
Evaluating Scalability Bottlenecks by Workload
Extrapolation

Rong Shi, Yifan Gan, Yang Wang
Dept. of Computer Science and Engineering

The Ohio State University
{shi.268, gan.101, wang.7564}@osu.edu

Abstract—Testing a scalability bottleneck requires a large
system to generate sufficient load, which is usually not accessible
to researchers. To address this problem, this paper extrapolates
the workload to a bottleneck node. The key observation that
motivates our approach is that systems at a large scale are
often repeating their behaviors at small scales, by running a job
more times, running more nodes of the same type, or running
more iterations of the same loop. Following this observation, we
record a node’s workloads at small scales and extrapolate such
workload at a large scale. Towards this goal, we have developed
PatternMiner, a semi-automatic tool to identify how workload
patterns change with scale.

We have tested our method on HDFS NameNode and YARN’s
Resource Manager. Our evaluation shows that PatternMiner is
able to predict 98% of the workloads for NameNode and 83%
of the workloads for the Resource Manager. Furthermore, by
utilizing the extrapolated workload, we are able to emulate a
cluster of up to 60,000 nodes with only 8 physical machines to
evaluate NameNode and Resource Manager.

I. INTRODUCTION

To test centralized scalability bottlenecks with limited re-
source, this paper proposes a semi-automatic approach to
synthesize a workload that resembles the one the bottleneck
would observe in a large-scale deployment.

To simplify design, modern large-scale distributed systems
usually incorporate a few centralized metadata servers (e.g.
NameNode in HDFS [53]) to provide a global view of the
whole system [5, 7, 11, 17, 24, 29, 51, 53, 56]. It is well-
known that these centralized servers will eventually become
bottlenecks as system scale increases [20, 52, 58]. Therefore,
to understand and improve system scalability, it is critical to
investigate the performance of these bottlenecks.

The traditional approach to achieve this goal is to run a
benchmark [30, 42, 47, 55] or play a trace [13, 33, 39, 61]
to test the target system. When testing scalability bottlenecks,
however, we face a new challenge: being aware of the draw-
back of centralized servers, large distributed systems make
efforts to minimize their load. As a result, to generate sufficient
load to a centralized server, we need to deploy a large system,
which requires at least thousands of machines [52]. Even
with the help of public testbeds [10, 15] and clouds [4, 38],
getting hundreds of nodes is expensive or requires a long time
to schedule, not to mention thousands or more nodes. Even
industrial researchers are not immune to this problem, because
their clusters are a primary source of revenue. For example,
Facebook chooses to test their systems in production [57],

which reduces the cost but incurs the risk of an unknown
problem striking the production cluster.

To address this problem, previous works have made attempts
in one of two ways. The first is to run multiple small to
medium-scale experiments, measure the resource consumption
of bottleneck nodes in these experiments, and extrapolate
such consumption to large scale [17, 44, 59, 64]. While
this approach works well in some cases, its fundamental
assumption—resource consumption of bottleneck nodes in-
creases linearly, or at least predictably, with the scale of
the system—does not always hold. For example, performance
collapse is frequently reported when the system is under heavy
load [8, 37, 50, 58], indicating resource consumption can have
sudden changes at certain point.

The second approach is to synthesize a workload that
resembles the one the bottleneck would observe in a real
benchmark. Such synthetic workload can be generated either
by relying on developer’s knowledge or by replacing other
nodes with stubs, which can mimic the behavior of a real
node with less overhead. However, these approaches only
work well with simple benchmarks (e.g. read or write files) or
under specific assumptions (e.g. content of data does not affect
processing [2, 35, 58]): with a more sophisticated benchmark,
the complexity quickly grows. For example, when we tried to
synthesize a MapReduce workload to test HDFS NameNode,
even the simplest benchmark (i.e. WordCount) on a small
dataset (i.e. 5GB) generates a total number of 1171 remote
procedure calls (RPCs) with 23592 arguments.

The goal of our work is to automate the process of syn-
thesizing a workload. The key observation that motivates our
approach is that nodes’ behaviors in a large-scale deployment,
to a large degree, are a repetition of their behaviors in a
small-scale deployment. Such repetition is due to running the
same job multiple times [1, 3, 18], running similar tasks on
multiple nodes (e.g. Mapper and Reducer in MapReduce),
and running multiple iterations of the same loop. Following
this observation, our approach tests the target system with
real nodes under different (small to medium) scales, records
their traces, analyzes how such traces change with scale,
extrapolates such traces at a larger scale, and finally plays
the extrapolated trace to the bottleneck node.

We have developed PatternMiner, a semi-automatic tool to
help developers identify important patterns in workload logs.
It has three key functions:

1



• Identify static and repeated behavior. By utilizing sequence
alignment techniques [40], PatternMiner can identify which
part of the trace remains static across experiments of dif-
ferent scales, which part is repeated more times in larger
experiments, and which part changes irregularly, requiring
the developer’s effort.

• Identify patterns for arguments values. For the system to
work correctly, argument values of different requests must
meet a variety of constraints. PatternMiner first identifies
whether the value of an argument follows a predefined set
of patterns, such as constant or iteration number. If not,
PatternMiner further searches whether the value is retrieved
from previous requests.

• Summarize patterns. For found repeated patterns, Pattern-
Miner summarizes their rules of repetition, which allows
us to validate patterns across experiments and extrapolate
patterns at a larger scale.
We have applied our method to HDFS NameNode [53] and

YARN’s Resource Manager [56]. The evaluation confirms the
feasibility of workload extrapolation: PatternMiner can predict
98% of the traces for the NameNode and 83% of the traces
for the Resource Manager. Among the remaining ones, most
can be addressed by a few lines of code and only two events
require a considerable amount of developer’s effort. We are
able to partially validate the accuracy of our approach by
comparing our extrapolated workloads to those from a real
500-node experiment on Microsoft Azure.

By utilizing the extrapolated workload, we are able to
emulate a cluster of up to 60,000 nodes with only 8 physical
machines to stress test the NameNode and the Resource Man-
ager. This emulation allows developers to know the maximum
scale of the system with limited resources. Also, we find some
problems that only happen at large scales and we are able to
confirm those problems.

II. MOTIVATION AND CHALLENGES

Our approach is motivated by the observation that a dis-
tributed system at a large scale is often repeating its behavior
at small scales. Such repetition can happen at different levels:
• At the highest level, as reported in multiple studies [1, 3, 18],

users tend to run the same job many times, often on different
inputs.

• Inside a job, different nodes may execute similar tasks. Such
repetition can be observed in both the design of these sys-
tems and the traces we collected (see Section V for details).
For example, in Hadoop MapReduce, we find Mappers
and Reducers are sending similar sequence of requests to
NameNode respectively; in Spark, we find the Application
Master and Node Managers are sending similar sequence of
requests to the Resource Manager respectively; in HBase,
we find the Region Servers are sending similar sequence of
requests to ZooKeeper. Such repetition can also be found in
MPI-based parallel computation applications [46, 48, 54].

• At the lowest level, a task often uses loops to handle given
data. For example, a Mapper uses a loop to read all data
of the input file; a Reducer uses a loop to output data.

Multiple iterations of the same loop can also generate similar
sequence of requests.
Essentially, such repetition is rooted in the basic principle

of software engineering: developers tend to design their code
to be reusable across iterations, across nodes, and across jobs.
As a result, such pieces of code are executed multiple times
at runtime and naturally leads to a repetition of behavior at
runtime.

Such repetition provides us with an opportunity to extrap-
olate a system’s behavior at a large scale, by analyzing its
behavior at small scales. Applying this idea to a complicated
system, however, is challenging. To motivate our work, we
first show our experience of manually analyzing the workload
for HDFS NameNode.

HDFS stores data on a number of DataNodes and stores
metadata, such as directory structure and locations of data
blocks, on a single (maybe replicated) NameNode. We run
MapReduce WordCount, which is one of the simplest bench-
marks, over HDFS and collect all RPCs to NameNode. Fol-
lowing are our observations:
• Because of the size of the traces, it is difficult to manually

identify what pattern is repeated. Even when running on a
small dataset (5GB), the benchmark generates a complicated
trace: it contains a total number of 1171 RPC instances, and
a total number of 23592 arguments in these RPCs. They
include 21 types of RPCs and 150 types of arguments from
six types of nodes. With our tool, we find several types of
repeated sequences and one of them is a sequence of 16
RPCs to upload a file: manually identifying such a long
pattern inside a long trace is hard.

• A pattern occurring multiple times does not mean all its
occurrences are identical. Still taking MapReduce as an
example, each Mapper needs to open a file, read it, and
finally close it, but obviously each Mapper needs to open
a different file. This means we cannot simply copy paste
the repeated pattern. Furthermore, there exist complicated
dependencies among one pattern (e.g. the Mapper can only
close the file it opened): violating such dependencies may
cause the NameNode to throw exceptions and fail the test.

