in the 
segmentation network. Results demonstrating the 
performance of our method on synthetic image sequences 
are provided and related to psychophysics. 

1. Introduction 

Motion is a ubiquitous property of real visual scenes 
Visual motion can be defined as the changes of luminance 
over time throughout the visual field. Presence of motion in 
a scene increases the complexity of visual analysis but it 
also provides extra information for segmentation. Motion 
information is a major cue to identify camouflaged targets 
and sometimes, is the only cue for figure/ground 
segregation. It is one of the Gestalt grouping principles, 
which is also known as common fate [6]. Thus, a 
computational vision model involving dynamic scene 
analysis has to have motion as one of its functional tokens. 

Approaches to motion analysis can be categorized into 
two groups. The first group includes approaches based on 

tracking salient features in the frames of an image sequence 
(see [lo] for review). The second group involves motion 
energy filters and seeks representation of moving patterns 
in the spatiotemporal frequency domain [ 11, [lo], [ 161. 
Gradient based approaches fall under the second category 
since the derivative operation can also be viewed as one 
type of filtering [ 111. The Elementary Motion Detector 
(EMD) developed by Reichardt [3] with appropriate 
addition of spatial and temporal filters [9] is considered to 
be equivalent to motion energy models. In its simple form, 
EMD falls under the first category as well, since it involves 
correlation of luminance at different locations across time. 

Our method consists of two stages. The first stage 
extracts motion information by performing temporal block 
matching (TBM), where intensities within displaced blocks 
are correlated across consecutive frames. By evaluating 
TBM at all locations a stack of velocity layers is obtained. 
In the second stage, each velocity layer is associated with a 
corresponding LEGION network [ 131 D LEGION has been 
proposed to deal with static image segmentation [15]. It is 
based on the idea of oscillatory correlation [7], [ 131, 
whereby phases of neural oscillators encode region 
labeling. Oscillators corresponding to one region have the 
same phase which is different from that of other regions 
[ 151. In this paper, we describe a method that combines 
TBM and LEGION for motion segmentation. 

2. Model Components 

2.1 Temporal block matching (TBM) 

EMD, which is a motion model based on fly’s visual 
system, is composed of two symmetric parts including the 
rightward and the leftward motion detectors. Rightward 
motion is detected by correlating the pixel intensity at the 
location (x, t,J with that of (x+Ax, t+At). Here, the model 
implicitly assumes a speed of Ax/At. Leftward motion 
detector does the same operation with (x, t) and (X-AX, 
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t+At). The difference between the two correlations yields 
the final output. Depending on the sign of the output, 
motion of the pixel is inferred to be rightward or leftward. 

Unlike EMD, TBM tries to match intensities within a 
local block (window) of size w x w instead of a single 
pixel. Selectivity to different velocities is achieved by 
sliding the correlation windows by different quantities and 
in different directions on the consecutive frames as shown 
in Figure 1. For TBM employing three consecutive image 
frames, correlation corresponding to velocity r at locationj 
and time t can be expressed: 

where F, is the ih image frame, 5(i) is the ith element of 
the window whose center location is shifted by a 
displacement vector d with respect to location j. There is a 
total number of R different velocities in the model. 

By evaluating correlations for a particular displacement 
vector at all locations, a velocity layer is formed. Different 
displacement vectors lead to different layers of velocity 
detectors. Velocity detectors corresponding to the same 
location form a velocity column. For a pixel in a uniformly 
moving region, one velocity detector is expected to have 
the strongest output among the others in its velocity 
column. For a pixel close to a motion boundary or in a 
region of transparent motion, more than one velocity 
detector might attain high value in its velocity column. For 
a TBM employing three consecutive frames, there is a 
stack of velocity layers for each image frame except for the 
first and the last frames in the input image sequence (Fig. 2) 

2.2 LEGION 

LEGION is based on the idea of oscillatory correlation, 
where the phases of the neural oscillators encode the 
binding of the features [ 131, [ 141. A single oscillator i of 
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Figure 1. Correlation calculation for a 
velocity of 1 pixel/frame to the right and 
bottom. Corresponding elements of the 
three consecutive local windows are 
multiplied and summated to obtain the 
correlation. 

