
This paper is included in the Proceedings of the
17th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2023 • Boston, MA, USA

978-1-939133-34-2

Open access to the Proceedings of the
17th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Conveyor: One-Tool-Fits-All
Continuous Software Deployment at Meta

Boris Grubic, Meta; Yang Wang, Meta and the Ohio State University; Tyler Petrochko,
Ran Yaniv, Brad Jones, David Callies, Matt Clarke-Lauer, and Dan Kelley, Meta;

Soteris Demetriou, Meta and Imperial College London;
Kenny Yu and Chunqiang Tang, Meta

https://www.usenix.org/conference/osdi23/presentation/grubic

Conveyor: One-Tool-Fits-All Continuous Software Deployment at Meta

Boris Grubic1, Yang Wang1,2, Tyler Petrochko1, Ran Yaniv1, Brad Jones1, David Callies1,

Matt Clarke-Lauer1, Dan Kelley1, Soteris Demetriou1,3, Kenny Yu1, and Chunqiang Tang1

1Meta Platforms, 2The Ohio State University, 3Imperial College London

Abstract

We present Conveyor, Meta’s software deployment tool,

along with the valuable data obtained from managing over

30,000 deployment pipelines that deploy all kinds of services

at Meta across millions of machines. We describe a wide

range of deployment scenarios that Conveyor supports to

achieve universal coverage. At Meta, out of all the deploy-

ment pipelines for services deployed via containers, 97% of

them employ fully automated deployments without manual

intervention: 55% utilize continuous deployment, instantly

deploying every code change to production after passing au-

tomated tests, and the remaining 42% are automatically de-

ployed on a fixed schedule (mostly daily or weekly) without

manual validation. We highlight several distinguishing fea-

tures of Conveyor, including safe in-place updates to reduce

hardware costs, analysis of code dependencies to prevent

faulty releases, and the capability to deploy complex ML

models at scale.

1 Introduction

“Release early, release often” [1, 32] is central to Meta’s engi-

neering culture. For example, Meta’s largest service, Front-

FaaS, which is a serverless function-as-a-service platform,

runs on more than half a million machines and has tens of

thousands of developers making changes to its code base,

with thousands of code commits every workday. Despite this

extremely dynamic environment, it continuously releases a

new version into production every three hours [33].

Although the concept of frequent software releases is well-

established, previous studies have primarily relied on limited

surveys or analyses [7, 20, 23, 25, 38–41, 48]. In contrast,

we leverage our nine years of direct experience in develop-

ing Meta’s deployment tool called Conveyor and the wealth

of data obtained from managing over 30,000 deployment

pipelines to answer the following questions: 1) What is the

adoption rate of deployment automation, and what is im-

portant in driving the adoption? 2) What is special about

deployment safety at hyperscale? 3) What distinguishes the

deployment of ML models from traditional service executa-

bles? We summarize our answers to these questions below.

1.1 Adoption of Deployment Automation

Universal adoption. We strongly argue for universal adop-

tion of a single deployment tool within an organization to

support all kinds of services, both small and large. At Meta,

0.1% and 1% of the largest services consume 40% and 80%

of the total fleet capacity, respectively. Similarly, Google

reported that “the top 1% of jobs consume over 99% of all

resources [47].” These largest services often require the most

complex deployment features, and neglecting them would

lead to fragmentation and difficulties in managing the site.

For example, due to FrontFaaS’s demanding requirements,

it used to have its own complex deployment tool written in

over 30,000 lines of code. This kind of fragmentation compli-

cates the operation of our site. In the event of a site outage,

very few people know how to safely revert a specific service’s

problematic release.

Furthermore, the impact of a deployment tool on site relia-

bility necessitates many advanced features to ensure the safety

of deployments, as outlined in §1.2. While it may be tempt-

ing to develop a new custom tool to address specific needs

that are currently unsupported by the standard tool, Meta’s

experience has consistently shown that these custom tools,

owned by individual product teams, have seldom reached the

level of maturity required to provide the essential, advanced

deployment-safety features. Consequently, without any ex-

ceptions, these custom tools have always been assimilated

back into the standard tool as it evolves and matures.

Over the past nine years, Conveyor has achieved universal

adoption at Meta, and the key to its success lies in its ability to

support a wide range of deployment scenarios while ensuring

the safety of deployments (§3).

Fully automated deployments. After addressing numerous

challenges along the way, the adoption rate of continuous

deployment [39] at Meta has greatly exceeded our initial ex-

pectations. With continuous deployment, every time a code

change is committed to the code repository, it automatically

goes through a series of tests. If it passes those tests, it is

deployed to production immediately, without manual inter-

vention. Currently, out of all Meta’s deployment pipelines

for services deployed via containers, 97% employ fully auto-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 325

mated deployments: 55% utilize continuous deployment and

the remaining 42% automatically deploy on a fixed schedule

(mostly daily or weekly) without manual validation.

In contrast, in early 2018, 47% of services at Meta were

deployed manually without using any automation tool, 41%

utilized an automation tool but still required manual valida-

tion, and only 12% were deployed through full automation.

The significant increase in fully automated deployments, from

12% to 97%, has greatly reduced developer toil and improved

productivity. Moreover, in early 2017, 20% of our fleet’s RPC

traffic [37] were generated by executables that had not been

updated within 30 days. Currently, this number has dropped

to around 1%. Up-to-date code brings many benefits, such as

faster iteration speed and the timely implementation of bug

fixes and security fixes.

To automate deployments, bugs and deployment failures

must be embraced as a norm. Instead of introducing manual

validations to prevent failures, automated guardrails such as

testing and health checks should be implemented to detect

release failures early and contain their adverse effects. Specif-

ically, although 5.4% of our deployments fail, deployments

are still highly reliable as the majority of those failed deploy-

ments are caught during early deployment phases with little

to no production impact. The high reliability of automated de-

ployments is evidenced by the fact that only 0.92% of finished

deployments are manually reverted or patched by developers.

1.2 Deployment Safety at Hyperscale

Making in-place updates safe. Due to its strong safety guar-

antees, the approach of mirroring update, which keeps the

existing deployment intact and uses a separate set of contain-

ers to deploy a new version of the software, is widely used

in the industry [2, 11], as it can easily redirect traffic back to

the old deployment if the new deployment encounters issues.

However, the cost of keeping spare hardware for a second

deployment is prohibitive for our hyperscale services. At

Meta, we exclusively utilize in-place updates for all services,

which directly update containers in the existing deployment,

eliminating the need for a separate deployment.

Updating a service in place requires precise controls over

container updates and health checks to ensure safety. To en-

able such controls, we have enhanced our cluster manager [45]

to allow updating a specific subset of a job’s containers to

a new version while keeping the remaining containers on

the old version, as opposed to the traditional approach that

requires updating a job’s all containers as a whole [22].

Furthermore, for complex services like sharded databases,

it is essential for the service itself, rather than the cluster man-

ager, to determine when to update each container, because the

service knows best about its own requirements such as shard

replica safety. Our cluster manager’s TaskControl interface

enables this, whereas existing cluster managers disallow it.

Finally, we have enhanced our monitoring system to con-

duct health checks on “moving targets,” i.e., a dynamically

changing subset of a job’s tasks. This subset evolves as the de-

ployment progresses, in contrast to traditional health checks

that always target a fixed set of tasks, i.e., all tasks in the job.

Overall, these precise-control features enable Conveyor to

perform in-place updates safely while eliminating the extra

hardware costs associated with the mirroring approach.

Handling complex code dependencies. Pioneered by hy-

perscalers such as Google, monorepo [9], which stores the

code for an organization’s many projects in a single reposi-

tory, has become increasingly popular due to benefits such as

improved code reuse. However, increased code reuse leads

to more complex code dependencies, such as a service X

transitively depending on shared code at a depth of over 10

layers. In such cases, when a bug is introduced to some de-

pendent code, the owner of service X might not even know

that service X is affected. Our data show that about 14% of

the to-be-deployed executables are affected by known bugs in

dependent code and should not be deployed into production.

Conveyor’s Bad Package Detector automatically enforces this

(§3.2), but existing deployment tools do not support it.

1.3 ML Model Deployment

Traditional deployment tools [3, 18, 42, 46] exclusively focus

on the deployment of service executables. Even if they evolve

to achieve universal coverage for service executables, in the

era of rapid proliferation of ML applications, they still leave a

significant gap by not addressing the deployment of ML mod-

els. Conveyor has been specifically enhanced to address this

need and currently about 44% of its pipelines are for model

deployments. To support ML models, Conveyor coordinates

deployment pipelines for models that share the same infer-

ence executable, synchronizes the deployment of different

shards of a partitioned large model, and implements phased

in-place updates of models through the configuration manage-

ment system [44], in contrast to the traditional approach of

updating executables via the cluster manager. Dedicated ML

platforms such as AWS SageMaker can deploy models using

the mirroring approach [35, 36], but they do not support the

advanced model-deployment features mentioned above.

Contributions. We make several contributions in this paper.

• We believe this paper is the most comprehensive report

to date on deployment scenarios, operational experience,

and production data related to software deployment.

• We demonstrate the feasibility of achieving aggressive

goals for software deployment, such as frequent and auto-

mated deployment without manual validation, and using

a single deployment tool to provide universal coverage

for datacenter services, ML models, application configu-

rations, host-level daemons, and mobile apps.

• We present novel techniques that ensure the safety of in-

place updates, prevent faulty releases through analysis of

code dependencies, and safely deploy ML models.

326 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2 Overview of Software Deployment at Meta

To provide context for the discussions in later sections, this

section gives an overview of Meta’s software deployment

culture and deployment ecosystem.

2.1 Deployment Culture

At Meta, we mandate frequent software deployments for mul-

tiple reasons. First, frequent releases enhance developer pro-

ductivity. Engineers at Meta heavily rely on A/B test results

of new product features to guide their development. This

necessitates frequently deploying and testing new code with

real users. Second, frequent releases reduce the complexity of

troubleshooting in production because each release contains

fewer code changes. Finally, frequent releases ensure timely

deployment of bug fixes and security fixes. Consider a widely

publicized site outage in 2014 [29]. Two months before the

outage, the issue that later caused the outage was identified

and the bug fix was already committed to the code repository.

Unfortunately, no new deployment took place for two months.

In general, preventing human mistakes in software deploy-

ments at the scale of thousands of engineers is unachievable

without utilizing automation tools like Conveyor.

Meta’s Push4Push program enforces regular deployments

through tickets. Service owners get a ticket if their services

are not updated within certain days (42 days for low-traffic

services and 30 days for high-traffic services), and it escalates

to managers at 63 days. In practice, Push4Push results in 96%

of services deploying weekly or more frequently.

