
Gnothi: Separating Data and Metadata for Efficient and
Available Storage Replication

Yang Wang, Lorenzo Alvisi, and Mike Dahlin
The University of Texas at Austin

{yangwang, lorenzo, dahlin}@cs.utexas.edu

Abstract: This paper describes Gnothi, a block repli-
cation system that separates data from metadata to pro-
vide efficient and available storage replication. Separat-
ing data from metadata allows Gnothi to execute disk ac-
cesses on subsets of replicas while using fully replicated
metadata to ensure that requests are executed correctly
and to speed up recovery of slow or failed replicas.

Performance evaluation shows that Gnothi can achieve
40-64% higher write throughput than previous work and
significantly save storage space. Furthermore, while a
failed replica recovers, Gnothi can provide about 100-
200% higher throughput, while still retaining the same
recovery time and while guaranteeing that recovery even-
tually completes.

1 Introduction
An ideal storage system should provide good availability
and durability, strong correctness guarantees, low cost,
and fast failure recovery. Existing replicated storage sys-
tems make different trade-offs among these properties:
1) synchronous primary-backup systems [10, 13, 15] re-
quire f + 1 replicas to tolerate f crash faults, but they
risk data loss if there are timing errors; 2) asynchronous
full replication systems [4, 5, 8, 18] use asynchronous
agreement [20, 21] to ensure correctness despite timing
errors, but send data to 2 f +1 replicas to tolerate f crash
failures and thus have higher costs than synchronous
primary-backup systems; 3) asynchronous partial repli-
cation systems [22, 29] still require 2 f + 1 replicas, but
they only activate f + 1 of the replicas in the failure-
free case; the spare replicas are activated only if some
of the active ones fail. Although existing partial repli-
cation approaches are promising for replicating services
with small amounts of state, they are not well-suited for
replicating a block storage service because after a fail-
ure the system becomes unavailable until it activates a
spare replica, which requires copying all of the state from
available replicas. If the copying can be done at, say,
100MB/s, then the fail-over time would exceed 2.7 hours
per terabyte of storage capacity.

This paper describes Gnothi1, a new storage block sys-
1“Gnothi S’auton” (Γνῶθι σ’αυτόν is the ancient Greek aphorism

“Know thyself”.

tem that achieves all these properties. Gnothi replicates
data to guarantee availability and durability when repli-
cas fail. To guarantee correctness despite timing errors,
Gnothi uses 2 f + 1 replicas to perform asynchronous
state machine replication [20, 21, 27]. To reduce network
bandwidth, disk arm overhead, and storage cost, Gnothi
executes updates to different blocks on different subsets
of replicas. The key challenge is to perform partial repli-
cation while not hurting availability or durability. Gnothi
meets this challenge by using two key ideas.

First, to ensure availability during failure and recovery,
Gnothi separates data from metadata so that metadata is
replicated on all replicas while data for a given block is
replicated only to a preferred subset for that block. A
replica’s metadata keeps the status of each block in the
system, including whether the replica holds the block’s
current version. Replicating metadata to all replicas al-
lows a replica to always process a request correctly, even
while it is recovering after having missed some updates.

Second, to ensure durability during failures, Gnothi re-
serves a small fraction (e.g. 10%) of storage on each
replica to buffer writes to unavailable replicas. While
up to f of a block’s preferred replicas are unresponsive,
Gnothi buffers writes in the reserve storage of up to f of
the block’s available reserve replicas. Directing writes to
a reserved replica when a block’s preferred replica is un-
available guarantees that each new update is always writ-
ten to f +1 replicas even if some replicas fail. Gnothi al-
lows a tradeoff between availability and space cost: data
is writeable in the face of f failures as long as failed
nodes are repaired before the reserve space is exhausted.
To guarantee write availability regardless of failure dura-
tion or repair time, conservative users can configure the
system with the same space as asynchronous full repli-
cation (2 f + 1 actual storage blocks per logical block).
Given that in Gnothi replicas recover quickly, analysis
of several traces shows that a 10% reserve is enough to
guarantee write availability for many workloads.

Gnothi combines those ideas to ensure availability and
durability during failures and to make recovery fast de-
spite partial replication. In summary, Gnothi provides the
following guarantees: when an update completes, data is
stored on f + 1 disks; all reads and writes are lineariz-

able [17]; reads always return the most current data even
though some replicas may have stale versions of some
blocks; the system is available for reads as long as there
are at most f failures; and the system is available for
writes as long as there are at most f failures and failed
replicas recover or are replaced before the reserve buffer
is fully consumed by new updates.

We implement Gnothi by modifying the ZooKeeper
server [18]. Gnothi provides a block store API, and it
can be used like a disk: users can mount it as a block
device and create and use a filesystem on it. We evalu-
ate Gnothi’s performance both in the common case and
during failure recovery and compare it with Gaios, a
state-of-the-art Paxos-based block replication system [5].
The evaluation shows that Gnothi’s write throughput
can be 40%-64% higher than our implementation of a
Gaios-like system while retaining Gaios’s excellent read
scalability. We also find that for systems with large
amounts of state, separating data and metadata signifi-
cantly improves recovery compared to traditional state
machine replication. Unlike standard Paxos-based sys-
tems, Gnothi ensures that a recovering replica will even-
tually catch up regardless of the rate that new requests
are processed, and unlike previous partial replicated sys-
tems, Gnothi remains available even while large amounts
of state are rebuilt on recovering replicas.

2 Design

2.1 Interface and Model
Gnothi targets disk storage systems within small clusters
of tens of machines. Because linearizability is compos-
able, it is possible to scale Gnothi by composing multi-
ple small clusters, but this is not discussed or evaluated
in this paper.

Gnothi provides an interface similar to a disk drive:
there is a fixed number of blocks with the same size, and
applications can read or write a whole block. Block size
is configurable. Our experiments use sizes ranging from
4KB to 1MB, but smaller or larger sizes are possible.

Gnothi provides linearizable reads and writes across
different clients. Furthermore, if a client has multiple
outstanding requests, Gnothi can be configured so that
they will be executed in the order they were issued.

Gnothi is designed to be safe under the asynchronous
model. It makes no assumption about the maximum
communication delay between nodes, and thus it is im-
possible to detect whether a node has failed or it is just
slow. Gnothi provides the same guarantees as previous
asynchronous RSMs: the system is always safe (all cor-
rect replicas process the same sequence of updates), but
it is only live (the system guarantees progress) during pe-
riods when the network is available and message delivery
is timely. Gnothi uses 2 f +1 replicas to tolerate f omis-

Client

Client

Client

Metadata

Data
Logging

Preferred Storage
(Slice 0 and Slice 1)

Reserve Storage
(Slice 2)

Metadata Storage

Agreement

Server 0

Server 1

Metadata Storage

Slice 1 and 2

Slice 0

Server 2

Metadata Storage

Slice 0 and 2

Slice 1

Figure 1: Data and metadata flow for a request to update a block in
slice 1.

sion/crash failures. Commission/Byzantine failures are
not considered.