LEGION is defined as a feedback loop between an 
excitatory unit xi and an inhibitory unit yi : 

&i 

dt 
= 3x,-xi3+2-yi+si+p (2 > a 

2 = E(y( 1 + tanh($)-yi) (2W 

where S; is coupling, p denotes the variance of a Gaussian 
noise term, and y and p are system parameters. The x- 
nullcline of (2a) is a cubic curve while the y-nullcline of 
(2b) is a sigmoid function, as shown in Figure 3. If these 
curves intersect along the middle branch of the cubic 
nullcline, then the system is oscillatory. If the nullclines 
intersect at a point along the left branch of the cubic (a 
stable fixed point), the system does not oscillate. The 
parameter E is chosen to be small positive number so that 
(2) defines a relaxation oscillator with two time scales. In 
the limit cycle, oscillator i travels along the left branch 
(LB) and jumps to the right branch (RB) and thus, becomes 
active. Once it reaches the right knee (RK) it jumps back to 
LB completing the limit cycle. 

Si denotes coupling from other oscillators and global 
inhibitor (GI), and the external input Ii in the network: 

Si = ‘i + C yj( H(Xk- ‘,) + y] Ef(Pi - e> 
kE N(i) 

- wz H(z- eJ (3) 

where Wik is the connection weight from oscillator k to 

Image Sequence 

t-l t t+l 

Figure 2. Corresponding to each image 
frame Ft, there is a stack of velocity layers. 
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oscillator i , H is the Heaviside step function, Wp is the 
weight for potential, and N(i) represents the neighborhood 
topology in the array (Fig. 4). A variable called potential is 
introduced for each oscillator to make distinction between 
homogeneously stimulated and noisy regions: 

p; = ‘C1-Pil H 
[ 

C H(Xk- ‘,l-‘p 1 - PPi C4) 
k EN,,(i) 

where h > 0, l+t is in the order of E , and Nr, is the potential 
neighborhood, which is larger than N. Initially, oscillators 
have high potentials which continuously decay. When an 
active oscillator has a number of active neighbors more 
than 0, in its NI,, its potential rises to ,l, otherwise it is 
reduced to 0. Oscillators that maintain high potential are 
called leaders while others are called followers. Large 
homogeneous regions can produce leaders. Since noisy 
fragments tend to be small and isolated, they tend not to be 
able to produce leaders. When a LEGION network runs, 
groups of oscillators that receive similar stimuli and 
correspond to topologically connected regions form a 
segment. Only a leader can start formation of a segment. 
Segments lacking leaders cannot become active and will 
stop oscillating as in the case of noisy fragments. 0,, 8, 
and 8 are thresholds and Wz is the weight of the 
inhibit;y connection from GI, whose activity, z, is defined 
as 

dz 
dt = m,-d (5) 

where 0, = 1 if xi 2 8,, for at least one oscillator and 

%a = 0 otherwise, and (p is a constant. The typical neural 
network structure used in our image analysis is a two 
dimensional array of oscillators and one GI as shown in 
Figure 4. LEGION has been applied to static image 
segmentation [ 151. 

3. The Model: TBM and LEGION 

There is a strong evidence from both psychology and 
neurophysiology that there exist at least two separate stages 
of motion processing in primate visual system (see [lo] for 
review). Similarly, our method is composed of two stages 
including TBM and LEGION networks. 

Even though TBM in our method is similar to the local 
motion extraction method in [2], we employ two 
neighboring frames instead of just one (Fig. 5). Because of 
temporal locality, segmentation result for a given image 
frame is not affected by temporally distant frames. For a 
given image sequence, one segmentation result is 
determined for each image frame except for the first and the 
last frames. Prior to TBM, input sequence of images is 
filtered by a Laplacian of Gaussian filter (LOG) of size 
m x m [8]. Subsequently, filtered images are thresholded 
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Figure 3. Phase plane diagram of a single 
oscillator. The x-nullcline is the dotted line 
and the y-nullcline is the solid line. Since the 
nullclines intersect only along the middle 
branch of the x-nullcline here, the oscillator 
produces a limit cycle, drawn as thick solid 
line. The parameters are E = 0.005, y = 10.0, 
p = 0.02, Ii = 2.0, and p = 0.02. 