2.2 Deployment Ecosystem

Meta’s private cloud comprises multiple datacenter regions.

Each region has its own instance of cluster manager called

Twine [45], which manages machines and containers. During

a deployment, Conveyor instructs Twine to update containers.

Meta’s datacenter software is structured as many microser-

vices [21]. A service comprises one or multiple jobs. A job

comprises one or more tasks, and a task is mapped to a Linux

container. Typically, a service is deployed to multiple regions

for resilience, running one job for each region where it is

deployed, and each of those jobs is managed by a different

Twine instance.

Figure 1 presents an overview of the software deployment

ecosystem at Meta. Developers define the update procedure

for their services by specifying a deployment pipeline, which

is a directed acyclic graph (DAG) comprising a set of input

artifacts and a set of actions. A simple pipeline is shown at the

top of Figure 1, while a more complex example is provided

in Figure 3. An action represents an operation to be executed

and takes a set of artifacts as input and potentially generates

a new set of artifacts. Examples of artifacts include source

code and compiled executables. Once all the input artifacts

of a pipeline are ready, the pipeline will be executed, creating

a release. A release is one execution of a pipeline.

Conveyor

Twine

(cluster mgr)

Health Check Service

(HCS)

Configerator

(Config Mgmt System)

Code

(artifact)

Build

(action)

Deploy

(action)

Image

(artifact)

Service-specific

TaskController

Twine

Monitoring DataJob

Old task

Updated task

Legend

Conveyor executes deployment pipelines

A service comprising two jobs

Figure 1: Software deployment ecosystem at Meta. The two

Twine instances manage jobs in different datacenter regions.

The deploy action drives Twine to update containers and

is typically the most complex part of a pipeline. To prevent

a bug from instantly impacting all tasks within a job, the

deploy action updates tasks in phases. Each phase updates

a subset of tasks, checks their health, and proceeds to the

next phase only if no issues are detected. To check service

health, Twine and the service itself can log various health

signals, such as CPU utilization and user engagement metrics.

The Health Check Service (HCS) is responsible for checking

these health signals for anomalies based on user-defined rules.

For example, it can detect if user engagement drops below a

certain threshold. Collecting health signals often requires a

waiting period to gather monitoring data, known as the bake

time. Therefore, a deploy action typically includes several

phases, each with an update period and a bake period, and

such information is defined in a deployment plan.

In addition to driving Twine to deploy service executables,

Conveyor can also drive Configerator [44], our configuration

management system, to implement phased deployments of

ML models and configuration files (§3.3). Moreover, a ser-

vice with special requirements can optionally provide its own

TaskController to advise Twine on which tasks are safe to

update together, as explained in the example below.

2.3 Component Interaction by Example

We illustrate the interaction between various components in

Figure 1 through the example of deploying a new software

version for a sharded key-value store (KVStore). The KV-

Store is deployed across two regions, denoted as X and Y ,

with each region running a separate job consisting of six tasks.

These jobs and tasks are labeled as JobX = [X1, · · · ,X6] and

JobY = [Y 1, · · · ,Y 6]. These 12 tasks collectively host 500

data shards, each of which has three replicas that are poten-

tially distributed across regions.

According to the KVStore’s quorum protocol, if a shard

loses two out of its three replicas, it becomes unavailable.

Thus, concurrently updating any two specific tasks carries

the risk of rendering certain shards unavailable. Since Con-

veyor and Twine are unaware of the application-level shard

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 327

Conveyor TwineX TaskControllerHealth Check Service

Request = [X1, X2, X3]

Approved = [X1, X3]

Finished = [X1, X3], Request = [X2]

Approved = [X2]

Finished = [X2]

Update 3 tasks

Updated 3 tasks

Bake

time
Check health on

[X1, X2, X3]

Health OK

Check health on

[X1, X2, X3]

Health OK…

Figure 2: Phase 1 of updating the KVStore.

placement [24], they cannot determine whether it is safe to

update any two specific tasks together. To ensure shard avail-

ability, the KVStore provides its own custom TaskController

to advise Twine on which tasks are safe to update together.

The deploy action of the KVStore consists of two phases:

1) updating three tasks of JobX , and 2) updating the remaining

three tasks of JobX and all six tasks of JobY (see §6.5.2 for

alternative setups). In phase 1, Conveyor instructs TwineX ,

the Twine instance in region X , to update three tasks of JobX ,

as depicted in Figure 2. TwineX chooses to update tasks

X1, X2, and X3 and communicates this intent to the TaskCon-

troller by sending request= [X1,X2,X3]. The TaskController

responds with a subset of tasks that can be safely updated to-

gether. For example, the TaskController may find that the

shard replicas hosted by X1 and X3 do not overlap but further

including X2 would result in some shard losing more than

one replica. Therefore, it responds with approved = [X1,X3].
Consequently, TwineX executes the updates for X1 and X3

and then notifies the TaskController. The TaskController sub-

sequently responds with the next batch of tasks that are now

safe to be updated, in this example, approved = [X2].

Once all tasks in phase 1 of the deploy action are updated,

Twine notifies Conveyor. Next, during the configured bake

time, Conveyor periodically invokes the Health Check Ser-

vice to access the health of X1, X2, and X3 (instead of all

tasks in JobX), by comparing the error rate, latency, and user

engagement metric of those tasks before and after the update.

If the health checks pass, Conveyor proceeds to phase 2

of the deploy action by instructing TwineX to update the

remaining 3 tasks of JobX and instructing TwineY to update

all 6 tasks of JobY . The process is similar to that in phase 1.

This example highlights a key principle in our design: sepa-

ration of concerns. Conveyor orchestrates the execution of the

deployment plan supplied by the service owner without wor-

rying about how tasks are updated. A custom TaskController

usually has a simple implementation since it only needs to

determine which tasks can be safely updated together based

on the application constraints. The complexity of actually up-

dating tasks and managing their lifecycle is handled by Twine

without the involvement of Conveyor or TaskController.

3 Deployment Scenarios and Solutions

To achieve universal coverage, Conveyor supports a wide

range of deployment scenarios. This section presents these

scenarios and the corresponding solutions in Conveyor.

3.1 Enabling In-place Updates

The software deployment approach affects hardware costs.

The in-place update approach restarts an existing task on the

same machine to run the new executable. In contrast, the

mirroring approach, which is also called Red-Black [43] or

Blue-Green [2] deployment, first starts a new job with the

new executable, often on other machines, gradually redirects

the traffic from the old job to the new job, and finally shuts

down the old job. Although this approach is safer as the traffic

can be quickly redirected back to the old job if the update

fails, it needs extra hardware to run both the old and new

jobs in parallel. Consider the example of deploying Front-

FaaS to 500K machines every three hours. A naive mirroring

approach would require 500K extra machines, which is unac-

ceptable. One optimization is to divide it into many small jobs

and utilize mirroring to update one small job at a time. How-

ever, this approach would result in the loss of quick rollback

capability and complicate job autoscaling [16, 34]. Although

further optimizations might be possible, the resulting solution

would not necessarily be cheaper, simpler, or more generic

than in-place updates.

Despite the benefits of hardware savings, the in-place up-

date approach lacks widespread support from existing deploy-

ment tools due to the difficulty of ensuring deployment safety.

Below, we present how we have made in-place updates safe

and practical by co-designing our deployment tool (Conveyor)

and our cluster manager (Twine [45]).

Collaborative control between Conveyor and Twine. As

discussed in §2.2, during each phase of the deploy action,

Conveyor instructs Twine to update a specific number or per-

centage of tasks, denoted as Nbig and then waits for a period

of time to collect comprehensive health signals before moving

on to the next phase. Twine, however, does not update Nbig

tasks all at once. Instead, it updates only Nsmall tasks in one

batch, where Nsmall is much smaller than Nbig, to avoid losing

too many tasks simultaneously. Twine then checks the live-

ness of each task before proceeding to update the next Nsmall

tasks. Similar to other cluster managers [22], Twine’s liveness

check is rudimentary and only verifies that an individual task

is running properly. However, it is unable to detect subtle

issues such as the new code’s memory regression compared to

the old code, which is handled by Conveyor’s comprehensive

health checks (§3.2).

The collaborative control between Conveyor and Twine en-

ables fast and safe deployments by assigning the most suitable

functions to the right layers. Let’s consider some alternative

designs. If Conveyor instructs Twine to update Nsmall tasks

instead of Nbig tasks, and then waits for a period of time to

collect comprehensive health signals, the deployment speed

328 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

would be too slow. On the other hand, if Twine updates Nbig

tasks instead of Nsmall tasks in one batch, the service might

lose too much capacity and become overloaded. Finally, elim-

inating Twine’s rudimentary task liveness check would mean

a destructive bug could affect Nbig tasks instead of just Nsmall

tasks before being detected.

Unlike the close collaboration between Conveyor and

Twine, in the widely used open-source setup of Spinnaker [42]

(deployment tool) instructing Kubernetes [22] (cluster man-

ager) to update containers, Spinnaker cannot control the size

of each phase, Nbig, which defaults to the size of the entire

job. This is because Kubernetes disallows partial-job updates.

This simplistic approach is not suitable for in-place updates,

because, when the comprehensive health checks detect a bug,

it is likely that all tasks of the job have already been updated.

Pluggable TaskControl. In the task-update protocol de-

scribed above, most services can use a per-service constant

Nsmall and have no constraints on the specific tasks to be up-

dated. However, the sharded key-value store described in §2.3

provides an example of services that require more precise con-

trol of Nsmall and the specific tasks to be updated. Figure 2

further illustrates how such a service can implement a custom

TaskController to ensure safe in-place updates. TaskControl,

in general, enables services to have precise control over task

updates for various reasons, not limited to data shard availabil-

ity. For example, FrontFaaS utilizes TaskControl to maximize

its deployment speed (§4). Further details on TaskControl can

be found in our previous work [24, 45].

Hardware failure and planned maintenance. When mul-

tiple tasks undergo in-place updates simultaneously, there is

a risk of reducing the available capacity of a service to an

unhealthy level. Merely controlling the update speed through

the deployment pipeline is insufficient since certain tasks may

be in an unhealthy state due to machine failures or planned

maintenance, which Conveyor is unaware of. To tackle this

issue, the service owner can inform Twine of a budget that

indicates the maximum number or percentage of tasks that

can be offline for any reason, such as task update, hardware

failure, or planned maintenance. If the budget is projected to

be exceeded, Twine pauses task updates.