• There exist patterns that are hard for the computer to analyze
automatically: this includes non-deterministic RPCs and
RPC arguments with no clear pattern (e.g. port number).
Many of them can be easily addressed by developers who
have knowledge of the system.
These observations motivate us to develop a semi-automatic

tool: it tries its best to extract patterns from workload traces;
for those it cannot find an appropriate pattern, it presents a
concise summary to the developer.

III. DESIGN

As shown in Figure 1, workload extrapolation works in
three phases: in the preparing phase, we run the real system
and benchmark with multiple small to medium experiments
and record the workload traces (input requests) to the target
bottleneck node. In the mining phase, we analyze patterns

2



CDABAB CDABABABAB

...

1. Preparing 2. Mining

2-node
experiment

4-node
experiment

Mining message types

Mining message arguments

Mining message timing

With 8 nodes, the trace
should be CDABABABABABABABAB

3. Testing

CDABABABAB
ABABABAB

Other nodesTarget node

Preprocessing

Extrapolating messages

Trace player

static repeated static repeated

Fig. 1. Work flow of workload extrapolation

in these collected traces and extrapolate how the trace looks
like at a larger scale. Towards this goal, we have developed
PatternMiner, a tool to help developers extract such patterns.
In the testing phase, we play the extrapolated trace to the target
bottleneck node to measure its performance.

Next we present each step in detail. Note that our approach
is semi-automatic: it asks the developers if it finds an unknown
pattern.

A. Preparing

In this phase, we run the benchmark on the real system with
different small to medium-scale experiments and log all input
and output messages of the target node.

Although it is possible to automatically instrument the
target system for logging, our current implementation simply
requires developers to implement the logging function, be-
cause most systems already have such functions and slightly
modifying them can achieve our goal.

Such logs should contain complete information of the
corresponding messages. Furthermore, to facilitate analysis in
the next phase, such logs should be semantically meaningful,
providing type information of data in such messages. For
services implemented under the remote procedure call (RPC)
model, the RPC layer is a natural place to log traces. For
systems using message passing, our approach can record
raw network packets but it expects the developer to provide
functions to deserialize raw network packets into semantically
meaningful variables: such functions usually already exist
in the target system. Automatically extracting semantically
meaningful information from raw bytes is out of the scope of
this paper. For simplicity, we will use the RPC model in this
paper, because with deserialization functions, message passing
is fundamentally no different from RPC.

PatternMiner in the second phase expects the following trace
format: for each RPC, the trace should contain its timestamp,
a sender ID to identify the node that issues the RPC (a thread
ID if the node uses multi-threading [65]), the RPC function
name, and the types and values of all its arguments and return.
Table I gives an example of the trace format of the mkdirs RPC
and its arguments.

TABLE I
EXAMPLE OF PARSED TRACE FORMAT. REQ/RESP =

REQUEST/RESPONSE ARGUMENTS (LIST OF {TYPE: VALUE} PAIRS)

time stamp sender id RPC REQ RESP
19:04:01.8 11394:74 mkdirs {src: “/in/ temp/1”, {result:

masked.perm: 493, true}
createParent: true}

B. Mining

In the mining phase, we analyze the recorded traces with
PatternMiner, and predict how the traces look like at a larger
scale. Since we assume certain patterns of RPCs will be
repeated across experiments, the key goal of PatternMiner is
to find which patterns are repeated (called “repeated pattern”
in the rest of this paper), which patterns are static (called
“static pattern” in the rest of this paper), and which patterns are
irregular, requiring developers’ effort. Given such information,
we can then predict how the traces look like at a large scale for
the purpose of evaluation in the third phase. To be concrete,
we need to predict the types (i.e. function names) of all RPCs,
values of all their arguments, and their timestamps. We don’t
need to predict their return values because they will be given
by the target node at runtime.

PatternMiner relies on existing data mining techniques to
find patterns, but it faces two challenges: first, PatternMiner
not only needs to identify patterns in each experiment, but
also needs to find how such patterns change across scale.
Second, patterns found in one experiment may not hold across
experiments, so PatternMiner needs to validate such patterns
across experiments. Both challenges require PatternMiner to
compare found patterns across different experiments, but re-
peated patterns are often not directly comparable since they
have different lengths across experiments of different scales.
To solve this problem, PatternMiner’s summarizes repeated
patterns by extracting their rules of repetition: these rules are
directly comparable across experiments.

1) Preprocessing: PatternMiner first separates the raw log,
which contains all RPCs collected at the target node, into
separate logs based on the sender of each RPC. PatternMiner

3



E F E F

A B C D C D

E F EFX

A B C D C D

Y

Node A-1

Node A-2

Node B-1

Fig. 2. Relocate RPCs based on causal ordering

register("10.0.0.1")
list("/data/input");
100 = create("/data/input/input0");
write(100, 1024)
close(100)
105 = create("/data/input/input1");
write(105, 1024)
close(105)
107 = create("/data/input/input2");
write(107, 1024)
close(107)

Fig. 3. An example of a log of RPCs

separates logs first because, as shown in Section 2, the
repetition of patterns comes from running nodes of the same
type and running iterations of the same loop: for both cases,
it is easier to extract such patterns from separated logs.

Then PatternMiner relocates part of RPCs based on causal
ordering. The purpose of this step is to reduce nondeterminism
incurred by parallelism. For example, as shown in Figure 2,
RPCs E and F are in the log of node B-1, but they are actually
triggered by RPCs C and D from two concurrent nodes A-
1 and A-2. Since nodes A-1 and A-2 are both repeatedly
calling C and D, E and F are repeatedly triggered, but if
we look at the log of node B-1, such repetition may be
obscured by nondeterminism in timing: in this example, node
B-1 logs EEFFEFEF, in which the repetition of EF is not clear.
PatternMiner relies on causal logging technique [14, 36, 65],
which can identify the causal relationship of different events,
to alleviate the problem: if causal logging finds one RPC r1
is triggered by another RPC r2 from node n, PatternMiner
relocates r1 to n’s log and put it after r2. In this example,
PatternMiner will relocate E and F to nodes A-1 and A-2,
so that the logs of A-1 and A-2 become ABCEDFCEDF, in
which one can observe the repetition of CEDF. If r1 can trigger
other RPCs, PatternMiner performs relocation recursively. In
our current implementation, we track causal relationship in
logging by tracking unique IDs of certain tasks.

Then PatternMiner tries to identify patterns that are repeated
across different nodes: it clusters logs with similar histogram
of RPC function names into the same type, since they are
probably from the same type of nodes. For example, in
Figure 2, nodes A-1 and A-2 will be clustered into the
same type. PatternMiner will ask the developer to verify its
clustering result.

2) Mining patterns for RPC types: Then PatternMiner
tries to extract repeated and static patterns inside each node’s
log. PatternMiner first focuses on the RPC types, which are
represented by the function names of the RPCs. To illustrate
the procedure, we use an example as shown in Figure 3. In
this phase, PatternMiner focuses on the sequence of their types
[register, list, create, write, close, create, write, close, create,

write, close] to see if there exists any repeated pattern.
Repetition of patterns can occur in both real-time field (e.g.

heartbeat) and logical-time field (e.g. loop) and these two often
interleave with each other. PatternMiner first extracts repeated
patterns from real-time field since they are usually simpler.
PatternMiner identifies a certain type of RPCs as real-time
repeated if the real-time interval of their occurrences is regular.

Then PatternMiner attempts to separate static and repeated
patterns in the logical-time field.

Detect nondeterministic RPCs: Nondeterministic RPCs
will create a noise for extracting patterns. PatternMiner first
tries to identify nondeterministic RPCs by comparing logs
from the same type of nodes and by comparing logs from
experiments with the same scale. PatternMiner uses standard
text comparison technique to “diff” the sequence of RPC
names in those logs and present the different part to the
developers to ask how to handle such nondeterministic RPCs.
Of course, PatternMiner only works well if there are not
many of such nondeterministic RPCs. Otherwise, either the
developers need a lot of effort or the system simply becomes
unpredictable.

Identify static and repeated patterns: Then PatternMiner
separates static and repeated patterns in the logs.

PatternMiner first tries to identify all patterns that are re-
peated more than once in each node’s log (Algorithm 1). It is a
brute-force search that iterates all sub-sequences of the log and
counts how many times they are repeated consecutively. Since
multiple repeated segments may overlap, PatternMiner gives
a preference to those with a higher coverage. The complexity
of this algorithm is O(N3), in which N is the number of
RPCs in one log. Although we find it to be acceptable in our
small-scale experiments, it is possible to incorporate optimized
versions [21, 40] if the log is long.