2.2 Architecture
As shown in Figure 1, Gnothi uses the Replicated State
Machine (RSM) approach [27]: agreement modules on
different replicas work together to guarantee that all
replicas process the same client update requests in the
same order. Requests are then logged and executed, and
replies are sent to the client.

Gnothi splits metadata and data. Metadata is updated
using state machine replication and is replicated at all
2 f + 1 replicas, but data is replicated to just f + 1 repli-
cas. A replica marks a data block as COMPLETE or
INCOMPLETE depending on whether or not the replica
holds what it believes to be the block’s current version.

• A block is COMPLETE at a replica if the replica
stores a version of the block’s data that corresponds
to the latest update to the block recorded in that
replica’s metadata.

• A block is INCOMPLETE at a replica if the
replica’s metadata records a version of the block
that is more recent than the latest data stored at the
replica for that block.

Note that the concepts of COMPLETE and INCOM-
PLETE are different from those of Fresh and Stale. A
block is Fresh if it contains the data of the latest update to
that block and is Stale if it contains a previous version. In
Gnothi, a COMPLETE block can be Stale. For example,
this can happen when a node becomes disconnected and
misses both the data and metadata update. Section 3.3
discusses how to avoid reading a Stale block.

When no failures or timeouts occur, Gnothi maps each
block n to one of 2 f + 1 slices and stores each slice

Paxos/Gaios

Normal
Replica

Cold
Replica

Unavailable
Replica

Incomplete
Replica

Data

Cheap Paxos

Data

Gnothi

Data

Metadata
only

Paxos Cheap Paxos Gnothi

Paxos/Gaios Cheap Paxos Gnothi Paxos/Gaios

Missed
Writes

Cheap Paxos Gnothi Phase 1

Meta
data

Gnothi Phase 2

Data

a. Write Operations when no failures occur b. Read Operations when no failures occur

Paxos/Gaios Cheap Paxos Gnothi

All
Data

c. A replica fails or becomes unreachable

d. Write Operations while one replica is
unavailable

e. Recovery

Gaios

Figure 2: Gnothi protocols. We only show the logical flow of data and metadata in the figure, not actual messages. Consensus messages among
servers are omitted, and we only show the flow and state for a single block. Multiple blocks are distributed among servers, so that each replica holds
both COMPLETE and INCOMPLETE blocks.

on f + 1 preferred replicas, from replica n to replica
(n− f)%(2 f + 1). This ensures that the 2 f + 1 slices
are evenly distributed among different replicas, and that
each replica is in the preferred quorum of f +1 different
slices, which are the PREFERRED slices for that replica.

When failures or timeouts occur, a data block might be
pushed to reserve storage on replicas out of its preferred
quorum. We will show the detailed protocol later.

To simplify the description, we say that a block is
PREFERRED at a replica if the replica is a member of
the block’s preferred quorum. Otherwise, we say that
the block is RESERVED at that replica. We similarly say
a request (read, write) is PREFERRED/RESERVED at a
replica if it accesses a PREFERRED/RESERVED block
at the replica.

Each replica allocates a preferred storage to store the
data of PREFERRED writes, a reserve storage to store
the data of RESERVED writes, and a relatively small
metadata storage for each block’s version and status.

2.3 Protocol Overview
This section presents an overview of Gnothi’s protocol
and compares Gnothi with the asynchronous full repli-
cation used by Paxos [20, 21], the asynchronous partial
replication used by Cheap Paxos [22], and the state-of-
the-art Paxos-based block replication system Gaios [5].

Figure 2.a shows a write operation when no failures
occur. In Paxos and Gaios, a write operation is sent to,
and executed on, all correct replicas. This seems redun-
dant if our goal is to tolerate one failure: a natural idea is
to send the write requests to two replicas first, and if they
do not respond in time, try the third one [1]. Cheap Paxos
adopts this idea by activating two replicas and leaving the
other one as a cold backup [22, 29]. Gnothi incorporates
a similar idea, but it still sends the metadata to the third
replica, which executes the request by marking the cor-
responding data block as INCOMPLETE. Later, we will

see that this metadata is critical to reducing the cost of
failure and recovery.

Figure 2.b shows a read operation when no failures
occur. In Paxos, the read is sent to all replicas and the
client waits for two replies. The figure shows a common
optimization that lets one replica send back the full re-
ply and lets the others send back a hash or version num-
ber [9]. By using similar optimizations for its writes,
Cheap Paxos executes the read on only two replicas.
Gaios introduces a protocol that allows reads to execute
on only one replica while still ensuring linearizability,
and Gnothi uses Gaios’s read protocol, with a slight mod-
ification to avoid reading INCOMPLETE blocks.

Figure 2.c shows what happens when one replica fails.
Paxos and Gaios do not need special handling since the
remaining two replicas hold all data. Cheap Paxos brings
online the cold backup, which needs to fetch the data
from the live replica: the system is unavailable until this
transfer finishes, possibly for a long time if the system
stores a large amount of data. In Gnothi, the third replica
knows whether a block it stores is COMPLETE or not, so
it can safely continue processing read requests by serv-
ing reads of COMPLETE blocks and redirecting reads
of INCOMPLETE ones to the other replica. And it can
also continue processing writes whose block belongs to
the failed replica by storing data in its reserve storage.
Therefore, Gnothi also does not need any special han-
dling when a replica becomes unavailable.

Figure 2.d shows a write operation when a replica is
unavailable. Paxos, Gaios, and Cheap Paxos do not need
any special handling. For Gnothi, a replica may receive
a RESERVED write and store it in its reserve storage to
ensure that writes only complete when at least two nodes
store their data. Read operations in this case are not dif-
ferent from those when no failure occurs.

Figure 2.e shows how recovery works. Paxos and
Gaios both need to fetch all missing data before process-

ing new requests at the recovered replica. Cheap Paxos
can just leave the recovered replica as the cold backup
and does not need any special handling. Gnothi performs
a two-phase recovery when a failed replica recovers.

In the first phase, the recovering replica fetches miss-
ing metadata from others. Since metadata is updated on
all replicas, this phase of recovery proceeds as in a tradi-
tional RSM. After this phase is complete, the recovering
replica can serve write requests even though full recov-
ery is not complete yet: at this point the system stops
consuming additional reserve storage on other replicas.
Since the size of metadata is small, this phase is fast, and
thus it is not necessary to allocate a large reserve storage.

In the second phase, the recovering replica re-
replicates all missing or stale PREFERRED blocks.
Gnothi performs this step asynchronously, so it can bal-
ance recovery bandwidth and execution bandwidth while
still guaranteeing progress. Depending on the status of
the recovering replica, there are two possible cases here:
if all data on disk is lost, the recovering replica needs to
rebuild its whole disk; if the data on disk is preserved,
the recovering replica just needs to fetch the updates it
missed during its failure. Note that Gnothi can continue
processing reads and writes to all blocks during the sec-
ond phase. If a node receives a read request for an IN-
COMPLETE block, it rejects the request, and the client
retries with another replica.