Zero downtime hotswap. Our routing service in edge dat-

acenters forwards user-facing traffic to our datacenters and

holds live HTTPS connections to user devices. Naively restart-

ing a task for an update would cause user-facing errors. Twine

provides a same-host hotswap feature to solve this problem.

It first starts a new task on the same machine, which binds to

the same TCP ports as the old task. Then the new task and

the old task cooperate with each other to hand over the live

connections from the old task to the new task with the help

of eBPF [14]. One limitation of hotswap is that it requires

the container to be configured with sufficient memory to start

two tasks, which is the reason why it is not used universally.

Summary. All of the aforementioned deployment scenar-

ios with in-place updates cannot be properly implemented

without support from the cluster manager. We believe this is

a key reason why existing deployment tools primarily use the

mirroring approach, since the cluster managers they rely on

do not provide the necessary functions for in-place updates.

3.2 Deployment Safety

To enable continuous deployment, we accept bugs and de-

ployment failures as a norm and rely on automated guardrails

such as testing and health checks to detect release failures

early and mitigate their adverse effects. In this section, we

describe techniques that help Conveyor deploy safely.

Moving-target health checks. After each deployment phase,

Conveyor invokes the Health Check Service (HCS) to eval-

uate the health of the service. Multiple health checks can

be associated with a job, and each health check specifies a

data source such as a time series database for monitoring

data [31], a metric, data transformations (e.g., calculating

specific percentiles), and a decision threshold. The metrics

encompass system metrics (CPU, memory, crashes), RPC

metrics (connections, errors), and application-level business

metrics. The thresholds can be absolute (e.g., fail if CPU

utilization exceeds 90%), A/B comparative (e.g., fail if the

new task’s CPU utilization exceeds that of the task that still

has not been updated by 10%), or time-based (e.g., fail if

the CPU utilization increases by 10% since the deployment

started). By default, a failed health check triggers Conveyor

to revert the release.

In contrast to traditional monitoring systems that track the

health of an entire job, in-place updates require the HCS to

track “moving targets”, i.e., a dynamic subset of tasks that

change throughout different deployment phases. Achieving

this level of precision and adaptability necessitates a seamless

integration between Conveyor, Twine, and HCS. Specifically,

Twine assigns unique identifiers to tasks, enabling differentia-

tion between the old and new tasks. The monitoring data for

tasks is tagged with these identifiers. Depending on the cur-

rent deployment phase, Conveyor dynamically instructs HCS

to perform health checks on tasks with specific identifiers.

Code dependency analysis to prevent faulty releases.

A monorepo [9] stores the code for an organization’s many

projects in a single repository, promoting code reuse but also

leading to increased code dependencies. For instance, the Ser-

viceRouter [37] library is compiled into nearly every service

in Meta, and it may rely on a high-performance data structure

library, which in turn may rely on a profiling library, and so

on. In a monorepo setup, whenever a new version of a library

is committed, any services that depend on the library will be

automatically compiled with the new version. Consequently,

the owner of a service may not even be aware that their service

is affected by a bug in a shared library. To tackle this issue,

Conveyor offers the Bad Package Detector (BPD). If library

developers discover a bug in the library, they can report it to

Conveyor. The BPD then utilizes a code dependency graph,

which is provided by our build system [10], to identify and

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 329

cancel the releases of all service executables that were built

with the problematic version of the library.

Accurate code dependency analysis poses a challenge for

the BPD as it requires finding the right balance between false

negatives and false positives. Achieving perfect coverage

would entail considering all possible direct and indirect de-

pendencies of a service, which is often impractical. To strike

a balance, the BPD currently tracks 14 levels of dependency.

Our production data reveals that about 14% of to-be-deployed

executables are invalidated by the BPD. This highlights the

importance of handling bugs in dependent code.

Comprehensive testing. Conveyor supports various types of

tests in deployment pipelines. The PerfTest tool records and

replays production traffic to perform A/B testing between old

and new code, while the IntegrTest [28] tool sets up inter-

dependent services and tests their interactions. Additionally,

IntegrTest can perform randomized fuzzing tests. Canary

updates a small number of production tasks with new code

and collects health signals, enabling direct testing in produc-

tion. Multiple canaries can be executed in parallel to test

different code variations. Even if a release’s deploy action is

not chosen for final execution (e.g., a release’s deploy action,

while waiting to start on Monday at 9 AM, gets superseded by

a newer release), it is still valuable to execute the test actions

to detect bugs as early as possible.

Summary. While other deployment tools also support test-

ing and health checks, they lack some key capabilities. In

contrast to HCS’ ability to track “moving targets,” traditional

health checks rely on alarms defined for an entire job, which is

insufficient to support in-place updates. Moreover, bug depen-

dency analysis is not supported by existing deployment tools.

Finally, we are not aware of any other large-scale adoption of

record and replay as a generic platform for performance tests.

3.3 ML Model Deployment

Deployments of ML models for inference have emerged as

an important issue, given the rapidly increasing number of

ML applications. While existing deployment tools gener-

ally do not handle model deployments, Conveyor has been

specifically enhanced to address this need and currently about

44% of its pipelines are for model deployments. Below, we

describe Conveyor’s support for model deployments.

Deployment via configuration change. In Conveyor’s first

implementation for model deployments, model update and

executable update share the same pipeline, requiring Twine to

restart the container. However, as model updates may occur

more frequently than updates to inference executables, fre-

quent container restart results in a frequent loss of expensive

GPU capacity for request serving. Moreover, since a model

often contains gigabytes (GBs) of data, the time required to

load GBs of data during the restart can be lengthy.

To solve this problem, some inference services utilize two

orthogonal pipelines. One pipeline deploys the inference ex-

ecutable through Twine, while the other deploys the model

data through Configerator [44], Meta’s configuration man-

agement system. To track model updates, all tasks serving a

model subscribe to a configuration that specifies the current

version of the model to be served. When a new version of the

model becomes available, instead of exposing it to all tasks

simultaneously, Conveyor instructs Configerator to incremen-

tally expose the new version to tasks in phases, following the

deployment pipeline. Configerator utilizes a data-distribution

tree to notify the tasks in a scalable manner. Once the tasks

receive the notification of a new model version, they utilize

Owl [15], a peer-to-peer data-distribution system, to fetch the

new model. While still serving live requests, a task merges

the new model into the old model piece by piece without

consuming additional memory as it never keeps full copies of

both models in memory simultaneously. Overall, Conveyor

ensures safe deployments of models through phased releases,

which are meticulously managed via configuration changes.

Conveyor’s ability to perform phased deployments of

generic configuration changes extends beyond its use in ML

model updates. Conveyor pipelines are widely utilized to

ensure safe deployments of various configuration changes.

Lockstep deployment of interdependent services. Some

of our ML models are too large to fit in one machine’s mem-

ory, so they are partitioned into interdependent shards, each

including multiple replicas for fault tolerance and throughput.

Each shard is mapped to a different job, and typically the first

shard serves as the aggregator to combine results from other

shards. However, updating different shards independently

may cause compatibility issues, because combining outputs

from different versions of the shards will produce incorrect

results. To ensure compatibility, replicas of the first shard

are configured to only receive outputs from replicas of other

shards of the same version. This design requires Conveyor to

perform a lockstep deployment of different shards to avoid

capacity loss during deployment. For instance, 5% of each

shard’s replicas are updated at the same time and 5% of the

client traffic is directed to the new version, before proceeding

to update 10% of each shard’s replicas, and so forth.

Parent-child pipelines. Meta’s ML inference system serves

tens of thousands of ML models using about 10 different

inference executables. Each model, along with its inference

executable, is deployed via a separate pipeline. Since many

models share the same inference executable, updating one

executable may cause thousands of pipelines to initiate a new

release at the same time. This not only causes a load spike

on Conveyor and Twine, but also increases the risk of an

undetected bug in the inference executable impacting many

models simultaneously.

While existing deployment tools manage each pipeline in

isolation, Conveyor coordinates releases across pipelines that

share common artifacts by setting up a parent-child relation-

ship between them. Specifically, each inference executable is

managed by a parent pipeline, which includes sophisticated

testing but no deploy action, while the pipelines for models

330 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

served by the executable act as its child pipelines and in-

clude the deploy action. When updating an ML model with-

out modifying the executable, only the corresponding child

pipeline is executed, without involving the parent pipeline.

However, when updating the executable, the parent pipeline

is executed first. If successful, all the corresponding child

pipelines are then executed with randomized delays to avoid

starting them at the same time and overloading the system.

Moreover, it can be configured in such a way that a subset of

child pipelines for less important models is executed first to

help detect issues with the executable.

3.4 Advanced Features for Universal Adoption

To achieve universal adoption, Conveyor must support ad-

vanced use cases. We describe them in this section.

DAG pipelines. Conveyor initially modeled deployment

pipelines as a sequence of sequential stages, such as

build→test→deploy. However, this pattern has not gener-

alized to complex services like FrontFaaS, which may build,

test, and deploy two different versions in parallel (§4). The

sequential pipeline is overly restrictive in that it requires test-

ing for both versions to finish before the deployment for any

version can start. Therefore, we have improved Conveyor

by modeling its pipelines as directed acyclic graphs (DAGs).

These DAGs support conditions, branching, and mutual ex-

clusion groups. Since multiple releases of a pipeline may be

executed in parallel, Conveyor allows users to define actions

as a mutual exclusion group, meaning that concurrent releases

should not execute these actions in parallel. For example, if

a pipeline includes a load-test action and a deploy action,

they may be put in an exclusion group so that a deploy action

in one release will not accidentally fail its health check due

to a load-test from another concurrent release.

Mutable artifacts. Conveyor initially mandated one build

action at the beginning of a pipeline, resulting in an immutable

artifact, the executable, to be used throughout the pipeline.

However, this simple model does not fit well with complex

deployment scenarios. One example is feedback-directed op-

timization (FDO) [12], which involves profiling executables

in production and using the profiling data to guide recompi-

lation of the code, resulting in an updated artifact, the new

executable. Therefore, Conveyor has been extended to sup-

port mutable artifacts and allow multiple builds within one

pipeline. To perform FDO, for example, the pipeline can first

build the baseline executable, deploy it to a small number

of tasks that receive production traffic, and collect profiles.

It then builds the executable again using FDO and finally

deploys the optimized executable to all tasks.

CLI and daemon deployment. Every machine in our fleet

runs a set of CLI tools and daemons that provide utility

functions. As these host-level executables are not managed

by Twine, Conveyor provides a deploy action type called

Slowroll to manage them. Due to the massive scale of deploy-

ing these executables to every machine, Slowroll adopts a

pull model instead of Twine’s push model. In the pull model,

each machine periodically downloads the new version of the

software being deployed. These deployments can take a long

time to finish. For example, due to the massive scale of

deploying a specific daemon to every machine, its pipeline

has 43 phases and a deployment can take more than a week.