After this step, each node’s log is naturally separated into
multiple segments. PatternMiner summarizes each segment
into a template < type, pattern, repetition >: “type” is
either repeated or static; for a static segment, “pattern”
records all RPCs in the segment and “repetition” is 1; for
a repeated segment, “pattern” records the RPC sequence
that is repeated and “repetition” records the number of
repetition. Taking traces in Figure 3 as an example, af-
ter this step, PatternMiner can identify two segments: the
first is < static, [register, list], 1 > and the second is <
repeated, [create,write, close], 3 >.

Cross validation: Then PatternMiner validates its key
assumption by checking the following condition: for logs from
the same type of nodes but from experiments of different
scales, their segment information should be the same, except
that for repeated segments, the number of repetition could
be different. If validation succeeds, PatternMiner will move
to the next phase. Otherwise, PatternMiner reports to the
developer. There is one exception in this case: it is possible
that a pattern is actually repeated, but it occurs only once in a
small experiment and thus is classified as static. By comparing
results across experiments, PatternMiner adjusts it to repeated.

4



Algorithm 1: Search for repeated segments in an RPC
sequence

Input: RPC sequence
Output: list of repeated segments
list = []
for chunk sz ← 1 to seq len/2 do

for offset← 0 to chunk sz do
split RPC sequence into multiple chunks: chunk0
starts at offset; chunk1 starts at offset+chunk sz,
...
check if multiple consecutive chunks are the
same: if so, record the chunk and its number of
repetition in list;
filter out duplicate patterns with either equal or
smaller coverage;

sort list by descending order of coverage
(len(sub seq)× freq), then increasing order of
len(sub seq)
result = []
while true do

find the top segment from list that does not overlap
with any one in result
if not found then

break
else

add the segment to list

return result

Compute number of repetition: Finally PatternMiner
tries to identify that, for repeated patterns, how the number
of repetition changes with scale. PatternMiner uses linear re-
gression to extract this relationship. If the number of repetition
is constant, PatternMiner adjusts the type of the segment as
“static”.

3) Mining patterns for RPC arguments: To evaluate the
target node, we not only need to extrapolate the types of RPCs,
but also need to extrapolate their argument values. This is
critical for the validity of the extrapolated trace, because the
target node may rely on invariants in these arguments. Taking
Figure 3 as an example, if a node wants to write to a file, this
file must have already been created, and thus the write RPC
should use the same file ID as the one returned by create.
This means that it is impossible to predict argument values by
looking at an isolated RPC.

Our approach simplifies this task in two ways: first, Pat-
ternMiner can gain information from real traces of small-
scale experiments. For example, in MapReduce, a Mapper only
needs read permission when opening a file, and such rules can
be extracted from small-scale experiments. Second, segment
information we gain in the previous phase can serve as an
accurate context information for an RPC. In particular, for each
RPC instance, PatternMiner computes which type of node it
belongs to, which segment it belongs to, and its offset in the
segment. If the corresponding segment is a repeated one, Pat-

ternMiner further computes which iteration it belongs to and
its offset in the iteration. Such segment information, together
with the environment information such as the configuration,
form the context of the RPC. Not surprisingly, we observe
RPCs with similar context to have significant similarity, which
allows us to predict their argument values.

In practice, we find while many arguments’ values can be
determined by solely looking at the context of the correspond-
ing RPC, others’ values can be from the values of arguments
or returns of previous RPC calls. We call the first type regular
pattern and the second type information flow in this paper.
Since regular pattern is easier to extract than information flow,
PatternMiner first tries to check if arguments can match with
any predefined regular patterns, and for those which do not,
PatternMiner analyzes its information flow.

Regular pattern: An argument’s value follows a regular
pattern if its value can be solely determined by its context (e.g.
segment information, configuration, etc). Typical examples in-
clude constant values, values that are regularly changed across
iterations, etc. PatternMiner uses a three-phase algorithm to
determine if an argument’s value follows a regular pattern.

In the first phase, PatternMiner performs cross-iteration
summarization: for each repeated segment, PatternMiner com-
pares arguments of RPCs with the same offset in iteration but
with different iteration number. For each argument, Pattern-
Miner performs a diff operation to its values across different
iterations: if there is no difference, PatternMiner classifies the
argument as a constant value. Otherwise, PatternMiner checks
whether the different part matches with a predefined set of
patterns, such as linear relationship with iteration number
or a matching with any other variables in its context. If
a match is found, PatternMiner replaces the actual value
with a template. Taking Figure 3 as an example, for the
repeated segment [create, write, close], PatternMiner will
identify the argument of create to follow a regular pattern
“/data/input/input[iteration]” and the second argument of write
to follow a constant pattern 1024. For arguments that do
not match any predefined patterns, PatternMiner marks them
as “unknown” (e.g. the first argument of write and the
argument of close). At the end of this phase, PatternMiner
summarizes each repeated segment into only one iteration,
which is called a representative iteration of the repeated
segment. For example, the representative iteration of Figure 3
is [create(/data/input/input[iteration]), write(unknown,1024),
close(unknown)].

In the second phase, PatternMiner performs cross-node
summarization by investigating logs from the same type of
node. For arguments with the same context in different nodes,
PatternMiner uses the same algorithm as in the first phase to
check if they follow any regular patterns. Note that patterns
found in the first phase may not hold in the second phase:
for example, one argument may have constant value in one
node, but may not have the same value across different nodes.
PatternMiner reclassifies such patterns. At the end of this
phase, PatternMiner summarize each type of nodes into only
one node, which is called a representative node.

5



After the above two phases, each experiment should have
the same number of representative nodes, and same type
of representative nodes from different experiments should
have the same number of RPCs and arguments. This allows
PatternMiner to perform cross-experiment validation in the
third phase: PatternMiner checks that, for RPCs from differ-
ent experiments but with the same context, their arguments
should follow the same pattern. If so, PatternMiner records
the pattern. For the remaining ones, PatternMiner performs
information flow analysis.

Information flow: Some arguments’ values are the same as
those of arguments or return values of previous RPCs, which
means there is an information flow among multiple RPCs.
PatternMiner tries to find such relationship by searching back
from the target RPC to see if any previous RPC’s argument
or return value has the same value: if so, PatternMiner marks
the previous RPC as the parent and the target RPC as the
child. Note that for relocated RPCs (Figure 2), PatternMiner
searches in both the original component of the RPC and the
component it is relocated to. Then PatternMiner summarizes
the pattern it finds based on the locations of parent and child:
• Both parent and child are in static segments. This is the

simplest case. PatternMiner simply records the parent’s
location and the child’s location.

• Parent is in a static segment and child is in a repeated
segment. PatternMiner checks whether RPCs from all it-
erations have the same parent. If so, PatternMiner records
the parent’s location and marks all corresponding RPCs in
the repeated segment as children. Otherwise, PatternMiner
reports to the developer.

• Parent is in a repeated segment and child is in a static
one. PatternMiner checks whether the iteration number of
the parent follows a specific pattern (e.g. constant or last
iteration). Otherwise, PatternMiner reports to the developer.

• Both parent and child are in repeated segments. Pattern-
Miner checks whether the pair of (parent iteration number,
child iteration number) follows a specific pattern like (i,
i+offset). Otherwise, PatternMiner reports to the developer.
Taking Figure 3 as an example, PatternMiner will iden-

tify that the second argument of write is from the re-
turn value of create, and the argument of close is from
the second argument of write. Furthermore, PatternMiner
identifies that for all three instances of such relationship,
both parent and child are in a repeated segment and have
the same iteration number, so PatternMiner summarizes the
relationship as (iter[i].rpc[0].return → iter[i].rpc[1].args[0])
and (iter[i].rpc[1].args[0] → iter[i].rpc[2].args[0]). Note that
PatternMiner does not need to predict return values because
they will be given by the target node at runtime.

After summarization, PatternMiner validates the results
across different nodes of the same type, and same type of
nodes from different experiments. If any mismatch is detected,
PatternMiner reports to the developer.

4) Mining patterns for timing: In the final phase, Pat-
ternMiner identifies patterns for timing. PatternMiner tries to
extrapolate two kinds of timings: one is the time interval

between two consecutive RPCs from the same node; the other
is the starting time of each node.

To extrapolate the time interval between two consecutive
RPCs, PatternMiner computes the corresponding time interval
in small-scale experiments and use linear regression to check
how it changes with scale.

The starting time of a node often depends on the progress
of other nodes. For example, in MapReduce, a Reducer starts
after all Mappers finish. PatternMiner predefines a set of
patterns and check whether such patterns exist in small scale
experiment: for example, the fork pattern means a number of
nodes will start after a node finishes; the join pattern means
a node will start after a number of nodes finishes; etc. Once
again, PatternMiner will ask developers to verify the result
because developers usually have a good understanding.

5) Extrapolating traces at large scales: In this stage,
PatternMiner uses all the information it gains from previous
analysis to extrapolate traces at a large scale. Similar as the
analysis stage, PatternMiner performs extrapolation in several
steps.

