Clock and ordering

Yang Wang
Review

• Happened-before relation

• Consistent global state

• Chandy Lamport protocol
New problem

• Monitor node sometimes needs to observe other nodes’ events continuously

• Distributed snapshot is a heavy protocol
 – Performing a snapshot for each event is unacceptable

• If there are only two nodes, TCP (FIFO channel) can solve the problem
 – But how about more nodes?
Message delivery

• Receive: a node gets a message from the network

• Delivery: the node actually processes the message

• Can a node deliver a message when receiving it, assuming each channel is FIFO?
Counter example

A
Transfer $500 to B

B
I have sent you $500

Bank

Good. Let me check.

Normal case.
Counter example

A

Transfer $500 to B

I have sent you $500

B

Good. Let me check.

Bank

Message delay can cause unexpected behavior. The bank can receive two events (transfer and check) in an inconsistent order.
Casual delivery

- \(\text{send}_i(m) \rightarrow \text{send}_j(m') \Rightarrow \text{deliver}_k(m) \rightarrow \text{deliver}_k(m')\)

- TCP can guarantee casual delivery when \(i=j\), but cannot guarantee it when \(i \neq j\).
Start with stronger assumptions

- Assume all nodes have access to a global clock
- Assume synchronous network:
 - Network delays are bounded (Δ).
- Can you think about a solution?
Start with stronger assumptions

• Attach a timestamp ts to each message

• Deliver messages in the order of ts

• Is this complete?
Start with stronger assumptions

• Attach a timestamp ts to each message

• Deliver messages in the order of ts

• When a node’s clock reaches t, it can deliver all messages with $ts \leq t - \Delta$.
An ideal clock

• Clock condition (for correctness): $e \rightarrow e' \Rightarrow \text{clock}(e) < \text{clock}(e')$
 – Is the opposite required?

• Gap detection (for liveness): given two events e and e' with $\text{clock}(e) < \text{clock}(e')$, determine whether e'' exists such that $\text{clock}(e) < \text{clock}(e'') < \text{clock}(e')$
 – Even real time clock cannot achieve this. Need additional help.
Logic clock

• Also called Lamport clock
• Each node maintains a local integer called LC

\[LC(e_i) := \begin{cases}
 LC + 1 & \text{if } e_i \text{ is an internal or send event} \\
 \max\{LC, TS(m)\} + 1 & \text{if } e_i = receive(m)
\end{cases} \]
Logic clock

\[\text{Diagram of Logic clock with labels } p_1, p_2, p_3 \]
Logic clock

• Also called Lamport clock
• Each node maintains a local integer called LC

\[LC(e_i) := \begin{cases}
LC + 1 & \text{if } e_i \text{ is an internal or send event} \\
\max\{LC, TS(m)\} + 1 & \text{if } e_i = receive(m)
\end{cases} \]

• Does it satisfy clock condition?
• Can it provide gap detection?
Logic clock

• Also called Lamport clock
• Each node maintains a local integer called LC

\[LC(e_i) := \begin{cases}
LC + 1 & \text{if } e_i \text{ is an internal or send event} \\
\max\{LC, TS(m)\} + 1 & \text{if } e_i = receive(m)
\end{cases} \]

• Does it satisfy clock condition? Yes.
• Can it provide gap detection? No.
 – Could you think about a solution?
Logic clock

• Also called Lamport clock
• Each node maintains a local integer called LC

\[LC(e_i) := \begin{cases}
 LC + 1 & \text{if } e_i \text{ is an internal or send event} \\
 \max\{LC, TS(m)\} + 1 & \text{if } e_i = \text{receive}(m)
\end{cases} \]

• Does it satisfy clock condition? Yes.
• Can it provide gap detection? No.
 – A node can deliver e with ts if it receives a message with a higher ts from each node.
Limitation of Logic clock

• Cannot differentiate concurrent events and related events
 – Clock condition: \(e \rightarrow e' \Rightarrow \text{clock}(e) < \text{clock}(e') \).
 Implementation uses it in the opposite direction:
 \(\text{clock}(e) < \text{clock}(e') \Rightarrow \text{deliver } e \text{ before } e' \)
 – Can cause unnecessary delays in message delivery