Moreover, some CLI tools are infrequently used, requiring

a significantly longer “bake time” (e.g., 8 hours) to collect

health signals.

3.5 Software Backward Compatibility

Despite backward compatibility being a generic requirement

for software deployment, it is largely left for services to handle

because it often involves application-specific logic.

API backward compatibility. During a deployment, the

new and old versions of a service will coexist for a while.

When the API of a service needs to be changed, a common

practice at Meta is to support both the old and new APIs and

gradually switch clients to invoke the new API. Once all

clients are migrated to the new API, the code for the old API

can be deleted. This is called N-1 compatibility, meaning

that in addition to the current version N of the API, it also

supports version N-1 but not version N-2 or older.

Database backward compatibility. When a service update

involves data migration from one database to another or an

upgrade of the database schema, extra care is needed. For

example, when switching from an old database to a new

database, a common strategy is to perform double writes:

the service writes new data to both databases but always

reads data from the old database, while a background process

migrates old data from the old database to the new database.

This strategy simplifies the rollback process as it only requires

deleting the new database and redeploying the old code.

3.6 Summary of Distinguishing Features

While Conveyor and Twine provide many features to achieve

universal adoption, we consider that the following features

distinguish Conveyor and Twine from existing tools most.

1. In-place updates allow us to minimize hardware costs,

which is important while operating at hyperscale.

2. TaskControl provides flexibility for services to precisely

control the speed and sequence of their task updates.

3. The ability to update a subset of tasks and perform health

checks on moving targets enables Conveyor to exert fine-

grained control over tasks, enabling in-place updates.

4. In a monorepo [9] setup, it is important to perform code

dependency analysis to prevent faulty releases.

5. Features to support ML model deployments have grown

to become a first-class citizen in Conveyor.

6. Conveyor provides a one-tool-fits-all solution for safe de-

ployments of various artifacts, such as service executables,

ML models, and application configurations.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 331

Package Sanity
Check

Build Container Load Test
Filter

Deploy Check and
Prefetch

For employee traffic only

Stable PHP Runtime

Latest Experimental PHP Runtime

2% Prod 98% Prod

Artifact Standard action Custom action

(same as the stable runtime pipeline above)

… …

Figure 3: Simplified deployment pipeline for FrontFaaS.

Existing deployment tools lack these features. Without them,

Conveyor would not have achieved universal adoption.

Conveyor is designed to be a generic and extensible deploy-

ment tool, and does not burden itself with every feature needed

by every service. Its extensible architecture allows services

to easily implement their own TaskControllers, actions, and

new types of artifacts. Moreover, sometimes it is preferable

to consider a service redesign to leverage Conveyor’s stan-

dard functions. For instance, Meta’s ML inference platform

initially hosted multiple ML models as separate processes

within a single container, and requested Conveyor to provide

the feature of using independent pipelines to update different

processes within the same container. Since this feature is

complex and not needed by other services, we did not support

it in Conveyor and the ML inference platform was ultimately

redesigned to adopt the one-model-per-container approach.

4 Case Study of FrontFaaS

To illustrate the end-to-end usage of Conveyor, we present a

case study of FrontFaaS, a serverless Function-as-a-Service

(FaaS) platform for PHP functions. It differs from other

serverless platforms such as AWS Lambda [5] in several

ways: 1) it only hosts synchronous functions that clients di-

rectly invoke, while event-driven asynchronous functions are

hosted by another platform; and 2) for efficiency, a single

PHP runtime process can execute multiple functions con-

currently. Since FrontFaaS is serverless, developers simply

commit function code without worrying about code deploy-

ment or server provisioning. Each year, tens of thousands

of developers commit serverless function code to FrontFaaS,

with thousands of code commits each workday. Currently,

FrontFaaS runs on over half a million machines and makes

a new release every three hours to deploy the code of all

functions together [33]. Through FrontFaaS, Meta develop-

ers create PHP functions that are servicing traffic from end

users when they visit Meta web pages. Note that many Meta

employees are end users of Meta products as well, and their

traffic is often used for testing purposes as discussed next.

Figure 3 shows a simplified deployment pipeline for Front-

FaaS. To enable phased deployments, the machines hosting

FrontFaaS are partitioned into three pools: one for servicing

employee traffic, one for servicing 2% of production traffic,

and one for servicing the remaining production traffic. Ac-

cordingly, the deployment pipeline is divided into three major

phases, one for each machine pool. A release proceeds to the

next machine pool only if the deployment to the prior pool

succeeds. Each pool is split into two sub-pools: one process-

ing a small amount of traffic with an experimental version of

the PHP runtime [30] and one processing the remaining traffic

with a stable version. If the experimental version outperforms

the stable version, it will become the new stable version.

The first step in the deployment pipeline is a custom

sanity-check action that performs a FrontFaaS specific

logic to ensure that there are no deployment-blocking alerts.

Then, a standard build action is used to build the container

image. Independent of specific releases, load tests always con-

tinuously run on certain machines to gather performance data

and build capacity models. The custom load-test-filter

action excludes machines that are scheduled to be load-tested

from being monitored by health checks, to avoid load-test

induced false alarms during health checks. The pipeline then

uses a standard deploy action to update tasks and run health

checks. Finally, a custom check-and-prefetch action runs

the sanity check again while asking Twine [45] to prefetch

FrontFaaS’ container image on machines that will be updated

soon. This prefetch reduces the overall duration of each re-

lease by 5-30%.

Since FrontFaaS continuously deploys every three hours

across more than half a million machines, fast deployment

is an important requirement. Within a deploy action, Front-

FaaS relies on two techniques to accelerate a deployment.

First, it implements a custom TaskController that controls the

rate at which tasks are updated based on the CPU utilization

of FrontFaaS jobs. It tries to concurrently update as many

tasks as possible, as long as the temporary loss of those tasks

does not cause other FrontFaaS tasks to handle too much traf-

fic and become overloaded. During off-peak hours, updates

can be applied to many tasks in large batches, while during

peak hours when traffic is high, the Task Controller applies

updates in smaller batches to prevent overload. Thanks to this

optimization, deployments during off-peak hours are approxi-

mately three times faster than those during peak hours.

The second technique to accelerate a deployment is to

update tasks and perform health checks in parallel, but the

short health-check time requires FrontFaaS to have highly

accurate health checks. FrontFaaS primarily relies on three

health-check metrics: 1) the number of fatal errors, 2) the

number of unavailable tasks, and 3) the write rate of error

logs. Every minute during a deploy action, these metrics are

averaged over the previous three minutes and compared to the

average during a three-minute period before the deployment

began. If any datacenter region experiences an increase in

these metrics above a certain threshold, Conveyor pauses all

updates in that region. If too many jobs are paused, Conveyor

considers the deployment a failure and initiates a rollback.

332 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

DatabaseRelease
Creator

1

Backend
Artifact Finder

Mobile Artifact
Finder

Configuration
Artifact Finder ……

2

3

Run
Scheduler

Run
Manager

4 5

Deploy

Build

Test

……

6

Action Services

Conveyor Core

7

Artifact Finders

Figure 4: Conveyor Architecture.

Overall, FrontFaaS achieves fast and safe deployment at hy-

perscale by utilizing TaskControl and multiple custom actions

made possible by Conveyor’s extensible architecture.

5 Design and Implementation of Conveyor

In this section, we briefly summarize Conveyor’s design and

implementation.

5.1 Conveyor Design

Figure 4 depicts the architecture of Conveyor. Conveyor com-

prises several stateless services that share a database. The

database stores user-defined pipelines, metadata, as well as

the last step executed for each release and action. To ac-

commodate the high throughput due to tens of thousands of

pipelines, the database is partitioned into many shards.

For robustness and scalability, all components of Conveyor

adhere to the worker-pool paradigm. They store the IDs

of pipelines, releases, and action runs in a queue. Multiple

workers then periodically scan the queue, identify the required

operations, and execute them. The number of workers can

be scaled up or down based on the load. The execution of a

pipeline involves the following steps.

Create release (Steps 1-3 in Figure 4). Each pipeline ac-

cepts a set of input artifacts. The Release Creator periodically

scans for new input artifacts (Step 1) by invoking Artifact

Finders (Step 2). When new artifacts are discovered, Con-

veyor creates a “release object” in the database, thereby trig-

gering the execution of the pipeline (Step 3). We provide

seven standard Artifact Finders, and allow users to implement

custom Artifact Finders. All Artifact Finders implement a

single method, getArtifacts(), which returns a set of dis-

covered artifacts. For example, one Artifact Finder identifies

latest commits that successfully passed unit tests, while an-

other identifies executables that have been already built and

marked with a specific tag.

Schedule (Step 4 in Figure 4). The Run Scheduler schedules

the execution of releases and actions by periodically scanning

through all releases and stepping through each action in each

release’s corresponding pipeline. When the input artifacts

for an action exist and all preceding actions have success-

fully completed, the Run Scheduler schedules the action for

execution.

Because Conveyor allows for multiple active releases de-

rived from one deployment pipeline, the Run Scheduler must

coordinate actions across these releases. Some actions, like

canary, permit concurrent execution on multiple releases,

while others, like the deploy action, only allow execution on

a single release at a time. Therefore, the Run Scheduler must

determine which active release executes the deploy action.

Consider a case where a pipeline deploys to production on

every Monday at 10 AM. If multiple code changes have oc-

curred since the last deployment, two releases might be ready

to run the deploy action on Monday at 10 AM. In this case,

the Run Scheduler will cancel the older release.

Run actions (Steps 5-7 in Figure 4). The Run Scheduler

determines when an action should be executed and notifies the

Run Manager accordingly (Step 5). The Run Manager then

initiates the execution of the action by invoking a service that

implements the action’s logic (Step 6). When executing an ac-

tion, the Run Manager first invokes the action’s startRun()

method and then periodically calls its getRunProgress()

method to track the progress. The outcome of the action is

recorded back to the database (Step 7).

Conveyor offers several standard actions, including the

build action for compiling source code and running cor-

responding unit tests, various testing actions, the pkg ac-

tion for tagging executables for easy naming and access, the

deploy action for deploying the new version to production,

the CustomScript action for running any user-defined script

(e.g., to shift traffic before a deploy action starts), and the

ManualPick action for pausing a pipeline and awaiting the

service owner’s decision. Conveyor’s extensible architecture

allows users to create custom actions by implementing the

startRun() and getRunProgress() methods.