Generate the final setting: This step requires the devel-
opers’ help: the developer needs to specify the configuration,
in particular the number of each type of nodes. PatternMiner
has no knowledge about such setting, so it has to rely on the
developer’s knowledge.

Extrapolate RPC types for each type of node: Pat-
ternMiner uses segment information to generate the sequence
of types of RPCs for each node. For each repeated pattern,
PatternMiner predicts its number of iterations based on the
setting of the experiment. Real-time related patterns are not
generated in this step, but generated at runtime, because it
needs real-time information.

Extrapolate RPC arguments: For arguments that follow
regular patterns, PatternMiner will directly fill its values in
this stage. For arguments that get values from previous RPCs,
PatternMiner will fill a template in this stage, indicating where
to retrieve the information. Such information will be retrieved
at runtime.

Extrapolate timing of RPCs: To predict intervals of
consecutive RPCs, PatternMiner uses the extracted informa-
tion directly. To simulate such intervals, PatternMiner inserts
sleep() call before corresponding RPCs. To accelerate long
experiments, PatternMiner provides a tunable parameter to
shorten or eliminate such intervals. To predict when a node
starts, PatternMiner generates a number of rules like “node i
should start after node j and node k complete”.

C. Testing

Finally, we play the extrapolated trace to test the target node.
Figure 4 presents the design of this phase. The key components
of this step are a number of node players that replace the
real nodes to generate RPCs to the target node. Internally,
each player is composed of three components: an interpreter
to read the pattern generated by PatternMiner and to convert
them into actual RPCs; an executor to make the RPCs and
to receive the replies from the target node; and a recorder to

6



Fig. 4. Play the extrapolated workload to test target node

record all past RPCs and replies, which may be used by the
interpreter later. Besides, we create a centralized controller to
coordinate all players: it uses timing information extracted by
the PatternMiner to decide when to start a player.

IV. LIMITATION AND FUTURE WORK

First, our approach requires running experiments with dif-
ferent scales, which is feasible for benchmark testing, but is
usually not feasible in a production system. Since benchmark
testing is widely used for performance comparison and for
identifying problems before deploying a system, our approach
is still beneficial in multiple ways. If industry can provide pro-
duction traces at different scales, our approach may generate
a larger trace.

The other limitations of our approach come from its assump-
tions about the target system. In this section, we summarize
its assumptions and try to relax them.

The key assumption is that system at a large scale is
repeating its behavior at small scales. If the target system runs
different algorithms or different types of nodes at a specific
scale, then of course our approach does not work. In practice,
behaviors like load imbalance, failure recovery, and straggler
mitigation are often more likely to occur at larger scales:
if these behaviors are not triggered in the preparing phase,
then of course our approach will not be able to predict them.
However, if developers have knowledge about such behaviors
(e.g. the distribution of load and the frequency of failures),
they may deliberately trigger them in the preparing phase.

Nondeterministic events are certainly a challenge for our ap-
proach, because they not only are hard to predict, but also may
affect PatternMiner’s accuracy to separate static and repeated
segments. PatternMiner relies on the developers to abstract
away nondeterministic events. In general, PatternMiner will be
more effective if there are not many nondeterministic events.

As shown in Section III, PatternMiner predefines a set of
regular patterns. Though in our experiments these patterns
can cover a majority of arguments, there exist arguments
that do not follow these patterns. This can happen for two
reasons: first, it is possible that these patterns exist in our
trace, but might not follow any of our predefined patterns.
This may be improved with more advanced data mining or

machine learning techniques. Second, it is also possible that
critical information is missing from our trace, so that it is
impossible to find the actual pattern. We believe logging can
be further improved in two ways: first, we can use compiler
techniques to identify critical control flow that affects the
corresponding argument in the source code and add logging
information there. Second, our approach currently does not
analyze messages exchanged among other nodes and they may
also provide valuable information.

Also, we use commodity clusters for experiments. It would
be interesting to investigate the feasibility of applying our
approach to systems with other hardware features [31, 32].

In addition, our work focus on centralized metadata service.
In the future, we plan to apply our approach to peer-to-peer
services, such as Cassandra [9], a scalable key-value store.

V. EVALUATION

Our evaluation tries to answer two questions:
• How well can our approach extrapolate workloads? To

be more specific, how much information can PatternMiner
predict and how much requires the developer’s effort?
Furthermore, how accurate is the extrapolated workload
compared to the one from a real system?

• Can the extrapolated workload help identify performance
problems?
To answer these questions, we have applied our approach to

Hadoop to extrapolate workloads for HDFS NameNode and
YARN Resource Manager. We use the PUMA MapReduce
benchmark [45] to test the NameNode and the HiBench [30]
Spark benchmark to test the Resource Manager.

To answer the first question, we report our experience
about using PatternMiner. To validate the accuracy of our
extrapolated workload, ideally, we should run a real bench-
mark on a large cluster and compare its workload to the
ones extrapolated by PatternMiner. However, the difficulty of
gaining a large cluster motivates this work in the first place. As
a compromise, we run a medium-scale (500 nodes) experiment
on Microsoft Azure and compare its real workloads to the ones
we extrapolated from our 12-node experiments.

To answer the second question, we have played the extrap-
olated workload to NameNode and Resource Manager. Our
findings are confirmed either by developer’s comments or by
our investigation of the source code.

A. Settings

We apply our method to Hadoop 2.7.3. For Spark bench-
marks, we run Spark 2.2.0 on YARN. Since both HDFS Na-
meNode and the Resource Manager are built upon Hadoop’s
RPC library, which already includes the logging functionality,
we modify its logging functions as discussed in Section III-A.

We run WordCount, InvertedIndex, TeraSort, and KMeans
as the workloads. These benchmarks need to upload input
files to HDFS first, by either copying them sequentially to
HDFS or copying them in parallel using Hadoop DistCp [28].
Note we must include such data uploading in our extrapolated
workload: otherwise, the actual job cannot find input files.

7



TABLE II
SUMMARY OF TYPES OF NODES IN OUR EXPERIMENTS (* MEANS THERE

COULD BE MULTIPLE OF THESE NODES).

Name Functionality
Application Client Submit the job

DataNodes (*) Store data
NameNode Store metadata

Application Master Manage a job
Mappers (*) Execute map tasks
Reducers (*) Execute reduce tasks

Node Managers (*) Monitor resource usage
Resource Manager Assign tasks to nodes

We run all benchmarks with scales ranging from 3 servers to
12 servers as DataNodes and Mappers/Reducers. We use one
additional server to run NameNode and Resource Manager.
Each server is equipped with an Intel Xeon E3-1231 4-core
processor (3.4GHz), 16GB of memory, two hard drives, and
1Gb NIC.

Table II summarizes all types of nodes existed in our
experiments. In one experiment, there could be multiple of
some types of nodes (denoted with “*”). For example, a
TeraSort experiment with 5 DataNodes and 20 GB input data
may include 5 DataNodes, 5 Node Managers, 20 Mappers and
10 Reducers.

B. Extrapolating workload

In this section, we report our experience of applying Pat-
ternMiner to extrapolate workloads for the NameNode and the
Resource Manager.

1) Extrapolating for NameNode: NameNode maintains
file system namespace information and block locations for
HDFS. We first present our experience with WordCount for
its simplicity and then present additional challenges we met
with other benchmarks.

NameNode receives 21 types of RPCs and 150 types of
arguments from six types of servers, including DataNode,
Mapper, Reducer, Node Manager, Application Master, and
Application Client (MapReduce program). During the pre-
processing phase, PatternMiner clusters logs into seven types
including all six types mentioned above and an additional
type of Node Manager, because one Node Manager needs to
perform extra tasks.

Patterns of RPC sequences: PatternMiner first identifies
nondeterministic RPCs and then separates repeated and static
segments.

PatternMiner identifies two types of nondeterministic RPCs:
first, when closing a file, a node calls complete repeatedly until
it returns true, which means the file is fully replicated. There-
fore, the number of repetition is nondeterministic, depending
on the timing of the complete call. We replace such pattern
with a single complete during analysis, and when testing, we
change them back into a complete encapsulated in a while
loop.

Second, HDFS replicates the job.split file on three DataN-
odes first and increases its number of replicas later. In this
case, the NameNode needs to replicate it on more DataNodes,

TABLE III
LENGTHS OF EXTRAPOLATED RPC SEQUENCES FOR NAMENODE UNDER

TERASORT (* MEANS THERE COULD BE MULTIPLE OF THESE NODES).

Data Generation Sort
Application Client 43 57

DataNodes (*) 4 4
Application Master 82 66

Mappers (*) 40 4
Reducers (*) 0 40

Node Manager A 9 14
Node Managers B (*) 5 10

but the timing of such event is nondeterministic. Interestingly,
we find this event is more likely to be a bug: HDFS increases
the number of replicas of job.jar and job.split files, which
are read by all nodes, to improve their read performance.
However, if such increasing happens after the file is read,
it is not useful. Actually, we find for job.jar, HDFS creates
more replicas when creating the file, which makes the late
replication of job.split suspicious. In our analysis, we relocate
this event to a deterministic location.