• It’s better to have a stronger property:
 – Strong clock condition: \(e \rightarrow e' \equiv \text{clock}(e) < \text{clock}(e') \).
Vector clock

- The clock of an event e is the minimal consistent cut $\theta(e)$ that includes e
Vector clock

• The clock of an event e is the minimal consistent cut $\theta(e)$ that includes e
• Define clock comparison as set operation:
 – $e \rightarrow e' \equiv \theta(e) \subset \theta(e')$
 – e and e' are concurrent if $\theta(e) \nsubseteq \theta(e')$ and $\theta(e') \nsubseteq \theta(e)$
Vector clock

• A consistent cut can be uniquely identified by its frontier

• We can use a vector VC(e) to represent the frontier of the minimal consistent cut of e
 – VC(e)[i] = number of events on node i
Vector clock

- $\text{VC}(e^4_1) = [4, 1, 3]$

How to compare two vector clocks?
Vector clock

\[VC(e_i)[i] := VC[i] + 1 \quad \text{if } e_i \text{ is an internal or send event} \]

\[VC(e_i) := \max\{VC, TS(m)\} \quad \text{if } e_i = \text{receive}(m) \]

\[VC(e_i)[i] := VC[i] + 1 \]
Properties of vector clock

• Property 1 (Strong Clock Condition)
 – $e \rightarrow e' \equiv VC(e) < VC(e')$

• Property 2 (Simple Strong Clock Condition)
 – $e_i \rightarrow e_j \equiv VC(e_i)[i] \leq VC(e_j)[i]$
 – Can you prove it?

• Property 3 (Concurrent)
 – $e_i || e_j \equiv (VC(e_i)[i] > VC(e_j)[i]) \land (VC(e_j)[j] > VC(e_i)[j])$
Properties of vector clock

• Properties 4 - 6: Read the paper. 4 and 5 are used to determine whether a cut is consistent.

• Property 7 (Weak Gap-Detection)
 – $VC(e_i)[k] < VC(e_j)[k] \implies \exists e_k, \text{ s.t. } \neg(e_k \rightarrow e_i) \land (e_k \rightarrow e_j)$
 – When $i=k$, $\exists e_k, \text{ s.t. } e_i \rightarrow e_k \rightarrow e_j$
Go back to the problem

- Assume processes send a notification message to the monitor for all of their events.
- When the monitor receives m from p_j, when can the monitor deliver m?
Go back to the problem

• Assume processes send a notification message to the monitor for all of their events.

• When the monitor receives m from p_j, when can the monitor deliver m?
 – When the monitor has received all messages happened before m.
Solution

• Any earlier message happened before \(m \)?
 – Any earlier message from \(p_j \)?
 – Any earlier message from \(p_k \) (\(k \neq j \))?
Solution

- Any earlier message happened before m?
 - Any earlier message from p_j? – $VC(m)[j] - 1$ from p_j has been delivered
 - Any earlier message from p_k ($k \neq j$)?
Solution

• Any earlier message happened before \(m \)?
 – Any earlier message from \(p_j \)? – \(\text{VC}(m)[j]-1 \) from \(p_j \) has been delivered
 – Any earlier message from \(p_k \) (\(k \neq j \))? – Get help from the weak gap-detection property.
Solution

• Any earlier message happened before m?
 – Any earlier message from p_j? – $VC(m)[j]-1$ from p_j has been delivered
 – Any earlier message from p_k ($k\neq j$)? – Get help from the weak gap-detection property.
 • Maintain the last message delivered from each process
 • Suppose m' is the last message delivered from p_k, if $VC(m')[k] < VC(m)[k]$, then there exists one.
Optimization

• Suppose m' is the last message delivered from p_k, if $\text{VC}(m')[k] < \text{VC}(m)[k]$, then there exists one.
 – For a message m' from p_k, only $\text{VC}(m')[k]$ is useful.
 – Just keep $\text{VC}(m')[k]$ instead of $\text{VC}(m')$

• Monitor maintains an array $D[1-n]$
 – When it delivers m' from p_k, set $D[k] = \text{VC}(m')[k]$
Optimization

• Casual Delivery: Deliver message m from process p_j as soon as both of the following conditions are satisfied:

 – $D[j] = VC(m)[j]-1$

 – $D[k] \geq VC(m)[k], \forall k \neq j$
Example