5.2 Implementation of the Deploy Action

Since the deploy action is the most complex part of Conveyor,

we describe it in more detail below. Like a sub-pipeline within

the greater Conveyor pipeline, the deploy action’s deploy-

ment plan specifies the number of phases, which jobs and

tasks to update in each phase, the baking time after each

phase, and the success criteria. Conveyor supports both per-

centage and task-count based configuration when specifying

the success criteria and the tasks to be updated.

A few widely used deployment plans are commonly em-

ployed. For small services or services that prioritize deploy-

ment speed, a common plan is to request Twine to update

all of their tasks in a single phase. Therefore, the number of

tasks to update in a phase, Nbig, as described in §3.1, equals

the total number of tasks in the job. However, please recall

from §3.1 that Twine is still configured to update only Nsmall

tasks at a time to avoid losing too many tasks simultaneously.

For services that prioritize safety, their jobs are often updated

region by region, as our services are always designed to toler-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 333

ate the loss of a whole region. To balance safety and speed,

a common strategy is to update an exponentially increasing

number of tasks in each phase (e.g., 1% of tasks in the first

phase, 10% in the second, and 100% in the last), assuming

that a bug is likely to be revealed in the early phases.

For services requiring high deployment speed, Conveyor

can update tasks and perform health checks in parallel. As

described in §3.1, during a deployment phase, Conveyor by

default requests Twine to update a group of Nbig tasks, waits

for the updates to finish, and then periodically performs health

checks during the bake time. The whole process can take a

long period of time. With the parallel approach, Conveyor

submits the request for Twine to update Nbig tasks and then

immediately performs health checks while the update is still

in progress. This approach saves the wait time but necessitates

the service to have highly accurate health checks due to the

short health-check time.

Finally, users have the option to deploy to environments

that are not managed by Twine by implementing custom de-

ployment types. For instance, we maintain a pull-based de-

ployment type for CLI tools and Linux daemons running on

bare-metal machines (§3.4). Furthermore, users have created

over 20 custom deployment types for various non-standard

deployment targets, such as VMs in public clouds, application

configurations, and serverless stream-processing functions.

To implement a custom deployment type, a user needs

to build a service that implements a few methods. When

initiating a new deploy action, the fetchDeployUnits()

method is invoked, returning a list of deploy units. Each de-

ploy unit represents a group of tasks to be updated. Then the

executeUpdates()method is called to update a set of deploy

units with a specific set of artifacts for deployment. Finally,

the deploy action periodically calls the trackUpdates()

and runHealthChecks() methods until all updates are com-

pleted. If any health checks fail, the deploy action fails early.

5.3 Availability, Reliability, and Recoverability

Currently, Conveyor is implemented in 360K lines of Rust

code, including test code and utility tools, and its components

run on several hundred machines. Conveyor is not the per-

formance bottleneck in software deployment, as other tools

that Conveyor relies on, such as Twine, often perform more

extensive work than Conveyor itself.

For high availability, both the database used by Conveyor

and each Conveyor component are replicated across multiple

datacenter regions. However, it is not necessary to replicate

every Conveyor component in every region. Conceptually,

one global setup of Conveyor manages the deployments of all

services across all regions. A Conveyor component in region

X can communicate with the Twine instance in region Y to

remotely drive the deployment of services in region Y .

Presently, Conveyor’s service level objective (SLO) is to

ensure that less than 0.5% of deployments fail due to issues in

Conveyor or any of its dependencies, such as Twine, Health

Check Service, build service, and Configerator. Conveyor

consistently meets or exceeds this SLO.

The circular dependency between Conveyor and Twine

poses challenges to their recoverability. Conveyor consists

of a set of services that are deployed via Conveyor itself and

hosted inside containers managed by Twine. Similarly, Twine

is also implemented as a set of services that are deployed via

Conveyor and hosted inside containers managed by Twine

itself. When Conveyor or Twine fails, the entire ecosystem

cannot update itself. To address this issue, we have designed

them to be self-recoverable whenever possible and have in-

troduced manual recovery tools for worst-case scenarios. In

the event that Conveyor fails and cannot deploy bug fixes for

itself, direct commands can be issued to Twine to start new

jobs for Conveyor with the proper bug fixes.

To set up Twine to manage itself, we have implemented a

two-layer deployment approach. The top layer consists of two

independent instances of Twine, and under normal conditions,

one instance can manage and update the other. These top-

layer instances are responsible for managing and updating

the numerous Twine instances in the bottom layer, which in

turn manage and update user jobs. As long as at least one of

the top-layer’s Twine instances is functioning properly, all

Twine instances can be updated normally. In the event that

both top-layer Twine instances experience malfunctions, we

have a dedicated tool that can be used to directly bootstrap a

top-layer Twine instance and initiate the recovery process.

5.4 Lessons from Conveyor’s Evolution

Over the course of nine years, Conveyor has undergone sig-

nificant evolution, progressing from v1 to v2, and eventually

to v3. Each subsequent version represents a complete system

rewrite that incorporates the valuable lessons we have learned.

As a CLI tool, Conveyor v1 enables service owners to

manually initiate phased in-place updates of services. Service

owners could define the rollout phases and health checks.

The Health Check Service (HCS) was developed along with

Conveyor from the very beginning. Despite Conveyor v1

being relatively simple, about 12% of services adopted it,

demonstrating a strong need for a standard deployment tool.

The biggest change from Conveyor v1 to v2 was to make

it a long-running service so that it could automatically start

deployments on a pre-configured schedule without manual

intervention. We also introduced a more complete pipeline

model, where a pipeline consisted of a sequence of phases,

each comprising a set of actions. Several enhancements were

implemented, including support for the Bad Package Detector

(BPD), parent-child pipelines, and pull-based deployments.

To boost adoption, Conveyor and Twine were made extensible

by providing various interfaces for custom integrations, such

as TaskControl, custom actions, and custom artifact finders.

As a result of these features and the company-wide Push4Push

program, about 94% of services adopted Conveyor.

334 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The remaining 6% of services that did not adopt Conveyor

were the largest and most complex ones, requiring more ad-

vanced features. Furthermore, the rapid adoption of Conveyor

exposed its limitations in terms of performance and relia-

bility. As a result, Conveyor v3 was introduced as another

complete rewrite, this time switching from Python to Rust.

The data model evolved from a sequential pipeline to a DAG.

Additional features were implemented, including lockstep

deployment, mutable artifacts to support feedback-directed

optimization (FDO), deployment of mobile apps and appli-

cation configurations, and better support for ML models and

FrontFaaS. These enhancements helped Conveyor achieve

universal adoption.

One ongoing evolution of Conveyor v3 is to enhance its

real-time responsiveness. In Conveyor’s current architecture,

the latest state of each release is stored in a database, and

a group of Conveyor workers periodically poll the database

to identify actions that are ready for execution. We chose

this periodic polling design for its robustness. However, the

deployment of ML models and application configurations now

requires faster execution of pipelines that cannot be supported

by the polling method. Therefore, in Conveyor’s new design,

the completion of one action will immediately trigger the

execution of the next action without any delay. However, we

will still maintain the polling mechanism as a reliable fallback

to safeguard against any transient failures.

6 Evaluation in Production

In this section, we use production data to help answer the

following questions:

1. Has Conveyor achieved universal coverage?

2. Do developers trust fully automated deployments?

3. Are Conveyor’s deployment-safety mechanisms effective?

4. How often do deployments fail and why do they fail?

5. What are the observed patterns in pipeline setup, and what

are the best-practice recommendations for pipeline setup?

Using three weeks of data from April to May 2023, we stud-

ied all deployment pipelines, which amounted to more than

30,000 pipelines. We divide them into four categories:

• Regular services: 24.4% of the pipelines deploy tra-

ditional non-ML services through containers managed by

Twine [45]. This category serves as the primary point of

comparison with other deployment tools, as those tools may

not support the other categories listed below.

• Large services: 0.45% of the pipelines deploy the

largest services that consume 80% of our fleet’s total capac-

ity, with each of them using at least 7,700 servers. These

large services are a subset of regular services.

• ML models: 44.4% of the pipelines deploy ML models,

predominantly through Twine, with some utilizing Config-

erator [44] to control when a task consumes a new model.

• Other pipelines: The remaining 31.1% of pipelines are

used for various purposes, such as running tests without per-

forming an actual deployment. The data we report for this

category will only include those with at least one deploy

action, which amounts to 6.7% of all pipelines. These

pipelines deploy artifacts that are not managed by Twine,

such as CLIs, daemons, configurations, and mobile apps.

6.1 Universal Coverage

It is challenging to precisely calculate the percentage of ser-

vices that should utilize Conveyor but do not use it, primarily

due to the presence of experimental services that will never

be deployed in production. Interviewing the owners of tens

of thousands of services to determine this percentage would

be impractical. Instead, we focus on calculating the coverage

for all 195 largest services. These services tend to be

complex, making the adoption of Conveyor more challenging

compared to other services.

Conveyor achieves 100% coverage for these large services,

with the following caveats: 1) One of them is an ML training

job, where software updates during its training run are inten-

tionally avoided. 2) Five of them are short-lived experimental

services that do not need automated deployments as they will

not be deployed into production. Overall, the advanced fea-

tures described in §3 enable Conveyor to achieve universal

coverage, even for the most complex services.

6.2 Trust in Fully Automated Deployments

To understand whether developers trust fully automated de-

ployments, we classify pipelines into five categories based on

their release schedules: 1) Continuous deployment, which is

executed immediately whenever the input artifacts are ready;

2) Daily, which is executed at least once every working day

at a fixed time, such as 9AM; 3) Weekly, which is executed at

least once each week; 4) Biweekly/monthly, which is executed

biweekly or monthly; 5) ManualPick, which may automati-

cally execute early actions such as small-scale deployments,

but requires human confirmation before executing the final

stage of large-scale deploy actions.

Table 1 shows that among regular services, 54.6%

adopt continuous deployments, and in total 96.5% adopt fully

automated deployments without manual validation. These

results indicate that with the guardrails provided by testing,

health checks, and automated revert of faulty releases, devel-

opers release often and trust fully automated deployments.

Although only 71.8% of large services adopt fully au-

tomated deployments, it already demonstrates a high degree

of trust in deployment automation, considering that they are

complex and hyperscale services serving billions of users.

Continuous Daily Weekly Biweekly/Monthly ManualPick

Regular 54.6% 24.8% 16.8% 0.4% 3.5%

Large 16.0% 16.8% 37.4% 1.5% 28.2%

ML 99.9% 0.0% 0.0% 0.0% 0.0%

Other 48.5% 26.3% 19.0% 0.3% 5.9%

Table 1: Classification of pipelines based on their schedules.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 335

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20

Task updates

FrontFaaS Request Rate
Ta

s
k
 u

p
d
a
te

s
 (

%
)

F
ro

n
tF

a
a
S
 R

e
q
u
e
s
t

R
a
te

Time (hours)

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0 5 10 15 20

C
P
U

 U
ti

li
z
a
ti

o
n
 (

%
)

Time (hours)

Figure 5: TaskControl slows down the deployment speed for

FrontFaaS during peak hours.