After removing such nondeterministic RPCs, PatternMiner
is able to identify static and repeated segments. PatternMiner
identifies two types of repeated RPCs in the real-time field:
one is the sendHeartbeat from each DataNode and the other
is the renewLease from any server that may open a file. Apart
from them, PatternMiner identifies several types of repeated
segments in logical-time field in multiple components. For
example, the sequential Application Client contains two types.
In the first one, the Application Client uses a loop to upload
all input files. PatternMiner identifies a sequence of 16 RPCs
to upload one file. The second one is related to replicating the
job.jar and job.split files. PatternMiner finds each addBlock
call to these two files is followed by a sequence of block-
Received RPCs, whose length increases with the scale of the
system. Note for other files, such pattern also exists but since
their number of replicas is constant, PatternMiner classifies
such pattern as static. Another example is the repeated file
renaming segments in Application Master. The RPC sequence
of [getFileInfo, getListing, getFileInfo, rename] renames
each file partition of the input data and scales with the number
of partitions.

For example, Table III summarizes the lengths of extrapo-
lated RPC sequences of all types of nodes existed in TeraSort
experiments. During a MapReduce job, Application Master
and Mappers/Reducers run in containers that are scheduled by
the Resource Manager, and managed by the first node manager
and other node managers, respectively. And we represent two
types of node managers as A and B in the table. To save space,
we do not show statistics of other benchmarks and only show
the lengths. For example, the representative RPC sequence of
DataNodes is [versionRequest, registerDatanode, blockRe-
port, sendHeartbeat] and sendHeartbeat is repeated in real-
time field. In addition, the whole RPC sequence repeats itself
across all DataNodes in the experiment.

Patterns of RPC arguments: Next PatternMiner iden-

8



TABLE IV
MINING RPC ARGUMENTS FOR NAMENODE. C = CONSTANT; R =

REGULAR PATTERN (EXCLUDING CONSTANT VALUES); IF =
INFORMATION FLOW; U = UNKNOWN

Total C R IF U
WordCount 1371 754 47 541 29

InvertedIndex 2011 1130 48 800 33
TeraSort 3134 1710 92 1278 54
KMeans 3178 1773 84 1262 59

tifies patterns for the values of RPC arguments. Table IV
summarizes the results of this phase. In Table IV, all num-
bers are counted after PatternMiner summarizes representative
iterations and representative nodes, so that these numbers
are consistent across experiments with different scales. The
actual total number of argument patterns grows with scale.
For example, there are 8053 information flow patterns for a
TeraSort experiment of 9 DataNodes and 18 GB input data.
To compare these patterns across experiments with different
scales, we summarize them to 1278 patterns. For a better
understanding, we separate constant values from other regular
patterns.

As shown in the table, PatternMiner is able to extract
patterns for about 98% of the arguments, among them constant
values and information flow from previous RPCs are dominant.
Regular pattern mainly involves patterns regularly changed
across iteration (e.g. file1, file2, etc) and patterns regularly
changed across the same type of nodes (e.g. mapper.0, map-
per.1, etc).

We manually investigated the 29 arguments that are marked
as “unknown”. They can be mainly categorized into a few
types: the first type is related to random values (e.g. uuid)
or timestamps (e.g. contextid). They can easily be addressed
by writing a few lines of code to call a random generator or
read the current time. The second type is related to the size of
the output file and the local storage usage of a DataNode.
We cannot know their accurate values without actual data
processing, but since NameNode’s performance is not sensitive
to the actual value, we use estimated numbers.

InvertedIndex, TeraSort, and KMeans: When applying
PatternMiner to more complicated benchmarks, we observe a
few additional nondeterministic events:
• In the reduce phase, PatternMiner finds that blockReceiveds

for different addBlocks can be merged. For example, if two
reducers call addBlock simultaneously, the corresponding
DataNode may call blockReceived only once, but reports
both blocks. To handle them during analysis, we separate a
merged blockReceived into separate ones. To simulate this
phenomenon during testing, we need to define a probability
to merge blockReceiveds. Note this phenomenon does not
happen in WordCount because it has only one reducer.

• Because of load imbalance among reducers, they may write
different amount of data to HDFS, leading to different
number of addBlocks. Such skew has been thoroughly
studied in previous work [34]. We create a parameter to
allow a developer to specify the load distribution so that

TABLE V
LENGTHS OF EXTRAPOLATED RPC SEQUENCES FOR RESOURCE

MANAGER UNDER WORDCOUNT (* MEANS THERE COULD BE MULTIPLE
OF THESE NODES).

WordCount
Application Client 5
Application Master 4
Node Managers (*) 2

PatternMiner uses it to determine the reducers’ load.
• TeraSort needs to sample data in input files for load balance.

Instead of listing and handling all input files in one loop,
TeraSort lists and handles a certain amount of input files at
a time till all input files are handled. We replace them with a
single loop in analysis and break the loop into nested loops
in actual testing.
Table IV summarizes the number of arguments PatternMiner

can predict for these benchmarks. The percentage of unknown
patterns is close to that of WordCount.

2) Extrapolating for Resource Manager: The Resource
Manager keeps track of resource usage in the system and
allocates resource to different jobs. We use both MapReduce
and Spark benchmarks to test Resource Manager and focus
on Spark benchmarks because they cover more types of RPCs
and arguments. In our experiments, it processes 10 types of
RPCs and 99 types of arguments from three types of nodes,
including the Application Master, the Node Managers, and the
Application Client (Spark driver). Since the patterns in four
benchmarks are not much different, we only present the result
for WordCount.

Patterns of RPC sequences: PatternMiner does not
find any nondeterministic RPCs. PatternMiner identifies three
types of repeated RPCs in the real-time field: one is the
nodeHeartbeat RPC from each Node Manager, another is
the getApplicationReport RPC from Application Client, and
the other is the allocate RPC from the Application Master.
PatternMiner does not find any repeated pattern in the logical-
time field.

Table V summarizes the lengths of extrapolated RPC se-
quences of all types of nodes in WordCount experiments.
For example, Application Client has a sequence of 5 RPCs:
[getClusterNodes, getClusterMetrics, getNewApplication,
submitApplication, getApplicationReport] and getApplica-
tionReport is repeated in real-time field.

Patterns for RPC arguments: Table VI summarizes the
results of this phase. As shown in the table, PatternMiner is
able to extract patterns for 83% of the arguments. We man-
ually investigated the remaining arguments that are marked
as “unknown”. The first type is related to the port, which
does not follow any pattern. For them, we just fill a valid
port number. The second type is related to the size and
creation time of job.jar and job-split.jar: since they vary across
experiments, PatternMiner cannot predict them. This problem
can be addressed by using a few lines to read file size and
timestamp. The third type is the arguments of the periodical
allocate call: in most cases, the Application Master simply

9



TABLE VI
MINING RPC ARGUMENTS FOR RESOURCE MANAGER. C = CONSTANT; R

= REGULAR PATTERN (EXCLUDING CONSTANT VALUES); IF =
INFORMATION FLOW; U = UNKNOWN.

Total C R IF U
WordCount 179 108 18 22 31

reports its own states and the arguments of these calls are
predictable. However, the Application Master also uses this
call to ask for new resources when necessary. To predict such
information, we write code to simulate the internal logic of the
Application Master. The fourth type is the arguments when
a node manager reports its task progress: without actually
running the task, we have to put estimated numbers.

3) Validation and summary: Ideally we should run the
actual system at a large scale and compare its traces with the
ones we extrapolate. Unfortunately, we have not yet been able
to gain access to such plentiful resources: after all, it is the
very reason that has motivated our work in the first place.
The largest validation we have performed involves running
a full system with WordCount and TeraSort on 500 nodes in
Microsoft Azure [38]. We record their traces to NameNode and
Resource Manager. Then, we run small scale experiments of
3, 6, and 12 nodes and use PatternMiner to mine patterns and
extrapolate workloads at a large scale of 500 nodes. Finally,
we compare real traces of NameNode and Resource Manager
to extrapolated workloads. During this procedure, we compare
the sequence of RPC function names, their argument values,
and the timing between two consecutive PRCs.

For the sequence of RPC function names, we find the
traces of the Resource Manager match with our extrapolated
workloads. And most of the traces of the NameNode match
with our extrapolated workloads with one exception in the
data generation phase of TeraSort: 3 DataNodes in Azure
failed during our experiments, leading to different number
of blockReceived for about 3.4% of the blocks within a
few mappers. In our small-scale experiments, DataNodes did
not fail and thus we cannot predict them. As discussed in
Section IV, to improve accuracy, one could trigger failures
deliberately in small-scale experiments.

