Large-scale Data Processing

Yang Wang
Model

- A number of machines connected by network.
How is it different?

• Data/Computation must be partitioned
 – Coordination, locality, load balance, ...

• Dynamic and decentralized environment
 – Nodes can fail or join
 – Network can be unreliable
 – No global clock
 – ...

Goal of this course

Coordinate machines to complete tasks in a dynamic and decentralized environment
So many works

• Functionalities
 – What interface does it provide?

• Guarantees
 – What is the correct behavior?

• Performance
 – What is its throughput, latency, and scalability?
Functionalities

What does the user need to do?

What does the system provide?
Functionalities

Computing platform

- MPI
- MapReduce
- FortranMP

Users do more → Systems do more

Storage platform

- Block
- Key-value
- File system
- Database

Users do more → Systems do more
Functionalities

- Metadata services:
 - Lease management: Chubby/Zookeeper
 - Failure detection: Falcon
 - Load balancing: ...
 - Authentication
 - Access control
 -
Guarantees

• Consistency (safety, correctness):
 – Linearizable, sequential, casual, eventual, ...

• Liveness

• Availability

• Fault tolerance:
 – Crash only; crash and timing; arbitrary
Performance

- Latency
- Throughput
- Scalability

What is their relationship?
Latency

Mem | LAN | Disk | Geo-replication

Low | High
How to measure performance?

• Throughput:
 - We are interested in a system’s max throughput when it is saturated
 - How to saturate a system? Keep increasing load until system’s throughput does not change.
 - How to increase load:
 • Blocking mode: add number of clients
 • Non-blocking mode: add number of outstanding requests
 • Note you also need to ensure client machines are not saturated.

• Latency:
 - Can increase if load is increasing (queuing theory)
How to measure performance?

• Throughput-latency graph:

 When throughput is close to max, latency grows arbitrarily.

 We often report latency when reaching 80% max throughput.
How to measure performance?

- Scalability graph:

 - **Super-linear growth:** can happen
 - **Linear growth:** perfect scalability
 - **Sub-linear growth:** bottleneck somewhere

Max throughput

Number of servers
How to measure performance?

• Notes:
 • If you are using multiple clients, make sure they all start and stop at relatively the same time. Why?
 • Give the system enough warm up time. Your results should not include warm up time.
 • Allocate sufficient amount of memory
 • If you are testing a disk-based system, the dataset of your test should be big enough so that it cannot be all cached in memory. Rule of thumb: the size of your dataset should be at least twice of your total memory size
 • If you share the network with other users, make sure that does not severely affect your experiments
Warm-up project

• Draw the throughput-latency graph

• Choose a client-server system:
 • Examples: web server, database, etc

• Choose a workload
 • Examples: download file, update a row, etc

• Use the previous methods to draw the graph