One main reason for the remaining ones using manual valida-

tions is that they have highly complex health checks, making

it difficult to achieve both a low false positive rate and a

low false negative rate simultaneously, regardless of how the

decision threshold for health checks is set.

Although the deployments of some services are already

fully automated, they still prefer deployments on a fixed sched-

ule (daily or weekly) over continuous deployment for several

reasons. First, a failed deployment of a complex service may

cause a partial outage in production, which can take hours

to mitigate. Therefore, it is preferred to start the deployment

at a fixed time in the morning to ensure that incident mitiga-

tion does not extend into the night. Second, although almost

all services are fault-tolerant against task updates, they may

experience degraded SLOs during a task update. For exam-

ple, updating a ZooKeeper ensemble will trigger a leader

re-election and result in delays in responding to client re-

quests. These services prefer to avoid degraded SLOs caused

by frequent deployments of every single code change.

6.3 Deployment Safety at Hyperscale

To ensure the safety of in-place updates, Twine’s TaskControl

API allows services with special needs to exert precise control

over their task updates. For example, FrontFaaS’ custom

TaskController dynamically adjusts the deployment speed in

order to safely and continuously deploy every three hours

across more than half a million machines. Figure 5 illustrates

what happens in a region that runs over 10,000 FrontFaaS

tasks. The top figure shows the normalized request rate for

FrontFaaS, along with the percentage of updates to FrontFaaS

tasks in that region. The bottom figure shows the average

CPU utilization of those FrontFaaS tasks. During the site’s

peak hours, which occur between hours 8 and 15, FrontFaaS’

TaskController instructs Twine to reduce the number of task

updates in order to prevent the temporary loss of too many

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000

C
u
m

m
u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n
 (

%
)

Number of cancelled executables (logscale)

Figure 6: CDF of the number of executables canceled by the

Bad Packet Detector (BPD) per reported bug.

Regular services Large services ML models Other pipelines

Successful 27.5% 15.4% 33.7% 38.0%

Failed 13.8% 20.9% 5.2% 4.2%

Canceled 58.7% 63.7% 61.1% 57.8%

Table 2: Breakdown of the end states of releases.

tasks and avoid overloading the system. Consequently, it takes

longer to complete a release during these peak hours. Despite

the fluctuating load on the site and the load spikes caused

by task updates (see the bottom figure), the overall CPU

utilization remains below 75%. Without TaskControl, this

level of application-specific adaptation and precise control is

hard to achieve with other deployment tools.

To ensure the safe deployment of services that share a

monorepo [9], which often entails complex code dependen-

cies, developers can report bugs to Conveyor. The Bad Pack-

age Detector (BPD) automatically identifies the affected exe-

cutables scheduled for deployment and cancels their releases.

While only approximately one such bug is reported to Con-

veyor per day, their impact tends to be widespread. Figure 6

illustrates the number of executables affected by these bugs.

Around 15% of these bugs impact over 10,000 executables.

Certain bugs, such as those found in Meta’s RPC library [37],

have the potential to impact every service. Due to the broad

impact of these bugs, the BPD cancels approximately 14%

of all executables scheduled for deployment. This extensive

impact highlights the need for automated code dependency

tracking in a monorepo to ensure deployment safety.

6.4 Deployment Failures

To understand how often deployments fail and why they fail,

we analyze the failure data of releases and deploy actions.

6.4.1 Release Failures

Over the three weeks of our evaluation, Conveyor generated

millions of releases. Table 2 summarizes the end states of

these releases. Release cancellations commonly occur when

a new release supersedes an old release that was not yet de-

ployed. While most releases are canceled, they are still highly

valuable as they facilitate the execution of builds and tests,

aiding in the early detection of bugs.

336 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 10

 20

 30

 40

 50

B
uild

D
eploy

C
anary

IntegrTest

C
ustom

Script

PerfTest

P
er

ce
n
ta

g
e

(%
)

regular
large
ML

other

Figure 7: Breakdown of release failures by action types.

Although the release failure rate seems high, it actually in-

dicates the effectiveness of deployment automation. Let’s con-

sider a simple pipeline consisting of build→test→deploy.

If a release fails during the build or test action, it means

that the problem is detected early, preventing a faulty release

from reaching production. This is precisely why, despite the

high failure rate, developers maintain a high level of trust in

deployment automation (§6.2).

We show the breakdown of release failures by action types

in Figure 7. As an example, the value of “40%” for the

“regular” bar in the build category does not mean that 40%

of builds fail for regular services. Instead, it means

that out of all failed releases for regular services, 40% of

them failed while executing the build action. The value of

the “ML” bar in the deploy category is 93.6%, but we cap it

at 50% to make other bars more visible.

Figure 7 shows that, except ML models, the majority of

release failures are detected by standard builds and tests

(canary, IntegrTest, and PerfTest). Note that builds

involve running unit tests and will fail if any tests do not pass.

For ML models, the setup of parent-child pipelines between

inference executables and models (§3.3) helps reduce failed

releases. During the three weeks, nine failures occurred in the

parent pipelines. Among them, eight were detected by unit

tests, and one was detected by PerfTest. These failed parent

pipelines did not trigger the execution of the corresponding

child pipelines. Otherwise, the number of failed child pipeline

releases would have increased by about 50%.

6.4.2 Failures in Deploy Actions

Failures in deploy actions occur at the important stage of

updating tasks and could lead to user-visible errors. The

failure rates of deploy actions vary across pipeline types:

regular services (5.4%), large services (6.2%), ML

models (14.3%), and other pipelines (1.1%). In all cases,

health check failure is the top reason for deploy failures, fol-

lowed by update timeout, which is typically caused by too

many unhealthy tasks during a deployment.

Figure 8 presents the breakdown of health check failures.

While system-level metrics, such as CPU, memory, crashes,

and RPC errors, can help identify many problems, “AppSpe-

cific” metrics still play a significant role. Frequently used such

metrics include the increase in the number of specific errors

 0

 10

 20

 30

 40

 50

 60

R
PC

C
PU

M
em

ory

C
rash

SuccessR
ate

Latency

A
ppSpecific

P
er

te
n
ta

g
e

(%
)

regular
large
ML

other

Figure 8: Breakdown of health check failures.

Regular services Large services ML models Other pipelines

False negative 0.92% 3.14% 0.012% 0.12%

False positive 11.5% 41.3% 0.0025% 17.4%

Table 3: False positives and false negatives of health checks.

returned to users, increase in the number of retries, decrease

in correctness metrics, or changes in user engagement.

Developers often need to make a tradeoff between false

positives and false negatives when using health checks to

detect bugs because health anomalies can also be caused by

other factors such as hardware failures or changes in workload.

To approximate the rate of false negatives (i.e., bugs not being

detected), we calculate the percentage of releases that finished

successfully but were later reverted or patched by developers.

However, since developers sometimes patch or revert a release

for purposes other than fixing bugs (e.g., to do a quick test),

these numbers should be viewed as an upper bound for false

negatives. To approximate the rate of false positives (i.e.,

health anomalies in the absence of a bug), we calculate the

percentage of deploy actions that reported health anomalies

but were allowed to proceed by a human.

As shown in Table 3, except for ML models, the occur-

rence of false positives is significantly higher than that of

false negatives. Notably, the rate of false positives for large

services reaches as high as 41.3%. This is because health

checks for large services are typically more intricate, and

developers tend to use stringent health check thresholds to

ensure release safety. When faced with health anomalies, they

prefer to rely on manual investigations to determine whether

to proceed with a release or not.

Figure 9 further presents the point at which a deploy action

fails. The progress metric is calculated as the number of

tasks that are supposed to be updated till the end of the failed

phase divided by the total number of tasks to be updated in

all phases. We exclude single-phase deploy actions from

this figure, since their progress is either 0 or 1. Figure 9

reveals a bimodal pattern, where failures occur either very

early or very late. While many bugs can be detected when

only a small subset of tasks is updated, some bugs, such as

subtle performance regression, can only be detected after they

are deployed at scale. These kinds of bugs pose the most

challenging problem for software deployment.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 337

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

regular

large

ML

other

C
u
m

m
u
la

ti
v
e

d
is

tr
ib

u
ti

o
n
 (

%
)

The progress of failed deploy actions (%)

Figure 9: The progress of failed deploy actions.

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10+

P
er

ce
n
ta

g
e

(%
)

regular
large
ML

other

Figure 10: Number of actions per pipeline.

6.5 Pipeline Patterns & Recommendations

In this section, we analyze various aspects of pipeline statis-

tics to gain a better understanding of how pipelines are used in

production. Based on our findings, we provide best practices

for pipeline design in §6.5.4.

6.5.1 Pipeline Configuration

Figure 10 shows that the average number of actions per

pipeline varies: regular services (3.5), large services

(12.2), ML models (2.0), and other pipelines (4.0). As

expected, large services have much deeper pipelines. For

ML models, all child pipelines (§3.3) use a uniform setup

with two actions: build and deploy. The parent pipelines for

inference executables have more actions such as PerfTest,

but since the number of child pipelines is about 1,000 times

larger than that of parent pipelines, the statistics here mainly

represent those of child pipelines.

We further examine the popularity of different types of ac-

tions, represented as the percentage of pipelines that include

at least one corresponding action type. As shown in Fig-

ure 11, build and deploy are the two most popular actions,

as expected. We observe two distinguishing characteristics of

large services. First, they are more likely to include tests

(canary, IntegrTest, and PerfTest). Second, they rely

more on human decisions (i.e., ManualPick) to determine

whether to proceed.

6.5.2 Deploy Action Configuration & Runtime Statistics

To balance safety and speed, a deploy action often consists of

multiple phases, each updating a subset of tasks. We observe

a few popular patterns in the setup of deploy actions: 1) the

“super linear” pattern, which updates a small percentage of

 0

 20

 40

 60

 80

 100

B
uild

D
eploy

C
anary

IntegrTest

Pkg
C
ustom

Script

M
anualPick

PerfTest

P
er

ce
n
ta

g
e

(%
)

regular
large
ML

other

Figure 11: Percentage of pipelines that use a specific action.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

single

super_linear

region_by_region

single_parallel

m
isc

linear

P
er

ce
n
ta

g
e

(%
)

regular
large
ML

other

Figure 12: Breakdown of different deploy patterns.

tasks in the first phase and updates a higher percentage in later

phases; 2) the “single” pattern, which updates all tasks in one

phase; 3) the “single parallel” pattern, which uses one phase

but updates multiple jobs in parallel; 4) the “region-by-region”

pattern, which updates one region’s jobs per phase; and 5)

the “linear” pattern, which updates the same percentage of

tasks in each phase. By definition, these patterns are not

exclusive. For example, a region-by-region pattern could be

linear as well. To separate them, we use the following rule:

single parallel > single > region-by-region > linear > super

linear. It means that, if a deploy action meets more than one

definition, we categorize it as the first one in the chain.