For RPC arguments, both traces of the NameNode and
Resource Manager match with extrapolated workloads. Note
that our extrapolated workloads may provide rules instead of
actual values for some arguments (e.g. information flow from
previous RPCs): in these cases, we check whether the actual
values in real traces match with these rules.

For time interval between two consecutive RPCs, the differ-
ence between real and extrapolated traces is within 10% for
90% and 99% of the intervals for NameNode and Resource
Manager, respectively. Intervals with large difference mainly
come from a few nodes when the system experiences burst
traffic. In addition, the start time of a node for both traces
match with extrapolated workloads.

To summarize, PatternMiner requires developers’ effort to
handle nondeterminstic events and unknown argument pat-

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5k 10k 15k 20k 30k 40k

N
am
eN
od
e 
T
hr
ou
g
hp
ut

 
(R
P
C
s/
se
c)

Number of DataNodes

Fig. 5. Scalability of NameNode under TeraSort (We collocate 5,000 nodes
on each machine with 1 container on each Node Manager).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2k 4k 6k 8k 10k 12k 14k 16k

N
am
eN
od
e 
T
hr
ou
gh
pu
t 
(R
P
C
s/
se
c)

Number of DataNodes

Fig. 6. Scalability of NameNode under TeraSort (We collocate 1,400 nodes
on each machine with 8 containers on each Node Manager).

terns. For NameNode, our experience is that handling and sim-
ulating merged blockReceived requires a reasonable amount of
effort and all others are easy to handle. For Resource Man-
ager, our experience is that predicting when the Application
Master will ask for new resource through alloc is reasonably
challenging, and all others are easy to handle.

C. Evaluating at scale

We play the extrapolated workload to NameNode and
Resource Manager to measure their capacity to know the max-
imum scale of the system, and identify potential performance
bottlenecks.

NameNode: For all four benchmarks, we are able to run
the extrapolated workloads successfully with different scales
and we are even able to run a mixture of them. Given the
complex dependencies among RPCs, such success indirectly
validates the accuracy of our approach. We show results from
TeraSort because it incurs the heaviest load on NameNode.
The degree of collocation we can achieve depends on the
number of containers we put on each Node Manager. If we put
one container on each Node Manager, then we can collocate
5,000 nodes (each node runs one DataNode process, one Node
Manager process and and one Mapper/Reducer process) on
one physical machine: the largest experiment we run use a
workload generated for 40,000 nodes and we are able to run
it on only 8 physical machines. If we put eight, then we can
collocate 1,400 nodes (each node runs one DataNode process,
one Node Manager and 8 Mapper/Reducer processes) on one
physical machine.

As shown in Figure 5, if we put one container on each
Node Manager, NameNode can support up to about 20k nodes

10



 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

ad
dB
lo
ck

bl
oc
kR
ec
ei
ve
d

co
m
pl
et
e

cr
ea
te

de
le
te
fs
yn
c

ge
tB
lo
ck
Lo
ca
tio
ns

ge
tF
ile
In
fo

ge
tL
ist
in
g

ge
tS
er
ve
rD
ef
au
lts

he
ar
tB
ea
t

m
kd
irs

re
na
m
e

re
ne
w
Le
as
e

se
tP
er
m
iss
io
n

se
tR
ep
lic
at
io
n

A
v
er
ag
e 
L
at
en
cy

 
(s
)

Type of RPCs

10k DataNodes
20k DataNodes
40k DataNodes

Fig. 7. Latency of each type of RPC with 1 container on each Node Manager
(three types are omitted since they are only called during initialization).

under the TeraSort benchmark: afterwards, the NameNode
is overloaded. When running these experiments, we find
one correctness issue: occasionally NameNode will report a
DataNode as failed because the NameNode does not receive
the DataNode’s heartbeat in time. This may cause the TeraSort
job to fail because TeraSort’s intermediate data is only one-
way replicated and thus any DataNode failure can block the
whole job. Our analysis of the log shows that the cause of
this problem is the burst of DataNodes’ heartbeat messages
together with the burst of Mappers’ or Reducer’ RPCs. We al-
leviated this problem by randomizing the startup of DataNodes
so that they won’t send heartbeats at the same time. Although
this trick allows us to run our system to a larger scale, it is not
a fundamental solution and such problem could happen under
a heavier load.

This problem demonstrates the necessity of our work:
certain problems only happen at a large scale, when a node is
under heavy load. Furthermore, such problems not only hurt
performance, but may also cause severe consequences like
failing a large job. The recent development of newer versions
of HDFS confirms our finding: HDFS 2.8 adds a feature called
DataNode Lifeline Protocol to “prevent the NameNode from
incorrectly marking DataNodes as stale or dead in highly
overloaded clusters where heartbeat processing is suffering
delays” [19].

Figure 6 shows the result for the case of Node Manager with
8 containers. NameNode throughput grows linearly with scale
and achieves peak performance with about 11k DataNodes
under the TeraSort benchmark: afterwards, the NameNode is
overloaded. As shown in Figure 5 and 6, the scalability of
the NameNode depends on the system configuration. Putting
more containers on one NodeManager will reduce the number
of nodes the NameNode can support, but when considering the
total number of containers, it actually improves the scalability
of HDFS.

In addition, Figure 7 and 8 shows the average latency of
each type of RPC with 1 and 8 containers on each Node
Manager: blockReceived, complete, and heartBeat are on
top. We investigate the source code of NameNode and find that

 0

 1

 2

 3

 4

 5

ad
dB
lo
ck

bl
oc
kR
ec
ei
ve
d

co
m
pl
et
e

cr
ea
te

de
le
te
fs
yn
c

ge
tB
lo
ck
Lo
ca
tio
ns

ge
tF
ile
In
fo

ge
tL
ist
in
g

ge
tS
er
ve
rD
ef
au
lts

he
ar
tb
ea
t

m
kd
irs

re
na
m
e

re
ne
w
Le
as
e

se
tP
er
m
iss
io
n

se
tR
ep
lic
at
io
n

A
v
er
ag
e 
L
at
en
cy

 
(s
)

Type of RPCs

10k DataNodes
14k DataNodes
16k DataNodes

Fig. 8. Latency of each type of RPC with 8 containers on each Node Manager
(three types are omitted since they are only called during initialization).

they are all heavily contending operations: heartBeat needs
to hold a lock for almost all of its execution, leading to long
latencies under heavy load and causing the problem mentioned
above. blockReceived and complete need to grab the same
write lock during their execution, so they cannot execute in
parallel. It may be possible to reduce such contention by using
fine-grained locking, but it is out of the scope of this paper
because it requires significant changes to NameNode.

Resource Manager: Traditional metrics like throughput
and latency do not work well with the Resource Manager
(RM): when an application asks for containers from the RM by
calling allocate, the RM may just return 0 if it does not have
resource and the application will retry later. The overhead of
returning 0 is certainly much smaller than actually allocating
the resource. To accurately measure the performance of the
RM, we define a new metric called startup latency, which is
the latency from the application registering to the RM to the
application getting all containers from the RM.

We start enough tasks, each requesting 200 containers, to
consume all container resources in the cluster. As shown in
Figure 9, the startup latency steadily grows with scale and
increases sharply when the scale reaches 60,000 containers,
which means the Resource Manager is saturated there. Even
for medium scales, ten seconds of delay to start the application
will be problematic for short tasks.

In addition, we evaluate the impact of the number of
containers on each Node Manager. We start 20 jobs, each re-
questing 200 containers. We also fix total number of containers
to 4,000, configure the number of containers and adjust the
number of Node Managers accordingly. Figure 10 shows that
larger number of configured containers incurs longer startup
latency.

Besides, we have observed an over-subscription problem:
an application may get more containers than it asks for. Our
investigation shows this is caused by a race condition: in
YARN, when an application asks for a number of containers,
the RM may give containers in multiple batches; and if the
application does not get all it needs, it can ask for the
remaining ones. In this model, if it happens that the RM

11



 0

 5

 10

 15

 20

 25

0.
2k

0.
4k

0.
8k

1.
6k

3.
2k 5k 10

k
20
k
30
k
40
k
60
k

S
ta
rt
up

 
la
te
nc
y 
(s
)

Total Number of Containers

Fig. 9. Average startup latency when testing the Resource Manager with
different total number of containers

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16

S
ta
rt
up

 
la
te
nc
y 
(s
)

Number of Containers / NodeManager

Fig. 10. Average startup latency when testing the Resource Manager with
different number of containers on each Node Manager

gives the last batch and the application asks for the last batch
at the same time, the RM may consider the request as a
new one and thus will give more than necessary. This issue
is confirmed in the community: we find online discussions
about this problem [16]; Spark has a fix for this problem to
give back unnecessary containers; we don’t find similar fix in
MapReduce though. Our work can simplify the debugging and
investigation of this issue because such multi-batch allocation
is more likely to happen in larger tasks.