2.4 Summary
Table 1 summarizes the costs of Gnothi and of previous
work. In read cost, write cost, and space, Gnothi domi-
nates Paxos, Gaios, and Cheap Paxos, improving on each
in at least one dimension and approximating most in the
others. For recovery and availability, Gnothi can perform
the heavy data transfer in the background concurrently
with serving new requests, while in Paxos and Gaios,
the recovering replica must wait for the transfer to finish,
and in Cheap Paxos, the whole system must halt until the
transfer completes.

3 Detailed Design

This section presents in detail how Gnothi stores and ac-
cesses data and metadata, and how it performs recovery
after a replica fails.

3.1 Data and Metadata
Gnothi splits the storage space into 2 f + 1 slices, with
each replica in the preferred quorum of f + 1 slices. A
replica stores the data of its f + 1 PREFERRED slices
in its preferred storage, and allocates space for f RE-
SERVED slices in its reserve storage. When all repli-
cas are available, blocks are always written to preferred
storage, but when some replicas are not available, blocks

are stored in the reserve storage of replicas outside the
block’s preferred quorums.

If the per-slice size of preferred and reserve storage
are the same, then the system can remain available in-
definitely even if f replicas fail, but at the cost of 2 f +1
physical blocks for each logical block. In Section 3.5,
we will show that, given Gnothi’s fast recovery, a much
smaller reserve storage is likely to suffice for many work-
loads. For now, let us assume that preferred and reserve
storage have the same per-slice size.

In processing updates, Gnothi separates data and meta-
data. The data is carried in a “PrepareData” message,
while the corresponding metadata is carried in a “Write-
Data” message; we will detail the messages’ format in
the following subsections. A client first sends Prepare-
Data; upon receiving the message, a replica first logs
it to disk and then stores it in a buffer until it receives
the corresponding WriteData and can perform the actual
write. We call the buffer the “PrepareData buffer” in
the following sections. To avoid overflowing a replica’s
PrepareData buffer, Gnothi sets an upper bound on how
many outstanding PrepareData requests a single client
can have. If a replica finds its PrepareData buffer for a
client is full, it stops receiving messages from that client
until the buffer has room. Once it knows that the Pre-
pareData has been stored by enough replicas, the client
proceeds to send the WriteData. Replicas run an agree-
ment protocol to guarantee that WriteData messages are
processed in the same order by all correct replicas.

Note that a PrepareData may never be consumed by
a replica. For example, a client could fail after sending
the PrepareData but before sending the WriteData. To
garbage-collect unused PrepareDatas, a client includes
a client sequence number with each PrepareData and
WriteData it sends, and a replica discards an unused Pre-
pareData if it receives a WriteData with a higher se-
quence number. When the client fails and recovers, it
sends to all replicas a special “new epoch” command.
Replicas process the new epoch command using the
same agreement protocol used to order WriteData mes-
sages: hence, by the time replicas enter a new epoch,
they have processed the same sequence of WriteData
messages. Once the new epoch command completes,
all replicas can discard all PrepareDatas in the previous
epoch. Notice that if the failed client does not recover,
the replica cannot discard unused PrepareDatas; in asyn-
chronous replication, it is impossible to know whether a
client has permanently failed or is just slow. If the cost
of a few megabytes per permanently-failed client is too
high, the system can rely on an administrator or on a very
long timeout (say, 1 day) to detect the disconnected client
and clear its buffer.

Gnothi keeps metadata for each block: an 8-byte
version number assigned by agreement to identify the

Protocol Write Read Space Failure Recovery (Disk survived) Recovery (Disk replaced)
Paxos 2f+1 2f+1 2f+1 0 O(NB) O(S)
Gaios 2f+1 1 2f+1 0 O(NB) O(S)

Cheap Paxos f+1 f+1 f+1+f (Cold) O(S) (Blocking) 0 0
Gnothi f+1 1 f+1+∆f 0 < ∆≤ 1 0 O(Nb)+O(NB) O(Nb)+O(f +1

2 f +1 S)

Table 1: Cost of Gnothi and previous work; S is the total storage space. N is the number of unique updated blocks missed by the recovering replica;
B is the block size, and b is the metadata size for each block.

Client

Replica 0

Replica 1

Replica 2

PrepareData
1

PrepareDataAck

2

3

WriteData
4

A
greem

ent

5.1

5.1

5.2

Write Data

Write Data

INCOMPLETE

6

Figure 3: Write Protocol

block’s last update, and an 8-byte requestID to connect
the block to the PrepareData message. The version num-
ber and requestID are primarily used in failure recovery:
we will show why Gnothi needs them and how to use
them later. In addition, each replica keeps one bit for
each block to identify whether or not the block is COM-
PLETE on the replica.

3.2 Write Protocol
The write protocol is illustrated in Figure 3:

1 A client sends PrepareData(requestID, block data)
to f +1 replicas, using the pair (clientID, clientSeqNo) to
achieve a unique requestID. At first, the client targets the
block’s preferred quorum, and when a timeout occurs,
the client tries other replicas. To prevent the client’s net-
work from becoming a bottleneck for sequential access
we use chain replication [16, 26]: the client sends the
data to one replica which forwards it to the next, and so
on, in turn.

2 A replica receiving the PrepareData puts it into a
PrepareData buffer, logs it to disk, and sends an Prepare-
DataAck(requestID) to the client.

3 The client waits for f + 1 PrepareDataAcks. If
there is a timeout, the client repeats Step 1 , choosing
some other replicas. When the network is available and
message delivery is timely, this step is guaranteed to ter-
minate as long as at least f + 1 replicas are capable of
processing requests.

4 The client sends WriteData(requestID, block num-
ber) through the agreement protocol so that all replicas
receive the same sequence of write commands. Gnothi
uses code from ZooKeeper for agreement, but other
Paxos-like protocols [5, 12] could be used.

5 When receiving a WriteData message, a replica
updates its metadata storage and tries to find the corre-
sponding PrepareData in the PrepareData buffer by using
the requestID as the identifier. There are three possible
cases:

5.1 The replica has both WriteData and PrepareData,

and this is a PREFERRED write for the replica. The
replica then writes the data to its preferred storage and
marks the corresponding block as COMPLETE.

5.2 The replica has WriteData but no PrepareData.
The replica then marks the corresponding block as IN-
COMPLETE.

5.3 The replica has both WriteData and PrepareData,
and this is a RESERVED write for the replica. The replica
then writes the data to the reserve storage and marks the
corresponding block as COMPLETE. This case happens
only when there are unavailable or slow replicas, so it is
not shown in Figure 3.