As shown in Figure 12, the setups are very diverse. Among

regular services, simple ones prefer the single pattern

and complex ones prefer the super linear pattern to bal-

ance safety and speed. Large services employ various

misc patterns, with a concrete example shown in §6.5.3. ML

models mostly use the super linear pattern. Among other

pipelines, simple ones prefer the single pattern and com-

plex ones prefer the region-by-region pattern for safety.

The execution time of deploy actions has a long-tail effect:

for regular services, its P50 is 2.3K seconds and P99 is

86K seconds; for large services, its P50 is 2.0K seconds

and P99 is 186K seconds (52 hours); for ML models, its

P50 is 2.9K seconds and P99 is 9.8K seconds; for other

pipelines, its P50 is 0.33K seconds and P99 is 15K seconds.

We will elaborate on the long deploy time in §6.5.3.

Table 4 further decomposes deploy action’s execution time

into four components: task update, bake, preprocessing, and

postprocessing. Recall that the bake time is the time after all

updates in a phase have been completed, during which Con-

338 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Regular services Large services ML models Other pipelines

Task update 21.2% 45.1% 39.2% 31.4%

Bake 31.7% 25.1% 58.1% 29.6%

Preprocessing 18.7% 2.9% 1.9% 5.4%

Postprocessing 28.4% 27.0% 0.9% 33.6%

Table 4: Time spent in different stages of deploy actions.

veyor periodically checks the health of the updated portion of

a service. Preprocessing and postprocessing refer to custom

operations performed before and after updating a subset of

tasks, respectively. Examples include redirecting traffic and

conducting end-to-end tests. Overall, Table 4 shows that op-

erations other than task updates consume the majority of the

time, emphasizing the importance of holistic optimization of

the pipeline setup when deployment speed is a concern.

6.5.3 Real-world Example of Long Deploy Time

Large services that prioritize deployment safety may require

multiple days to complete their deploy actions. To illustrate

this, we present a real-world example of a foundational stor-

age service at Meta that operates in every datacenter region.

Its deploy action is configured to make progress on work-

days from 9AM to 6PM without manual intervention. If the

execution of the deploy action does not finish by 6PM, it will

pause and continue on the next workday at 9AM.

Its deployment follows the super linear pattern for a few

regions and then switches to the region-by-region pattern for

the remaining regions. With over 20 phases in total, each

of the early phases has a bake time of one hour, while the

remaining phases have a bake time of 10 minutes. On average,

task updates per phase take about 25 minutes. Taking into

account the bake time, the early phases run for about 85

minutes each, while the remaining phases run for about 35

minutes each. Considering the total number of phases and

their duration, the deploy action typically completes the early

phases within one day and then resumes the next workday at

9AM. If everything goes smoothly, the deployment finishes

on the second day. However, transient issues may cause it to

retry and delay the completion time until the third day.

6.5.4 Recommendations for Pipeline Design

We recommend the following best practices for pipeline de-

sign. In general, we recommend using the super linear pat-

tern as a starting point, as it provides a good balance between

speed and safety. Moreover, we recommend including a phase

in the middle of the pipeline to update all tasks within a region

as opposed to never updating any whole region until the last

phase. This is important because many services have regional

dependencies, and certain issues, such as performance regres-

sions, may only become noticeable when the code runs at

the scale of a full region. Finally, we recommend schedul-

ing deployments for the mornings of Monday to Thursday,

so that developers have a full work day to troubleshoot any

deployment issues. They may adopt continuous deployment

after health checks and tests have matured.

7 Related work

There is a rich set of deployment tools, such as Spinnaker [42],

AWS CodeDeploy [3], AWS CodePipeline [4], Azure De-

ployment Manager [46], Azure Pipeline [6], Google Cloud

Build [17], Google Cloud Deploy [18], and CircleCI [13].

Cluster manager is also a well-studied topic. Examples in-

clude Kubernetes [22] and YARN [49] from open source,

Borg [47, 50] from Google, and Protean [19] from Azure.

Section 3 discussed advanced features that distinguish Con-

veyor and Twine from existing systems.

A number of prior works have studied and surveyed pos-

sible problems in software deployment [20, 23, 38, 41, 51],

mostly based on open-source projects or individual case stud-

ies. As described in §3, the scale and diversity of the services

at Meta have introduced many new challenges, such as in-

place updates, handling complex code dependencies, fast

deployment of large services like FrontFaaS, and deployment

of complex ML models. Dedicated ML platforms such as

AWS SageMaker can deploy models using the mirroring ap-

proach [35, 36], but they do not support in-place updates or

the advanced model-deployment features described in §3.3.

Multiple works have focused on individual problems dur-

ing deployment. For example, Gandalf tries to locate the

problematic deployment after failures are detected [26]. Ze-

braConf tries to detect configuration updates that may cause

compatibility issues [27]. Boyer et. al. [8] propose a declar-

ative approach to update services, instead of the imperative

approach used by most deployment tools, including Conveyor.

8 Conclusion

We presented the deployment scenarios, operational experi-

ence, and production data related to software deployment at

Meta, along with the design and implementation of Conveyor.

We demonstrated the feasibility of frequent and fully auto-

mated deployments supported by a single deployment tool for

all services. Additionally, we presented novel techniques for

in-place updates, analysis of code dependencies to prevent

faulty releases, and the safe deployment of ML models.

Acknowledgments

This paper presents nine years of work by past and cur-

rent members of several teams at Meta, including Conveyor,

Twine, Health Check Service, Configuration Management,

Release Engineering, and Inference Platform. In particu-

lar, we would like to call out the current members of the

Conveyor team who are not on the author list: Alex Rock,

Arvind Gautam, Brian Fitzpatrick, Eddy Li, Haydn Kennedy,

Jared Bosco, Jimmy Zeng, Marcos Pertierra Arrojo, Marija

Trifkovic, Matthew Boardman, Rudy Pikulik, Mike Belov,

Matthew Almond, Nippun Goel, Shawn Cui, and Martin Re-

ichhoff. We thank Hui Lei, all reviewers, and especially our

shepherds, Ding Yuan and Malte Schwarzkopf, for their in-

sightful comments.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 339

References

[1] Release early, release often. https://en.wikipedia.

org/wiki/Release_early,_release_often.

[2] Blue/Green Deployments. https://docs.aws.

amazon.com/whitepapers/latest/overview-

deployment-options/bluegreen-deployments.

html.

[3] AWS CodeDeploy. https://aws.amazon.com/

codedeploy/.

[4] AWS CodePipeline. https://aws.amazon.com/

codepipeline/.

[5] AWS Lambda. https://aws.amazon.com/lambda/.

[6] Azure Pipeline. https://azure.microsoft.com/

en-us/products/devops/pipelines/.

[7] Len Bass, Ingo Weber, and Liming Zhu. DevOps:

A Software Architect’s Perspective. Addison-Wesley

Professional, 2015.

[8] Fabienne Boyer, Nol de Palma, Xinxiu Tao, and Xavier

Etchevers. A Declarative Approach for Updating Dis-

tributed Microservices. In Proceedings of the 40th In-

ternational Conference on Software Engineering: Com-

panion Proceeedings, ICSE ’18, page 392–393, 2018.

[9] Nicolas Brousse. The Issue of Monorepo and Polyrepo

In Large Enterprises. In Companion Proceedings of the

3rd International Conference on the Art, Science, and

Engineering of Programming, pages 1–4, 2019.

[10] Buck2. https://buck2.build/.

[11] Emily Burns, Asher Feldman, Rob Fletcher, Tomas Lin,

Justin Reynolds, Chris Sanden, Lars Wander, and Rob

Zienert. Continuous Delivery with Spinnaker. https:

//spinnaker.io/docs/concepts/ebook/.

[12] Dehao Chen, David Xinliang Li, and Tipp Moseley.

AutoFDO: Automatic Feedback-Directed Optimization

for Warehouse-Scale Applications. In Proceedings of

the 2016 International Symposium on Code Generation

and Optimization, pages 12–23, 2016.

[13] CircleCI. https://circleci.com/.

[14] eBPF. https://ebpf.io/.

[15] Jason Flinn, Xianzheng Dou, Arushi Aggarwal, Alex

Boyko, Francois Richard, Eric Sun, Wendy Tobagus,

Nick Wolchko, and Fang Zhou. Owl: Scale and Flexi-

bility in Distribution of Hot Content. In 16th USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI 22), pages 1–15, Carlsbad, CA, July

2022. USENIX Association.

[16] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan,

and Michael A. Kozuch. AutoScale: Dynamic, Ro-

bust Capacity Management for Multi-Tier Data Centers.

ACM Trans. Comput. Syst., 30(4), November 2012.

[17] Google Cloud Build. https://cloud.google.com/

build.

[18] Google Cloud Deploy. https://cloud.google.com/

deploy.

[19] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek

Pan, Esaias E Greeff, David Dion, Star Dorminey,

Shailesh Joshi, Yang Chen, Mark Russinovich, and

Thomas Moscibroda. Protean: VM Allocation Service

at Scale. In 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI), pages 845–

861. USENIX Association, 2020.

[20] Jez Humble and David Farley. Continuous delivery:

reliable software releases through build, test, and de-

ployment automation. Pearson Education, 2010.

[21] Darby Huye, Yuri Shkuro, and Raja R. Sambasivan.

Lifting the veil on Meta’s microservice architecture:

Analyses of topology and request workflows. In Pro-

ceedings of the 2023 USENIX Annual Technical Confer-

ence. USENIX, 2023.

[22] Kubernetes. https://kubernetes.io/.

[23] Eero Laukkanen, Juha Itkonen, and Casper Lassenius.

Problems, causes and solutions when adopting continu-

ous delivery—A systematic literature review. Informa-

tion and Software Technology, 82:55–79, 2017.