Figure 4. Architecture of a 2-D LEGION 
network with 8-Nearest Neighbor coupling. 
The global inhibitor (GI) is indicated by the 
black circle. 

with 0 to make them binary. Following that, a set of 
correlators is applied to each group of three consecutive 
image frames in the sequence. Thus, for each group, a stack 
of velocity layers is obtained. One can view a velocity layer 
as the spatial distribution of a measure analogous to the 
likelihood of a particular velocity. In the second stage of 
our method, there is one LEGION network corresponding 
to each velocity layer. Correlations forming a velocity layer 
define the input to the corresponding LEGION network 
(Fig. 5). Consequently, the coupling weight between two 
oscillators, i and k, on a velocity layer, r, is determined 
based on their correlations, given by: 
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w = rik 
1 

(6) 

where the denominator is added a small number to avoid 
division by zero. Thus, if two neighboring oscillators have 
similar correlations they will have strong coupling. 

In this multilayered architecture of LEGION networks 
we modified Si in (3) as Sri = H (S - 0,J where 8,s is a 
threshold and 

S= c Wrik H(X,k - 0,) - y H(’ - e,,) 

kdV(i) 

There is an inhibitory interaction within each velocity 
column through the potential term. This interaction is 
crucial when there is more than one leader in a velocity 
column. As a result of this interaction, the oscillator that 
has the largest input becomes the winner and thus, can start 
forming its segment on its velocity layer. Other oscillators 
on the same velocity layer are recruited through local 
couplings. Oscillators in a segment become active 
simultaneously (synchronization). Because of the global 
inhibition, during the active phase of a segment, no other 
segment can be formed (desynchronization). If a leader 
within a velocity column is not a winner, it can only be 
recruited by some other leader(s) on its velocity layer. 
Therefore, more than one oscillator in a velocity layer can 
become active and thus, different velocities can be 
represented at the same location. This ability has a key role 
in the representation of transparent motion. 

By the addition of the last term in (7), oscillators that 
correspond to regions with uniform luminances can also 
become active. However, leaders in these regions cannot 

and become winner. Because of filtering bY LOG 
thresholding, regions with uniform luminances can only 
have zero velocity. Because of the inhibition in velocity 

Figure 5. Flow diagram of the method. 

columns, they cannot be winner but can only be followers. 

Finally, a segmentation network is employed where each 
unit has the summated activity of the corresponding 
velocity column. Since there is always one active segment 
at any time, the segmentation network displays the 
segments in the order they become active. 

4. Results 

To demonstrate the performance of our method, a set of 
synthetic image sequences is prepared. We employed a set 
of random dot images because they are widely used in 
psychophysical experiments and are able to induce several 
natural visual motion. In these images, segmentation of 
individual frames is not possible based on a static image 
analysis. Thus, motion information is the only cue for 
segmentation. We also included a binary image sequence 
with a moving region of uniform luminance to test the 
performance of our method on the challenging blank-wall 
problem [ 111. 

In all random dot image sequences used in this study, the 
pattern of dots forming the object(s) does not change 
throughout the sequence. A new set of random dots 
corresponding to the region outside the object(s) is 
generated independently at each time frame. Prior to 
motion extraction, images are filtered by LOG of size 5 x 5 
with 0 = 0.05 and thresholded with 0. There are five 
different velocity layers included in TBM, where a block of 
size 5 x 5 is employed for correlation. These velocities are 
Km, (LO), (W), (-LO), and (0,-l) pixel/frame, where the 
values represent horizontal and vertical components of the 
velocities, respectively. In the simulation of LEGION 
networks, a functionally equivalent algorithm is employed, 
where only the following parameters are needed [ 151: 
N= 3 x 3, N], = 7 x 7, Wz = 0.74, W, = 1 , 
8 = 36.75, and Ii = 1 . The only parameter that needs to 
bi adjusted from one image sequence to another is OS e All 
images and LEGION networks are of size 64 x 64. 