In all cases, the replica sends a WriteAck(requestID)
back to the client.

6 The client waits for f + 1 WriteAcks. If there is
a timeout, the client repeats Step 4 . If the WriteData
has already been processed, the replicas send a WriteAck
reply [9]; otherwise, they process the write request. As-
suming there are at least f + 1 functioning replicas, the
client is guaranteed to get enough WriteAcks eventually.

To argue correctness, we observe that Step 3 guaran-
tees that PrepareData is received by at least f +1 replicas
and thus will not be lost; the agreement protocol guaran-
tees that WriteData is eventually received by all correct
replicas and thus will not be lost; and the agreement pro-
tocol provides the write linearizability guarantee. Notice
that in Step 6 , WriteAcks may not come from the same
nodes that stored data and sent PrepareDataAcks in Step
2 , but this is not a problem since the system is still pro-

tected against f failures. If one of the nodes storing data
is slow, temporarily unavailable, or crashed but can re-
cover locally, it will catch up with others using standard
techniques [20, 21] and process the WriteData, so that
the write will survive even if another node fails. Con-
versely, if a node permanently loses its data, the recov-
ery protocol must restore full redundancy by fetching the
failed node’s state from the remaining replicas, but this
case is no different whether the node that received the
PrepareData and then permanently crashed did so before
or after sending a WriteAck.

3.3 Read Protocol
For reads, we use the Gaios read protocol [5], modified
slightly to handle INCOMPLETE blocks. (Steps 2 - 4
below are the same as described for Gaios):

1 A client sends a Read (block number, replica ID) to
the current agreement leader node, stating that it wants to

read that block from a specific target replica. Usually, the
target is the first replica in the block’s preferred quorum.

2 The leader buffers the Read request and queries all
other replicas: “Am I still the leader?”

3 If the leader receives at least f “Yes” responses, it
continues. Otherwise, it does nothing. This can happen if
a slow replica still believes to be the leader, while enough
other replicas have already moved on. In this case, the
client will timeout, restart from Step 1 , and try another
replica as the leader.

4 The leader attaches a version number to the Read
and sends it to the target replica specified in the request.
The version number is set to the number of write requests
already proposed. This number is used later to ensure
that the target replica does not read stale data.

5 The target replica waits until the write with the
specified version number is executed, and then it exe-
cutes the Read. This synchronization prevents a slow
replica from sending stale data to the client. There are
two cases to consider:

5.1 The corresponding block is COMPLETE : the tar-
get replica then sends the data to the client.

5.2 The corresponding block is INCOMPLETE: the
target replica sends an “INCOMPLETE” reply to the
client. This allows the client to move to the next replica
quickly, instead of waiting for a timeout.

6 If the client receives the data, it finishes the Read.
If it receives “INCOMPLETE” or times out, it chooses
another replica and restarts from Step 1 . The client
chooses the target replica in round-robin fashion start-
ing with the preferred quorum, so that all replicas will be
tried.

When no failures or timeouts occur, Step 5.1 will al-
ways happen, since the client chooses a node from the
preferred quorum as the target. When failures or time-
outs occur, the client may try some other replicas, but
during a period with timely message delivery, it will
eventually succeed since some replica must hold the data.

Note that if the client issues a read and then a write
to the same block before the read returns, the read can
return the result of the later write. Gnothi assumes this is
an acceptable behavior for block drivers [5], but a client
can prevent it by blocking the later write when there is
an outstanding read operation to the same block.

3.4 Failure and Recovery
Gnothi performs no special operations when replicas fail.
A client may timeout in the read or write protocol and
retry using some other replicas, or write data to some
replicas not in the preferred quorum, which will store
these RESERVED writes in their reserve storage.

Recovering a failed replica begins with replaying the
replica’s log. If the disk is damaged or the machine is en-
tirely replaced, this step may fail but correctness is not af-

fected. What cannot be recovered from the log is fetched
from the other replicas in two phases: first to be restored
is the metadata, and then any data missing from the failed
replica’s preferred slices. The recovering replica can pro-
cess new requests once the first phase is complete, and
it is fully recovered and no longer counts against our f
threshold when the second phase is complete.

3.4.1 Phase 1: Metadata recovery

Gnothi replicates metadata on each node, so metadata re-
covery proceeds as it would in traditional RSMs: recov-
ering replica sends to the primary the last version num-
ber it is aware of, to which the primary replies with a
list of metadata records, if any, with higher version num-
ber. Besides the version number, each of these records
includes a block number and a requestID.

For each received record, the replica then checks if
it holds in its buffer a PrepareData with the same re-
questID: if so, it executes the write request and marks the
block as COMPLETE. This check handles the case when
a replica receives a PrepareData but fails before receiving
the corresponding WriteData. In this case, the recover-
ing replica should finish executing the write request, and
the requestID is necessary to connect a PrepareData to
its block. If there is no PrepareData in the buffer with
the same requestID, the replica simply marks the block
as INCOMPLETE.

When metadata recovery is complete, it is safe for the
replica to process new requests, even though it may have
some INCOMPLETE blocks. An update will overwrite
the INCOMPLETE block, and a read will be redirected
to other replicas with the COMPLETE block.

Gnothi transfers 24 bytes of metadata for each block
during this phase. This is 6GB per terabyte of data using
4KB blocks and 24MB per terabyte for 1MB blocks, so
the first phase typically takes a few seconds to a few min-
utes to complete. Note that during this metadata trans-
fer, the other replicas continue to process new reads and
writes.

3.4.2 Phase 2: Re-replicate

In the second phase, the recovering replica retrieves from
the others the data for all the INCOMPLETE blocks in
its preferred storage, thus freeing those replicas’ reserve
storage. If a replica retains its data on its local disk, it
just needs to fetch the modified blocks. This case typ-
ically occurs when a replica crashes and recovers, be-
comes temporarily disconnected from the network, or be-
comes temporarily slow. If a replica loses its on-disk data
as a result of a hardware fault, it needs to rebuild its stor-
age by fetching all blocks in its slices’ preferred storage.

This phase can take a long time, depending on the
number of blocks to be fetched, but it is needed only to
free the reserve space of other nodes, so that they are bet-
ter equipped to mask future failures: once the replica re-

covers its metadata, it can process all writes to its slices,
and it can process reads to the subset of blocks that are
locally COMPLETE. Gnothi performs re-replication as a
background task that can be throttled to balance the re-
sources used for re-replication and for processing new
client requests. Even if new client requests are processed
at a high rate and re-replication proceeds at a low rate,
re-replication will still eventually complete because the
recovering replica’s metadata allows it to process new
requests while it is still catching up re-replicating missed
old updates.

Every replica periodically checks its reserve storage:
if a RESERVED block is COMPLETE on its preferred
replicas, then the replica can safely delete the block from
its reserve storage.