VI. RELATED WORK

Evaluating system at large scale: Large-companies may
have the resource to test their system at large scale. For
example, Yahoo has conducted a 4000-node experiment on
HDFS [52]. Facebook’s Kraken [57] system can intentionally
redirect some live traffic to stress test its web servers. However,
on the one hand, it is hard for most researchers in academia to
access such resource. On the other hand, using a production
system for testing incurs the risk of unexpected failures or
slowdown.

For researchers who do not have such abundant resource,
two common practices—resource extrapolation and synthetic
workload—are widely used. In previous works, resource ex-
trapolation is used, among others, in RAMCloud [44], Span-
ner [17], and Salus [59], while synthetic workload is used to
evaluate HDFS [52, 58] and HBase [58]. Since Section I has
already discussed these two approaches, we do not discuss
them further here.

David [2] and Exalt [58] automatically synthesize workloads
for storage servers. David [2] leverages the observation that
the performance of a local file system does not depend on

the contents of files. Thus, David only stores the file system’s
metadata and discards its data. Exalt [58] extends this idea to
distributed storage systems by separating data and metadata
in a multi-layer distributed system. However, for systems that
rely on content of data to function, these approach do not work.
For example, Exalt cannot run MapReduce jobs because these
jobs need to know the contents of data.

Scale Check [35] extends the intuition of Exalt. It replaces
CPU-intensive processing with sleep() in order to collocate a
large number of nodes on one machine and help developers
find and replay scalability bugs with high accuracy. However,
how to automatically find safe places to perform such replace-
ment turns out to be challenging.

Dynamometer [22] is a tool that targets evaluating the
Hadoop’s HDFS NameNode. It also keeps track of metadata,
and creates a simulated cluster of one NameNode and many
DataNodes to replay production workload with a few ma-
chines. However, it is a specific tool for NameNode and cannot
scale beyond the production workload.

DieCast [26] uses the idea of timing dilation [27]: it runs
multiple servers inside virtual machines on a single physical
machine. It slows down each data server by a constant factor,
measures system throughput, and finally multiples the mea-
sured throughput by the same factor. DieCast can collocate a
certain number of data servers on a single physical machine
when CPU is the bottleneck, but does nothing to reduce the
storage requirement for systems that are I/O heavy.

Workload extrapolation: A number of works analyze the
workloads in the past to predict the workload in the future,
by using techniques like Markov model [43] and time series
modeling [54]. Our work tries to use workloads from small-
scale experiments to predict the workload at a larger scale.

Log analysis: Log analysis has been used extensively in
previous works to infer causal relationship between events [14,
36, 65], to understand system behavior [6, 23, 25, 62, 66], and
to debug correctness and performance problems [12, 41, 49,
60, 63]. Our work relies on part of these techniques (e.g. causal
relationship), but it has a completely different goal: our work
tries to extrapolate how workloads change with the scale of
the system.

VII. CONCLUSION

Testing a scalability bottleneck is challenging because it
requires a large number of nodes. This paper shows that we
can test a bottleneck node by extrapolating a workload that
the node would observe at a large scale.

Our case studies have confirmed the feasibility and effec-
tiveness of workload extrapolation. We plan to further improve
its applicability and accuracy by incorporating compiler and
advanced data mining techniques.

ACKNOWLEDGEMENTS

Many thanks to the anonymous reviewers for their insightful
comments. This material is based in part upon work supported
by NSF grant CCF-1747447.

12



REFERENCES

[1] Sameer Agarwal, Srikanth Kandula, Nicolas Bruno,
Ming-Chuan Wu, Ion Stoica, and Jingren Zhou. Re-
optimizing data-parallel computing. In Proceedings of
the 9th USENIX Conference on Networked Systems De-
sign and Implementation, NSDI’12, Berkeley, CA, USA.

[2] Nitin Agrawal, Leo Arulraj, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Emulating Goliath Stor-
age Systems with David. In FAST, 2011.

[3] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen,
Shivaram Venkataraman, Minlan Yu, and Ming Zhang.
Cherrypick: Adaptively unearthing the best cloud config-
urations for big data analytics. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), Boston, MA, 2017.

[4] Amazon EC2. http://aws.amazon.com/ec2/.
[5] Apache HBASE. http://hbase.apache.org/.
[6] Paul Barham, Austin Donnelly, Rebecca Isaacs, and

Richard Mortier. Using magpie for request extraction
and workload modelling. In Proceedings of the 6th
Conference on Symposium on Opearting Systems Design
& Implementation - Volume 6, OSDI’04, Berkeley, CA,
USA, 2004.

[7] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan,
Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shash-
wat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev
Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew
Edwards, Vaman Bedekar, Shane Mainali, Rafay Ab-
basi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad
Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand,
Anitha Adusumilli, Marvin McNett, Sriram Sankaran,
Kavitha Manivannan, and Leonidas Rigas. Windows
Azure Storage: a highly available cloud storage service
with strong consistency. In SOSP, 2011.

[8] Canada’s immigration website crashes during US vote.
http://www.bbc.com/news/technology-37921376, 2016.

[9] Cassandra. http://cassandra.apache.org.
[10] Chameleon cloud. https://www.chameleoncloud.org/.
[11] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.

Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A Distributed Storage System for Structured Data. In
OSDI, 2006.

[12] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando
Fox, and Eric Brewer. Pinpoint: Problem determination
in large, dynamic internet services. In Proceedings of the
2002 International Conference on Dependable Systems
and Networks.

[13] Yanpei Chen, Archana Ganapathi, Rean Griffith, and
Randy Katz. The case for evaluating mapreduce per-
formance using workload suites. In Proceedings of the
2011 IEEE 19th Annual International Symposium on
Modelling, Analysis, and Simulation of Computer and
Telecommunication Systems, MASCOTS ’11, 2011.

[14] Michael Chow, David Meisner, Jason Flinn, Daniel Peek,

and Thomas F. Wenisch. The mystery machine: End-to-
end performance analysis of large-scale internet services.
In 11th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 14), 2014.

[15] Cloudlab. https://www.cloudlab.us/.
[16] Allocation of excess containers. https://issues.apache.org/

jira/browse/YARN-1902.
[17] James C. Corbett, Jeffrey Dean, Michael Epstein, An-

drew Fikes, Christopher Frost, J. J. Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene
Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,
David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s Globally-Distributed Database. In
OSDI, 2012.

[18] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russi-
novich, Marcus Fontoura, and Ricardo Bianchini. Re-
source central: Understanding and predicting workloads
for improved resource management in large cloud plat-
forms. In Proceedings of the 26th Symposium on Oper-
ating Systems Principles, SOSP ’17, 2017.

[19] DataNode Lifeline Protocol. https://issues.apache.org/
jira/browse/HDFS-9239.

[20] Jeff Dean. The Rise of Cloud Computing Sys-
tems. http://sigops.org/sosp/sosp15/history/10-dean-
slides.pdf, 2015.

[21] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue
Wang, and Eamonn Keogh. Querying and mining of time
series data: Experimental comparison of representations
and distance measures. Proc. VLDB Endow., 1(2):1542–
1552, August 2008.

[22] Dynamometer. https://github.com/linkedin/dynamometer.
[23] Rodrigo Fonseca, George Porter, Randy H. Katz, and

Scott Shenker. X-trace: A pervasive network tracing
framework. In 4th USENIX Symposium on Networked
Systems Design & Implementation (NSDI 07), Cam-
bridge, MA, 2007.

[24] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The Google file system. In SOSP, 2003.

[25] Zhenyu Guo, Dong Zhou, Haoxiang Lin, Mao Yang,
Fan Long, Chaoqiang Deng, Changshu Liu, and Lidong
Zhou. G2: A graph processing system for diagnosing
distributed systems. In Proceedings of the 2011 USENIX
Conference on USENIX Annual Technical Conference,
USENIX ATC, Berkeley, CA, USA, 2011.

[26] Diwaker Gupta, Kashi Venkatesh Vishwanath, and Amin
Vahdat. DieCast: Testing Distributed Systems with an
Accurate Scale Model. In NSDI, 2008.

[27] Diwaker Gupta, Kenneth Yocum, Marvin McNett,
Alex C. Snoeren, Amin Vahdat, and Geoffrey M. Voelker.
To Infinity and Beyond: Time-Warped Network Emula-
tion. In NSDI, 2006.

[28] Hadoop DistCp Tool. https://hadoop.apache.org/docs/
current3/hadoop-distcp/DistCp.html.

13

http://aws.amazon.com/ec2/
http://hbase.apache.org/
http://www.bbc.com/news/technology-37921376
http://cassandra.apache.org
https://www.chameleoncloud.org/
https://www.cloudlab.us/
https://issues.apache.org/jira/browse/YARN-1902
https://issues.apache.org/jira/browse/YARN-1902
https://issues.apache.org/jira/browse/HDFS-9239
https://issues.apache.org/jira/browse/HDFS-9239
https://github.com/linkedin/dynamometer
https://hadoop.apache.org/docs/current3/hadoop-distcp/DistCp.html
https://hadoop.apache.org/docs/current3/hadoop-distcp/DistCp.html


[29] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and
Benjamin Reed. ZooKeeper: Wait-free Coordination for
Internet-scale Systems. In USENIX ATC, 2010.