We illustrate the segmentation process using the 
example shown in Figure 6, where two square regions are 
moving oppositely with a horizontal speed of 1 pixel/ 
frame. A schematic diagram of the input is depicted in 
Figure 6A. Since TBM requires only three consecutive 
frames in the calculations, we demonstrate the method for 
only one group of three frames (Fig. 6B). Segmentation 
results corresponding to other groups can be obtained 
similarly. In our method, first, images are filtered with LOG 
and thresholded (Fig. 6C). As a result of TBM, five 
velocity layers are obtained as depicted in Figure 6D. 
Except for spurious responses in other velocity layers, each 
square is detected only by the velocity layer that correctly 
corresponds to its motion. Subsequently, five LEGION 
networks are simulated with 8,Y = 0.4 and random initial 
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conditions. Consequently, the final result is read out from 
the segmentation network as shown in Figure 6E. The first 
frame shows the initial random activities of the 
segmentation network. After a few cycles, a segment is 
formed on the rightward velocity layer. Activities of this 
segment are reflected onto the segmentation network as 
depicted in the second frame. Subsequently, oscillators on 
the leftward velocity layer become active. Corresponding 
activity of the segmentation network is shown in the third 
frame. These two regions become active repeatedly during 
the entire simulation. Because the dots forming the squares 
are sparse so are the synchronized oscillators. Since 
oscillators outside moving regions have neither uniform 
luminance input nor uniform input from velocity layers, 
they always stay silent and thus, form the background. 

Four additional segmentation examples are provided to 
show the performance of our method on a widely used set 
of stimulus in psychophysical experiments (Figs. 7- 10). 
For illustration purposes, only schematic diagrams of the 
inputs are shown when the actual input is a random dot 
image. In the first example, the input image is divided into 
two regions in terms of motion. The upper half is moving 
to the left while the lower half is moving to the right with 
the same speed of 1 pixel/frame (Fig. 7A). After running 
LEGION networks with 8,s = 0.4, the segmentation 
network reaches the periodic activity where oscillators 
corresponding to each half synchronized (Fig. 7B and C). 
The second and the third examples illustrate the 
performance of our method in the presence of transparent 
motion. In the second example, there are two oppositely 
moving interleaved regions that are covering the entire 
image (Figure 8A). They are moving with a vertical speed 
of 1 pixel/frame. When 8,s = 0.3 , the segmentation 
network shows that there are two moving surfaces covering 
the entire image in accordance with perception (Figs. 8B 
and C). The third example is a combination of the examples 
in Figures 6 and 8. Two rectangular regions, which partially 
and transparently overlap, are moving oppositely with a 
horizontal speed of 1 pixel/frame (Fig. 9A). When 

0,s = 0.4, the segmentation network shows that there are 
two rectangular regions. Furthermore, the common region 
becomes active with both regions as shown in Figures 9B 
and C. In the final sequence, a uniformly white rectangular 
region is moving to the right with a speed of 1 pixel/frame 
(Fig. 10 A). This image has the blank-wall problem, where 
the true motion of the rectangle’s inner region is difficult to 
recover [ll]. In spite of this, by the help of the last term in 
(7), our method is able to segment the inner region together 
with the edges whose motion is detected correctly (Fig. 10 
B). Segmentation result is obtained with 8,s = 0.4. 

5. Conclusion 

Figure 6. A) A schematic diagram of the 
input. B) The input image sequence. C) After 
LOG and thresholding. D) Velocity layers, 
stationary, rightward, leftward, upward, and 
downward, organized in consistent with 
their directions. E) Initial and repeated 
activities in the segmentation network. 

composed of two stages, which are TBM and LEGION. 
Both stages are based on the notion of local computations, 
which is important for parallel and distributed processing. 

Even though our examples are composed of random dot 
images, 
capture 

which are relatively real 
many properties 

simpler than 
of visual moti 

images, 
.on. Cu 

they 
rrent 

implementation of our method has only a limited number 
of velocity layers, which can be increased easily without 

Inspired by primate visual system, our method is 
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Figure 7. A) A schematic diagram of the 
input. B-C) Periodic activities in the 
segmentation network. 

Figure 8. A) A schematic diagram of the 
input, where two interleaved surfaces are 
oppositely moving. B-C) Periodic activities 
in the segmentation network. 

A 

Figure 9. A) A schematic diagram of the 
input, where two oppositely moving 
rectangles partially and transparently 
overlap. B-C) Periodic activities in the 
segmentation network. The overlapping 
region is grouped with both rectangles. 

Figure 10. A) The input image frame. B) 
Periodic activity in the segmentation 
network. 

altering the architecture. Our method has the potential of 
multiscale analysis by employing a set of LOG filters with 
different scales. As compared to other neural networks for 
motion analysis, our model is able to handle more units 

efficiently [4], [5], [ 171. Future goals include testing our 
method on real images as well as on other psychophysical 
characteristics of motion perception such as direction 
repulsion [4]. 
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