3.5 Reducing replication state

Each replica needs to reserve space for f RESERVED
slices. It is always safe to set the size of reserve stor-
age to be f times a slice size, so that it can absorb any
number of writes to each slice. This approach amplifies
storage costs by a factor of 2 f + 1, since a data block is
stored on a preferred quorum of f + 1 replicas, and the
other f replicas must reserve space for this block in the
reserve storage. This means that when f = 1 a replica
must allocate one third of its storage space for reserve
storage, and more when f is larger. This is the same
space overhead as in the standard approach of Paxos or
Gaios, which may be acceptable. When reducing repli-
cation costs is a concern, however, Gnothi also enables
allocating less space for reserve storage. The risk of this
thriftier approach is that if a failed replica does not re-
cover or is not replaced soon, the reserve storage can fill,
preventing the system from processing additional writes.
However, filling the reserve storage does not put safety at
risk, since data is always written to f +1 replicas. In gen-
eral, Gnothi can allocate less space for reserve storage
in any of the following cases: 1) the workload is read-
heavy; 2) the workload is write-heavy but dominated by
random writes so that the throughput is low; 3) the work-
load is write-heavy but has good locality. Our analysis of
several disk traces suggests that, as long as the metadata
is recovered quickly, allocating 10% of disk space as re-
serve storage is enough to guarantee write availiability
for many workloads.

Specifically, we analyze two sets of traces from Mi-
crosoft: one is collected by Microsoft Research Cam-
bridge [24] and it consists of 23 1-week disk traces under
different workloads; the other is collected on Microsoft’s
production servers [19] and consists of 44 disk traces,
whose lengths vary from 6 hours to 1 day. We choose
these two sets of traces because they are recent and be-
cause they contain a variety of workloads including com-
piling, MSN Storage, SQL Server, computation, etc. We

calculate the maximum usage ratio for each trace. To be
precise, MaxUsage(T) is the maximum number of dif-
ferent sectors written during any time interval of length
T , divided by the total number of sectors.

In the Microsoft Cambridge Traces, only 2 of the 23
traces write to more than 10% of the disk space in a
week. For the heaviest one, reserving 10% always al-
lows at least 10 minutes to finish Phase 1 and recover
all metadata before the system becomes unavailable to
writes. A conservative administrator may reserve more
for this workload.

In the Microsoft Production Server Traces, 38 of the
44 disk traces write to less than 10% of the space in their
traces. For the heaviest one, reserving 10% always al-
lows at least 10 minutes to complete Phase 1.

3.6 Metadata
Each replica stores both local and replicated metadata for
every block. The local metadata consists of the COM-
PLETE bit for each block, and the replicated metadata in-
cludes the version number and requestID for each block.

In Gnothi, caching in memory the COMPLETE bit of
each block is feasible in both size and cost. For example,
with a small 4KB block each 1TB of disk storage re-
quires about 30MB of COMPLETE bits. In May 2012, a
commodity 2TB internal hard drive costs about $120 and
a common 4GB memory DIMM costs about $25. This
means that keeping COMPLETE bits in memory adds
about 0.3% to the dollar cost of the disk data it tracks.
Gnothi regularly stores checkpoints of the COMPLETE
bits by writing the current state to local files.

The block number, version number, and requestID are
8 bytes each, and it would be costly for Gnothi to keep
them all in memory. Gnothi uses a metadata storage de-
sign similar to that of BigTable [10, 23]. Each Gnothi
node maintains in a local key-value store the mapping
from logical block ID to version number and requestID.
Metadata updates are logged to disk first as described be-
fore. Afterwards, to update a record, Gnothi first puts
the record in a memory buffer; then when the buffer is
full, Gnothi sorts the buffer according to the key and
then writes the whole buffer to a new file. A back-
ground thread merges these files when there are too many
of them. Metadata writes and merges are fast, since
they are sequential writes to disk. Our micro bench-
mark shows that this approach can sustain a throughput
of about 200K writes per second, which is enough for
our needs. Reading from metadata storage only occurs
when Gnothi recovers a crashed or slow replica by fetch-
ing metadata from another replica: this case requires a
sequential scan of the metadata, which is again fast. In-
dividual read operations do not access metadata storage,
since a read operation only needs to access the COM-
PLETE bit.

4 Implementation
We implement Gnothi by modifying ZooKeeper’s source
code. In particular: 1) we reuse ZooKeeper’s network
and agreement modules to replicate metadata; 2) we add
chain replication to forward data; 3) we modify the read
protocol to provide linearizable and scalable reads; 4)
we replace ZooKeeper’s storage module with one that
supports preferred, reserve, and metadata storage; 5) we
modify ZooKeeper’s logging system to record Prepare-
Data messages; 6) we implement recovery as described
in Section 3.4.

We apply several additional modifications to improve
performance: first, Gnothi modifies ZooKeeper’s agree-
ment module to incorporate batching [9, 12], which im-
proves performance by about 10% for the sequential
write workload. Second, Gnothi reuses memory buffers
to reduce memory allocation. ZooKeeper’s server is
implemented in Java, and our profiling shows that the
overhead due to memory allocation and garbage collec-
tions is quite substantial, especially if the block size is
large (ZooKeeper is explicitly not designed for large data
blocks). To alleviate this problem, we reuse allocated
memory buffers, which is not hard since they all have the
same size. This device improves read performance by
about 10-15% in our experiments.

5 Evaluation

5.1 Workload and Configuration
First, we evaluate the performance of Gnothi using mi-
cro benchmarks that issue both sequential and random
reads and writes. We compare Gnothi’s performance to a
Gaios-like system that we implement (denoted in the fol-
lowing as G’), and to an unreplicated local disk. Both G’
and Gnothi use the same code base; the only significant
difference is that G’ forwards all updates and stores all
blocks at all replicas, while Gnothi processes each block
at f +1 of the 2 f +1 replicas.

Second, we evaluate Gnothi in failure and recovery.
We compare Gnothi with G’ and Cheap Paxos in terms
of availability, performance in the face of failures, and
recovery time.

We use 5 machines as servers and 5 machines as
clients. We run our performance evaluation experiments
for two configurations: f = 1 (3 servers) and f = 2 (5
servers); we run the recovery experiments with f = 1.
Gnothi’s design calls for using a disk array for data stor-
age and an additional disk to store log and metadata,
but since our machines have only two Western Digital
WD2502ABYS 250GB 7200 RPM hard drives, we eval-
uate Gnothi in a configuration where one disk is used
as preferred and reserve storage, while the other stores
the log and metadata. Each machine is equipped with

a 4-core Intel Xeon X3220 2.40GHz CPU and 3GB of
memory. For all experiments, we allocate 96GB of log-
ical storage space replicated across nodes by the system
under test. All machines are connected with 1Gbps eth-
ernet.