[30] Intel HiBench. https://github.com/intel-hadoop/HiBench.
[31] J. Zhang, X. Lu, J. Jose, M. Li, R. Shi, D. K. Panda.

High Performance MPI Library over SR-IOV Enabled
InfiniBand Clusters. In Proceedings of International
Conference on High Performance Computing (HiPC),
Goa, India, 2014.

[32] J. Zhang, X. Lu, J. Jose, R. Shi, D. K. Panda. Can
Inter-VM Shmem Benefit MPI Applications on SR-IOV
based Virtualized InfiniBand Clusters? In Proceedings
of 20th International Conference Euro-Par 2014 Parallel
Processing, Porto, Portugal, 2014.

[33] Swaroop Kavalanekar, Bruce Worthington, Qi Zhang,
and Vishal Sharda. Characterization of Storage Workload
Traces from Production Windows Servers. In IISWC,
2008.

[34] YongChul Kwon, Magdalena Balazinska, Bill Howe, and
Jerome Rolia. Skewtune: Mitigating skew in mapreduce
applications. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’12, 2012.

[35] Tanakorn Leesatapornwongsa, Cesar A. Stuardo, Riza O.
Suminto, Huan Ke, Jeffrey F. Lukman, and Haryadi S.
Gunawi. Scalability bugs: When 100-node testing is not
enough. In Proceedings of the 16th Workshop on Hot
Topics in Operating Systems, HotOS ’17, 2017.

[36] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.
Pivot tracing: Dynamic causal monitoring for distributed
systems. In Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP ’15, 2015.

[37] Macy’s Web Site Buckles Under Heavy Traffic
on Black Friday. http://fortune.com/2016/11/25/
macys-black-traffic/, 2016.

[38] Windows Azure Platform. http://www.microsoft.com/
windowsazure/windowsazure.

[39] Characterization of the DOE Mini-apps. https://portal.
nersc.gov/project/CAL/doe-miniapps.htm.

[40] David W. Mount. Bioinformatics: sequence and genome
analysis. Cold Spring Harbor Laboratory Press, 2004.

[41] Karthik Nagaraj, Charles Killian, and Jennifer Neville.
Structured comparative analysis of systems logs to diag-
nose performance problems. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and
Implementation, NSDI’12, 2012.

[42] NAS Parallel Benchmarks. https://www.nas.nasa.gov/
publications/npb.html.

[43] James Oly and Daniel A. Reed. Markov model prediction
of i/o requests for scientific applications. In Proceedings
of the 16th International Conference on Supercomputing,
ICS ’02, 2002.

[44] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman,
John Ousterhout, and Mendel Rosenblum. Fast Crash
Recovery in RAMCloud. In SOSP, 2011.

[45] PUMA Benchmarks. https://engineering.purdue.edu/

∼puma/pumabenchmarks.htm.
[46] R. Shi, S. Potluri, K. Hamidouche, J. Perkins, M. Li, D.

Rossetti, D. K. Panda. Designing efficient small message
transfer mechanism for inter-node mpi communication
on infiniband gpu clusters. In 2014 21st International
Conference on High Performance Computing (HiPC),
Goa, India, 2014.

[47] R. Shi, S. Potluri, K. Hamidouche, X. Lu, K. Tomko, D.
K. Panda. A scalable and portable approach to accelerate
hybrid HPL on heterogeneous CPU-GPU clusters. In
2013 IEEE International Conference on Cluster Com-
puting (CLUSTER), Indianapolis, IN, USA, 2013.

[48] R. Shi, X. Lu, S. Potluri, K. Hamidouche, J. Zhang,
D. K. Panda. Hand: A hybrid approach to accelerate
non-contiguous data movement using mpi datatypes on
gpu clusters. In 2014 43rd International Conference on
Parallel Processing, Minneapolis, MN, USA, 2014.

[49] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jef-
frey C. Mogul, Mehul A. Shah, and Amin Vahdat. Pip:
Detecting the unexpected in distributed systems. In
Proceedings of the 3rd Conference on Networked Systems
Design & Implementation - Volume 3, NSDI’06, 2006.

[50] Paul Saab. Scaling memcached at Facebook.
https://www.facebook.com/notes/facebook-engineering/
scaling-memcached-at-facebook/39391378919/, 2008.

[51] Rong Shi and Yang Wang. Cheap and available state
machine replication. In Proceedings of the 2016 USENIX
Conference on Usenix Annual Technical Conference,
USENIX ATC ’16, Berkeley, CA, USA, 2016.

[52] Konstantin Shvachko. HDFS scalability: the limits to
growth. http://c59951.r51.cf2.rackcdn.com/5424-1908-
shvachko.pdf.

[53] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and
Robert Chansler. The Hadoop Distributed File System.
In MSST, 2010.

[54] Nancy Tran and Daniel A. Reed. Automatic arima time
series modeling for adaptive i/o prefetching. IEEE Trans.
Parallel Distrib. Syst., 15(4):362–377, April 2004.

[55] Transaction Processing Performance Council. The TPC-
W home page. http://www.tpc.org/tpcw.

[56] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Dou-
glas, Sharad Agarwal, Mahadev Konar, Robert Evans,
Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, Bikas Saha, Carlo Curino, Owen O’Malley, San-
jay Radia, Benjamin Reed, and Eric Baldeschwieler.
Apache hadoop yarn: Yet another resource negotiator.
In Proceedings of the 4th Annual Symposium on Cloud
Computing, SOCC ’13, 2013.

[57] Kaushik Veeraraghavan, Justin Meza, David Chou,
Wonho Kim, Sonia Margulis, Scott Michelson, Ra-
jesh Nishtala, Daniel Obenshain, Dmitri Perelman, and
Yee Jiun Song. Kraken: Leveraging live traffic tests to
identify and resolve resource utilization bottlenecks in
large scale web services. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
16), 2016.

14

https://github.com/intel-hadoop/HiBench
http://fortune.com/2016/11/25/macys-black-traffic/
http://fortune.com/2016/11/25/macys-black-traffic/
http://www.microsoft.com/windowsazure/windowsazure
http://www.microsoft.com/windowsazure/windowsazure
https://portal.nersc.gov/project/CAL/doe-miniapps.htm
https://portal.nersc.gov/project/CAL/doe-miniapps.htm
https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
https://engineering.purdue.edu/~puma/pumabenchmarks.htm
https://engineering.purdue.edu/~puma/pumabenchmarks.htm
https://www.facebook.com/notes/facebook-engineering/scaling-memcached-at-facebook/39391378919/
https://www.facebook.com/notes/facebook-engineering/scaling-memcached-at-facebook/39391378919/


[58] Yang Wang, Manos Kapritsos, Lorenzo Alvisi, and Mike
Dahlin. Exalt: Empowering Researchers to Evaluate
Large-Scale Storage Systems. In NSDI, 2014.

[59] Yang Wang, Manos Kapritsos, Zuocheng Ren, Prince
Mahajan, Jeevitha Kirubanandam, Lorenzo Alvisi, and
Mike Dahlin. Robustness in the Salus scalable block
store. In NSDI, 2013.

[60] Wei Xu, Ling Huang, Armando Fox, David Patterson,
and Michael I. Jordan. Detecting large-scale system
problems by mining console logs. In Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems
Principles, SOSP ’09, 2009.

[61] Yahoo! Computing Systems Data. https://webscope.
sandbox.yahoo.com/catalog.php?datatype=s.

[62] Xiao Yu, Pallavi Joshi, Jianwu Xu, Guoliang Jin, Hui
Zhang, and Guofei Jiang. Cloudseer: Workflow mon-
itoring of cloud infrastructures via interleaved logs. In
Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’16, 2016.

[63] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan,
Yuanyuan Zhou, and Shankar Pasupathy. Sherlog: Error
diagnosis by connecting clues from run-time logs. In
Proceedings of the Fifteenth Edition of ASPLOS on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS XV, 2010.

[64] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim
Kraska. The end of a myth: Distributed transactions can
scale. Proc. VLDB Endow., 10(6), February 2017.

[65] Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and
Michael Stumm. Non-intrusive performance profiling for
entire software stacks based on the flow reconstruction
principle. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages
603–618, GA, 2016. USENIX Association.

[66] Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan
Ullah, Yu Luo, Ding Yuan, and Michael Stumm. lprof:
A non-intrusive request flow profiler for distributed sys-
tems. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), 2014.

15

https://webscope.sandbox.yahoo.com/catalog.php?datatype=s
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s