[24] Sangmin Lee, Zhenhua Guo, Omer Sunercan, Jun Ying,

Thawan Kooburat, Suryadeep Biswal, Jun Chen, Kun

Huang, Yatpang Cheung, Yiding Zhou, Kaushik Veer-

araghavan, Biren Damani, Pol Mauri Ruiz, Vikas Mehta,

and Chunqiang Tang. Shard Manager: A Generic Shard

Management Framework for Geo-Distributed Applica-

tions. In Proceedings of the ACM SIGOPS 28th Sympo-

sium on Operating Systems Principles, SOSP ’21, page

553–569, 2021.

[25] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Miloji-

cic, and Paulo Meirelles. A Survey of DevOps Concepts

and Challenges. ACM Computing Surveys (CSUR),

52(6):1–35, 2019.

[26] Ze Li, Qian Cheng, Ken Hsieh, Yingnong Dang, Peng

Huang, Pankaj Singh, Xinsheng Yang, Qingwei Lin,

Youjiang Wu, Sebastien Levy, and Murali Chintalap-

ati. Gandalf: An Intelligent, End-to-End Analytics Ser-

vice for Safe Deployment in Cloud-Scale Infrastructure.

In Proceedings of the 17th Usenix Conference on Net-

worked Systems Design and Implementation, NSDI’20,

page 389–402, 2020.

340 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://en.wikipedia.org/wiki/Release_early,_release_often
https://en.wikipedia.org/wiki/Release_early,_release_often
https://docs.aws.amazon.com/whitepapers/latest/overview-deployment-options/bluegreen-deployments.html
https://docs.aws.amazon.com/whitepapers/latest/overview-deployment-options/bluegreen-deployments.html
https://docs.aws.amazon.com/whitepapers/latest/overview-deployment-options/bluegreen-deployments.html
https://docs.aws.amazon.com/whitepapers/latest/overview-deployment-options/bluegreen-deployments.html
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/products/devops/pipelines/
https://azure.microsoft.com/en-us/products/devops/pipelines/
https://buck2.build/
https://spinnaker.io/docs/concepts/ebook/
https://spinnaker.io/docs/concepts/ebook/
https://circleci.com/
https://ebpf.io/
https://cloud.google.com/build
https://cloud.google.com/build
https://cloud.google.com/deploy
https://cloud.google.com/deploy
https://kubernetes.io/

[27] Sixiang Ma, Fang Zhou, Michael D. Bond, and Yang

Wang. Finding Heterogeneous-Unsafe Configuration

Parameters in Cloud Systems. In Proceedings of the

Sixteenth European Conference on Computer Systems,

EuroSys ’21, page 410–425, 2021.

[28] Paul Marinescu. Autonomous testing of services at

scale. https://engineering.fb.com/2021/10/20/

developer-tools/autonomous-testing/, 2021.

[29] Caroline Moss. Facebook Went Down

And People Started Calling The Cops, 2014.

https://www.businessinsider.com/call-cops-

when-facebook-is-down-2014-8.

[30] Guilherme Ottoni. HHVM JIT: A Profile-guided,

Region-based Compiler for PHP and Hack. In Pro-

ceedings of the 39th ACM SIGPLAN Conference on

Programming Language Design and Implementation,

pages 151–165, 2018.

[31] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul

Cavallaro, Qi Huang, Justin Meza, and Kaushik Veer-

araghavan. Gorilla: A Fast, Scalable, in-Memory Time

Series Database. Proc. VLDB Endow., 8(12):1816–

1827, August 2015.

[32] Eric Raymond. The Cathedral and the Bazaar. Knowl-

edge, Technology & Policy, 12(3):23–49, 1999.

[33] Chuck Rossi. Rapid release at massive scale.

https://engineering.fb.com/2017/08/31/web/

rapid-release-at-massive-scale/, 2017.

[34] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski,

Przemyslaw Zych, Przemyslaw Broniek, Jarek Kus-

mierek, Pawel Nowak, Beata Strack, Piotr Witusowski,

Steven Hand, and John Wilkes. Autopilot: Workload

Autoscaling at Google. In Proceedings of the Fifteenth

European Conference on Computer Systems, EuroSys

’20. Association for Computing Machinery, 2020.

[35] Amazon SageMaker. https://aws.amazon.com/pm/

sagemaker.

[36] Amazon SageMaker UpdateEndpoint. https:

//docs.aws.amazon.com/sagemaker/latest/

APIReference/API_UpdateEndpoint.html.

[37] Harshit Saokar, Soteris Demetriou, Nick Magerko, Max

Kontorovich, Josh Kirstein, Margot Leibold, Dimitrios

Skarlatos, Hitesh Khandelwal, and Chunqiang Tang.

ServiceRouter: a Scalable and Minimal Cost Service

Mesh. In Proceedings of the 17th USENIX Sympo-

sium on Operating Systems Design and Implementation,

2023.

[38] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie

Williams, Kent Beck, and Michael Stumm. Continu-

ous Deployment at Facebook and OANDA. In 2016

IEEE/ACM 38th International Conference on Software

Engineering Companion (ICSE-C), pages 21–30. IEEE,

2016.

[39] Mojtaba Shahin, Muhammad Ali Babar, Mansooreh Za-

hedi, and Liming Zhu. Beyond Continuous Delivery:

An Empirical Investigation of Continuous Deployment

Challenges. In 2017 ACM/IEEE International Sympo-

sium on Empirical Software Engineering and Measure-

ment (ESEM), pages 111–120. IEEE, 2017.

[40] Mojtaba Shahin, Muhammad Ali Babar, and Liming

Zhu. Continuous Integration, Delivery and Deployment:

A Systematic Review on Approaches, Tools, Challenges

and Practices. IEEE Access, 5:3909–3943, 2017.

[41] Mojtaba Shahin, Mansooreh Zahedi, Muhammad Ali

Babar, and Liming Zhu. An Empirical Study of Archi-

tecting for Continuous Delivery and Deployment. Em-

pirical Software Engineering, 24(3):1061–1108, 2019.

[42] Spinnaker. https://spinnaker.io/.

[43] Spinnaker rollout strategy for Kubernetes. https:

//spinnaker.io/docs/guides/user/kubernetes-

v2/rollout-strategies/.

[44] Chunqiang Tang, Thawan Kooburat, Pradeep Venkat-

achalam, Akshay Chander, Zhe Wen, Aravind

Narayanan, Patrick Dowell, and Robert Karl. Holis-

tic Configuration Management at Facebook. In Pro-

ceedings of the 25th Symposium on Operating Systems

Principles, pages 328–343, 2015.

[45] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan,

Jonathan Kaldor, Scott Michelson, Thawan Kooburat,

Aravind Anbudurai, Matthew Clark, Kabir Gogia, Long

Cheng, Ben Christensen, Alex Gartrell, Maxim Khutor-

nenko, Sachin Kulkarni, Marcin Pawlowski, Tuomas

Pelkonen, Andre Rodrigues, Rounak Tibrewal, Vaish-

navi Venkatesan, and Peter Zhang. Twine: A Uni-

fied Cluster Management System for Shared Infrastruc-

ture. In 14th USENIX Symposium on Operating Systems

Design and Implementation (OSDI), pages 787–803.

USENIX Association, 2020.

[46] David Tepper. Introducing Azure Deployment Manager.

https://learn.microsoft.com/en-us/archive/

msdn-magazine/2019/august/azure-devops-

introducing-azure-deployment-manager.

[47] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E

Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-

Balter, and John Wilkes. Borg: the Next Generation. In

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 341

https://engineering.fb.com/2021/10/20/developer-tools/autonomous-testing/
https://engineering.fb.com/2021/10/20/developer-tools/autonomous-testing/
https://www.businessinsider.com/call-cops-when-facebook-is-down-2014-8
https://www.businessinsider.com/call-cops-when-facebook-is-down-2014-8
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://aws.amazon.com/pm/sagemaker
https://aws.amazon.com/pm/sagemaker
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html
https://spinnaker.io/
https://spinnaker.io/docs/guides/user/kubernetes-v2/rollout-strategies/
https://spinnaker.io/docs/guides/user/kubernetes-v2/rollout-strategies/
https://spinnaker.io/docs/guides/user/kubernetes-v2/rollout-strategies/
https://learn.microsoft.com/en-us/archive/msdn-magazine/2019/august/azure-devops-introducing-azure-deployment-manager
https://learn.microsoft.com/en-us/archive/msdn-magazine/2019/august/azure-devops-introducing-azure-deployment-manager
https://learn.microsoft.com/en-us/archive/msdn-magazine/2019/august/azure-devops-introducing-azure-deployment-manager

Proceedings of the Fifteenth European Conference on

Computer Systems, pages 1–14, 2020.

[48] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar

Devanbu, and Vladimir Filkov. Quality and Produc-

tivity Outcomes Relating to Continuous Integration in

GitHub. In Proceedings of the 2015 10th joint meeting

on foundations of software engineering, pages 805–816,

2015.

[49] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Dou-

glas, Sharad Agarwal, Mahadev Konar, Robert Evans,

Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth

Seth, et al. Apache Hadoop YARN: Yet Another Re-

source Negotiator. In Proceedings of the 4th annual

Symposium on Cloud Computing, 2013.

[50] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu,

David Oppenheimer, Eric Tune, and John Wilkes. Large-

scale cluster management at Google with Borg. In

Proceedings of the European Conference on Computer

Systems (EuroSys), 2015.

[51] Yang Zhang, Bogdan Vasilescu, Huaimin Wang, and

Vladimir Filkov. One Size Does Not Fit All: An Em-

pirical Study of Containerized Continuous Deployment

Workflows. In Proceedings of the 2018 26th ACM Joint

Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engi-

neering, pages 295–306, 2018.

342 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	Adoption of Deployment Automation
	Deployment Safety at Hyperscale
	ML Model Deployment

	Overview of Software Deployment at Meta
	Deployment Culture
	Deployment Ecosystem
	Component Interaction by Example

	Deployment Scenarios and Solutions
	Enabling In-place Updates
	Deployment Safety
	ML Model Deployment
	Advanced Features for Universal Adoption
	Software Backward Compatibility
	Summary of Distinguishing Features

	Case Study of FrontFaaS
	Design and Implementation of Conveyor
	Conveyor Design
	Implementation of the Deploy Action
	Availability, Reliability, and Recoverability
	Lessons from Conveyor's Evolution

	Evaluation in Production
	Universal Coverage
	Trust in Fully Automated Deployments
	Deployment Safety at Hyperscale
	Deployment Failures
	Release Failures
	Failures in Deploy Actions

	Pipeline Patterns & Recommendations
	Pipeline Configuration
	Deploy Action Configuration & Runtime Statistics
	Real-world Example of Long Deploy Time
	Recommendations for Pipeline Design

	Related work
	Conclusion