For each experiment, we make sure there are enough
client processes and outstanding requests to saturate the
system; we make sure the experiment is long enough so
that the write buffers are full; and we use the last 80% of
requests to calculate the stable throughput. In all experi-
ments, the read and write batches at each replica consist
of, respectively, 100 and 10 requests. The values of other
parameters (number of clients, number of outstanding re-
quests per client, etc) depend on the block size (4K, 64K,
1M) and workloads (sequential/random write/read), and
we do not list all of them. In general, sequential work-
loads and small blocks need more outstanding client re-
quests to saturate the system; random workloads and big
blocks need fewer; and random workloads with small
blocks need a longer time to saturate the write buffer. For
example, for the 4KB sequential write workloads, we use
30 clients, each with 200 outstanding requests, to satu-
rate the system; for the 4KB random write workloads, 3
clients with 200 requests each are enough, but we need
to run the experiments for 3 hours to measure the stable
throughput; and for the 1MB sequential write workloads,
it takes just 5 clients with 60 outstanding requests each
to saturate the system.

5.2 I/O Throughput
Gnothi maximizes I/O throughput by executing reads and
writes on subsets of disks.

Figure 4 shows the random I/O performance for f = 1
and f = 2. For random workloads, the bottleneck of the
system is the seek time for each replica’s data disk.

For write operations, Gnothi is 40-64% faster than
writing to local disk or to G’ for f = 1 and 53-75% for
f = 2. Gnothi’s advantage comes from only having to
perform the writes at 2/3 (for f = 1) or 3/5 (for f = 2)
of the nodes. As expected [5], the random write perfor-
mance of G’ is close to that of a single local disk because
all replicas process all updates.

For read operations, Gnothi and G’ perform identically
since they use the same read protocol. Gnothi/G’ is 2.5-
3.4 times faster than a single local disk for f = 1 and
3.3-6.1 times faster for f = 2, because it executes each
read on one replica. For small requests, the improvement
factor can exceed 2 f +1 since each replica is responsible
for 1/(2 f +1) of the data, and thus the average seek time
is reduced.

Note that for small random I/O, the local per-disk
write bandwidth significantly exceeds the corresponding
read bandwidth. The reason is that, once writes are com-
mitted to the log, we can buffer large numbers of writes

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

4K-Write 4K-Read 64K-Write 64K-Read 1M-Write 1M-Read

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
)

Lo
ca

l
G

’3
G

no
th

i3
G

’5
G

no
th

i5

Local
G’3

Gnothi3
G’5

Gnothi5

Figure 4: Random I/O with 3 (f =1) and 5 (f =2) servers.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

6 12 18 24 30 36

T
hr

ou
gh

pu
t (

re
qs

/s
)

Time (seconds)

Gnothi burst write

Figure 5: Burst writes. In the default configuration, Linux starts to
flush dirty data to disk if 10% of total system memory pages are dirty.

before writing them back to the data disk, allowing the
disk scheduler more opportunities to minimize seek and
rotational latency. Reads, on the other hand, must be pro-
cessed immediately, so the scheduler has fewer oppor-
tunities for optimization. Taking for example the 4KB
random workload, a local disk can process 383 random
writes per second, while it can only process about 155
random reads per second if there are 100 concurrent read
requests.

Figure 5 shows the effect of a burst of random writes
when f = 1 and the system buffers are not full. During
the first few seconds, since writes are logged to the log-
ging disk, buffered in memory, but not bottlenecked by
flushing to the data disk, Gnothi’s throughput is much
higher than that of the data disk write back. Then, when
the operating system detects that more than 10% of the
system memory is dirty, it begins to write back data to
disk at the same rate it receives new requests, and Gnothi
slows down. Figure 4 shows the stable write throughput,
where, to eliminate the effects of the initial spike, we run
our experiments for sufficiently long (more than 3 hours)
and calculate the throughput of the last 80% of requests.

Figure 6 shows the sequential I/O performance with
f = 1 and f = 2.

For the sequential write workload with f = 1, Gnothi
can achieve about 60MB/s with a 4KB block size and
about 90MB/s with a 1MB block size. The bottleneck
for 4KB block size is probably ZooKeeper’s agreement,
which is processing about 15K updates per second. For
1MB requests, our profiler shows that the bottleneck is

 0

 50

 100

 150

 200

 250

 300

 350

 400

4K-Write 4K-Read 64K-Write 64K-Read 1M-Write 1M-Read

T
hr

ou
gh

pu
t (

M
B

/s
)

Lo
ca

l
G

’3 G
no

th
i3

G
’5

G
no

th
i5

Local
G’3

Gnothi3
G’5

Gnothi5

Figure 6: Sequential I/O with 3 (f =1) and 5 (f =2) servers.

probably Java’s memory allocation and garbage collec-
tion, so customized memory management or a C imple-
mentation may achieve better performance. Compared to
G’, Gnothi is 44% to 56% faster because Gnothi directs
writes to subsets of nodes.

For the read workload, Gnothi/G’ can achieve a to-
tal bandwidth of about 250MB/s with 1MB blocks. One
problem with reads is that if we use only 1 client, the
client network becomes a bottleneck, and if we use mul-
tiple clients, then the workload is not fully sequential.
This problem is more severe for small requests.

Compared with the f = 1 case, Gnothi’s throughput
for 64K and 1MB writes increases by about 10% when
f = 2. In the 4KB case the bottleneck is agreement, so
there is almost no improvement. G’s throughput slightly
decreases since its replication cost is higher. For reads,
Gnothi/G’ scales throughput by nearly a factor of 4 com-
pared to a single disk.

5.3 Failure Recovery
Gnothi does three things to maximize availability and
recovery speed. First, it fully replicates metadata, al-
lowing the system to remain continuosly available in
the face of up to f failures despite partial replication
of data. Second, partial replication of data reduces re-
covery time, because the recovering node only needs to
fetch (f + 1)/(2 f + 1) (e.g. 2/3 for f = 1) of the data.
It also improves performance during recovery, because
once metadata is restored, full block updates are only
sent to and executed on the block’s preferred quorum.
Third, separation of data and metadata improves system
throughput during recovery and reduces recovery time.
The recovering node can catch up with other nodes even
if they continue to process new updates at a high rate. In
particular, since processing metadata is faster than pro-
cessing full requests, Phase 1 of recovery can always
catch up with missed and new requests. Once Phase 1
is complete, the recovering replica no longer falls be-
hind as new requests are executed since it can process
and store all new block updates directed to it, while it
fetches old update bodies for all INCOMPLETE blocks

in its preferred slices.
Figures 7 and 8 look at two recovery scenarios. Fig-

ure 7 shows the case when a node temporarily fails
and then recovers by fetching just the updated blocks
it missed. Figure 8 shows the case when a node per-
manently fails and is replaced by a new node that must
fetch all data from others. We run both experiments with
f = 1, 4KB blocks, and a sequential write workload. We
choose the sequential write workload because it is the
most challenging workload for recovery, since during
recovery the clients are writing new contents at a high
speed, which consumes a large portion of the network
and disk bandwidth from the servers.

In Figure 7, we kill one server 60 seconds after the
experiment starts and restart it 60 seconds later. Here
both Gnothi and G’ suffer a brief drop in throughput
while they wait for timeout and then continue without
the failed node as a result of chain replication. After
the replica restarts at time 120, it takes about 110 sec-
onds (to time 230) to recover from its local disk (mainly
replaying logs), and about 22 seconds (to time 252) to
join the agreement protocol. Then Gnothi spends 26 sec-
onds (to time 278) in Phase 1, during which the recov-
ering replica fetches write metadata (but not data) and
marks all updated blocks as INCOMPLETE. Once Phase
1 completes, the recovering replica begins servicing new
requests, writing new writes to its local state, and mark-
ing updated blocks as COMPLETE. After Phase 1 com-
pletes, the recovering replica also begins Phase 2 of re-
covery by fetching from other replicas INCOMPLETE
blocks in its preferred slices. Phase 2 completes at time
530, at which point recovery is complete, and Gnothi re-
turns to its original throughput.

G’s throughput starts at 50MB/s and remains the same
while the failure occurs. After the replica resumes op-
eration, in order to complete the recovery at time 530, it
must throttle the rate at which it services new requests to
about 16 MB/s.

Cheap Paxos is unavailable from time 30 to 230, since
there is only one available replica and since it does not
have sufficient time to copy 96GB to a spare machine.
When the replica resumes operation, Cheap Paxos can
immediately go back to normal (time 230) since it does
not process any new requests during the failure period.

In Figure 8, one server is killed 300 seconds after the
experiment is started and is replaced 300 seconds later
by a new server whose local disk is initialized and needs
to be fully rebuilt. Gnothi takes about 80 seconds in
Phase 1 to fetch metadata from the primary. After Phase
1 completes, the recovering replica begins servicing new
requests, and at the same time, re-replicating its disk by
fetching blocks from others. The recovering replica com-
pletes re-replication at time 3400, and during this period,
it can service new requests at a rate of about 48 MB/s.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (seconds)

Kill Restart Join agreement

Gnothi Phase 1
 completes

Gnothi Phase 2
 completes

Cheap Paxos
 unavailable

Cheap Paxos
 resumes

G’ recovery
 completes

Gnothi
G’

CheapPaxos

Figure 7: Failure recovery (catch up).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500 4000

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (seconds)

Kill Restart

Gnothi Phase 1
 completes

Gnothi Phase 2
 completes

Cheap Paxos
 unavailable

Cheap Paxos
 resumes

G’ recovery
 completes

Gnothi
G’

CheapPaxos

Figure 8: Failure recovery (re-replicate).

G’ can also complete recovery at time 3400, but during
this period, it can only service new requests at a rate of
about 16 MB/s.

Cheap Paxos is unavailable before the re-replication is
complete, but since it uses all its bandwidth to perform
recovery, it can complete re-replication at time 2400.

Comparing Figure 7 and Figure 8, Gnothi’s catch-
up recovery takes less time than full re-replication (410
seconds vs 2800 seconds), but catch-up inflicts a big-
ger hit on throughput because when re-replicating all
blocks, the disk accesses are always sequential, and when
re-replicating a subset of them, the disk accesses may
be random. This means the recovery cost per block is
smaller in full re-replication, though the total number of
blocks to be fetched is larger and this results in a higher
client throughput but longer recovery time for full repli-
cation.

Both Gnothi and G’ can tune a parameter to divide
resources between servicing new requests and fetching
state for recovery. The parameter is the time interval (ms)
for a replica to issue a 16 MB state fetch request, where a
smaller number means more aggressive recovery. In Fig-
ures 7 and 8, we configure this parameter so that Gnothi
and G’ can recover in similar time, while still providing
reasonable throughput for new requests. In Figures 9 and
10, we show the effect of different configurations.

In Figure 9, we can see that Gnothi can always catch
up, so the administrator can tune this parameter to bal-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500 4000

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (seconds)

Gnothi-600
Gnothi-300

Gnothi-10

Figure 9: Gnothi with different recovery values.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (seconds)

still not caught up at 10000

G’-600
G’-100

G’-10

Figure 10: G’ with different recovery values.

ance resources used for recovery and for processing new
requests. Conversely, if G’ sets this parameter too high
(not aggressive), the recovering replica never catches up.
For example, in Figure 10, the replica in the experiment
with parameter 600 does not catch up, since the recovery
speed is similar to the speed of processing new requests.
Gnothi is almost always better than G’ in our experi-
ments: if recovery times are similar, Gnothi can provide
better throughput during recovery; and if throughput is
similar, Gnothi can recover faster.

6 Related Work
Replication techniques used to tolerate omission failures
can be classified as either synchronous or asynchronous.

In synchronous replication [6, 7, 13], a primary replica
provides the service to the clients, and if the primary
replica fails, a backup replica takes over and continues
to provide service. It takes f + 1 replicas to tolerate f
crash failures. There are three main disadvantages to
synchronous primary backup [5]: 1) its correctness is not
guaranteed when there are timing errors caused by net-
work partitions or server overloading, since these faults
can cause replicas to diverge; 2) to minimize correctness
issues, the system must be configured with conservative
timeouts that can hurt availability; 3) read throughput is
limited by the capability of a single machine, since only
the primary replica processes requests.

Asynchronous replication does not assume an upper
bound on network latency or node response time, and
hence can ensure correctness even in the face of rel-
atively rare events like server overload, network over-
load, or network partitions. The traditional approach
to asynchronous replication involves a Replicated State
Machine (RSM), in which a consensus protocol guaran-
tees that each correct replica receives the same sequence
of requests and in which each replica is a deterministic
state machine.

Paxos [20, 21] is representative of the asynchronous
RSM approach, which requires 2 f + 1 replicas to toler-
ate f crash failures. Paxos guarantees safety (all cor-
rect replicas receive the same sequence of requests) at
all times and guarantees liveness (the system can make
progress) when the network is available and node actions
and message delivery are timely. Paxos uses timeouts
internally, but it does not depend on their accuracy for
safety and can adjust timeouts dynamically for liveness.

The standard Paxos protocol executes every request on
each of the 2 f + 1 replicas, with costs (in bandwidth,
storage space, etc.) higher than synchronous replica-
tion. Much work has been done to reduce the cost of
Paxos: Gaios does not log reads, executes them on only
one replica, and nonetheless guarantees linearizabilty by
adding new messages to the original Paxos protocol [5].
ZooKeeper [18] includes a fast read protocol that exe-
cutes on a single replica, but it does not provide Paxos’s
linearizability guarantee.

On-demand instantiation (ODI) [22, 29] reduces write
costs by executing requests on a preferred quorum of
f +1 replicas. If one of the active replica fails, a backup
replica is activated, but before it can start processing
any request it must be initialized by fetching the cur-
rent value of all replicated state. In storage systems with
large amounts of data, this approach does not scale, as
the system can be unavailable for hours while it transfers
terabytes of data. Distler et al. [14] propose to alleviate
this problem by replaying a per-object log on demand,
but again this approach is not appropriate for replicat-
ing applications with large amounts of state, because its
logs and snapshots are on a per-object basis; to reduce
overhead, per-object garbage collection is performed in-
frequently, once every 100 updates, which means that the
system stores 100 copies of each object at each replica.

Separating data and metadata Paris et al. [25] reduce
the storage overhead of voting using volatile witnesses.
Yin et al. [30] separate agreement from execution to re-
duce the number of execution nodes required for Byzan-
tine replication, and Clement et al. [12] refine these tech-
niques, but these separation techniques exploit a type of
redundancy fundamentally different than that exploited
by Gnothi. In particular, they exploit the redundancy

between tolerating Byzantine and omission faults; if u
(“up”) is the number of failures tolerated while ensuring
liveness and r (“right”) is the number tolerated while en-
suring safety, then execution must be replicated to at least
u+max{u,r}+1 nodes [11]. Gnothi “breaks” this bound
by waiting for state updates to be successfully stored on
f + 1 of 2 f + 1 nodes (u + 1 of 2u + 1 in UpRight) and
by using metadata to identify which nodes completed the
last writes to which objects.

Several scalable cluster file systems [2, 3, 15, 28]
are architected to separate data and metadata to allow
one or more metadata managers to coordinate access
to large numbers of storage servers by tracing where
each object is stored. Gnothi, instead, focuses on scal-
ing Paxos-based replication and providing strong con-
sistency (linearizability) for arbitrary read/write work-
loads, and therefore maintains different types of meta-
data (block versions and requestID rather than mappings
of objects/locations).

7 Conclusion
Gnothi is an asynchronous replicated storage system
with low replication cost and fast failure recovery.
Gnothi accomplishes this by separating data and meta-
data and replicating metadata on all replicas, while repli-
cating data on subsets of them.

Gnothi demonstrates that full replication of metadata
can 1) ensure that the system works correctly despite par-
tial replication of data and 2) speed up recovery when
replicas fail. The evaluation shows that Gnothi achieves
higher throughput and availability than previous work.

Acknowledgement
We thank Manos Kapritsos for his unique blend of Σοφία and
Φρόνησις. We also thank our shepherd, Jon Howell, and the
anonymous reviewers for their insightful comments. This work
was supported by NSF grant NSF-CiC-FRCC-1048269.

References
[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and

J. Wylie. Fault-Scalable Byzantine Fault-Tolerant Services. In
SOSP, 2005.

[2] A. Adya, W. Bolosky, M. Castro, R. Chaiken, G. Cermak,
J. Douceur, J. Howell, J. Lorch, M. Theimer, and R. Wattenhofer.
FARSITE: Federated, Available, and Reliable Storage for an In-
completely Trusted Environment. In OSDI, 2002.

[3] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and
R. Wang. Serverless Network File Systems. ACM Trans. Comput.
Syst., 14(1), 1996.

[4] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin, J. Larson,
J. Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore: Providing
Scalable, Highly Available Storage for Interactive Services. In
CIDR, 2011.

[5] W. Bolosky, D. Bradshaw, R. Haagens, N. Kusters, and P. Li.
Paxos Replicated State Machines as the Basis of a High-
Performance Data Store. In NSDI, 2011.

[6] T. C. Bressoud and F. B. Schneider. Hypervisor-based Fault-
tolerance. ACM Trans. Comput. Syst., 14(1), 1996.

[7] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg.
Primary-Backup Protocols: Lower Bounds and Optimal Imple-
mentations. In CDCCA, 1992.

[8] M. Burrows. The Chubby lock service for loosely-coupled dis-
tributed systems. In OSDI, 2006.

[9] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance
and Proactive Recovery. ACM Trans. Comput. Syst., 20(4), 2002.

[10] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: A Dis-
tributed Storage System for Structured Data. In OSDI, 2006.

[11] A. Clement. UpRight Fault Tolerance. PhD thesis, 2010.

[12] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin,
and T. Riche. UpRight Cluster Services. In SOSP, 2009.

[13] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield. Remus: High Availability via Asynchronous Virtual
Machine Replication. In NSDI, 2008.

[14] T. Distler and R. Kapitza. Increasing Performance in Byzantine
Fault-Tolerant Systems with On-Demand Replica Consistency. In
Eurosys, 2011.

[15] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File
System. In SOSP, 2003.

[16] R. Guerraoui, R. Levy, B. Pochon, and V. Quema. Throughput
Optimal Total Order Broadcast for Cluster Environments. ACM
Trans. Comput. Syst., 28(2), 2010.

[17] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Trans. Program. Lang.
Syst., 12(3), 1990.

[18] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:
Wait-free coordination for Internet-scale systems. In USENIX,
2010.

[19] S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda. Char-
acterization of Storage Workload Traces from Production Win-
dows Servers. In IISWC, 2008.

[20] L. Lamport. The Part-Time Parliament. ACM Trans. Comput.
Syst., 16(2), 1998.

[21] L. Lamport. Paxos Made Simple. ACM SIGACT News (Dis-
tributed Computing Column), 32(4), 2001.

[22] L. Lamport and M. Masa. Cheap Paxos. In DSN, 2004.

[23] M. Mammarella, S. Hovsepian, and E. Kohler. Modular Data
Storage with Anvil. In SOSP, 2009.

[24] D. Narayanan, A. Donnelly, and A. Rowstron. Write Off-
Loading: Practical Power Management for Enterprise Storage.
In FAST, 2008.

[25] J.-F. Paris and D. Long. Voting with Regenerable Volatile Wit-
nesses. In ICDE, 1991.

[26] R. Renesse and F. Schneider. Chain Replication for Supporting
High Throughput and Availability. In OSDI, 2004.

[27] F. B. Schneider. Implementing Fault-Tolerant Services Using the
State Machine Approach: A Tutorial. ACM Computing Surveys,
22(4), 1990.

[28] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop
Distributed File System. In MSST, 2010.

[29] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cecchet.
ZZ and the Art of Practical BFT Execution. In Eurosys, 2011.

[30] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin.
Separating Agreement from Execution for Byzantine Fault Toler-
ant Services. In SOSP, 2003.

	Introduction
	Design
	Interface and Model
	Architecture
	Protocol Overview
	Summary

	Detailed Design
	Data and Metadata
	Write Protocol
	Read Protocol
	Failure and Recovery
	Phase 1: Metadata recovery
	Phase 2: Re-replicate

	Reducing replication state
	Metadata

	Implementation
	Evaluation
	Workload and Configuration
	I/O Throughput
	Failure Recovery

	Related Work
	Conclusion
	References

