3D viewing

- Set up a 3D scene is like taking a photograph
Viewing

- Position and orient your camera
Projection

- Control the “lens” of the camera
- Project the object from 3D world to 2D screen
Viewing

- **Important camera parameters to specify**
 - Camera (eye) position \((Ex,Ey,Ez)\) in world coordinate system
 - Center of interest \((coi)\) \((cx, cy, cz)\)
 - Orientation (which way is up?) View-up vector \((Up_x, Up_y, Up_z)\)
Viewing

- Camera position and orientation forms a camera (eye) coordinate frame

- Transform objects from world to eye space
Eye Space

- Right hand coordinate system

- Transform to eye space can simplify many downstream operations (such as projection) in the pipeline
OpenGL fixed function pipeline

- In OpenGL:

 - `gluLookAt (Ex,Ey,Ez,cx, cy, cz,
 Up_x, Up_y, Up_z)`
 - The view up vector is usually (0,1,0)
 - Remember to set the OpenGL matrix mode to `GL_MODELVIEW` first
void display()
{
 glClear(GL_COLOR_BUFFER_BIT);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0,0,1,0,0,0,0,1,0);
 my_display(); // your display routine
}
Demo

Click on the arguments and move the mouse to modify values.
Projection Transformation

- Control how to project the object from 3D to 2D
 - Perspective or Orthographic
 - Field of view and image aspect ratio
 - Near and far clipping planes
Orthographic Projection

- No foreshortening effect – distance from camera does not matter
- The projection center is at infinite

- Projection calculation – just drop z coordinates
Perspective Projection

- Characterized by **object foreshortening**
 - Objects appear to be larger if they are closer to the camera
 - This is what happens in the real world

- **Need:**
 - Projection center
 - Field of View
 - Image, near, far planes

- **Projection:** Connecting the object to the projection center
Field of View

- Determine how much of the world is taken into the picture

- The larger is the field view, the smaller is the object projection size
Near and Far Clipping Planes

- Only objects between near and far planes are drawn.

Near plane + far plane + field of view = Viewing Frustum
Viewing Frustum

- 3D counterpart of 2D world clip window

- Objects outside the frustum are clipped
Projection Transformation

- In OpenGL fixed function pipeline:
 - Set the matrix mode to `GL_PROJECTION`
 - Perspective projection: use
 - `gluPerspective(fovy, aspect, near, far)` or
 - `glFrustum(left, right, bottom, top, near, far)`
 - Orthographic:
 - `glOrtho(left, right, bottom, top, near, far)`
gluPerspective(fovy, aspect, near, far)

- Aspect ratio is used to calculate the window width

```
<table>
<thead>
<tr>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>fovy</td>
</tr>
</tbody>
</table>
```

```
[Diagram showing the relationship between the window width (w) and height (h).]

Aspect = w / h
```
glFrustum(left, right, bottom, top, near, far)

- Or You can use this function in place of gluPerspective()
glOrtho(left, right, bottom, top, near, far)

- For orthographic projection
void display()
{
 glClear(GL_COLOR_BUFFER_BIT);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(fove, aspect, near, far);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0, 0, 1, 0, 0, 0, 0, 1, 0);
 my_display(); // your display routine
}
Demo

Click on the arguments and move the mouse to modify values.
3D viewing under the hood

- Modeling Transformation
- Viewing Transformation
- Projection Transformation

Viewport Transformation
Display
3D viewing under the hood

Topics of Interest:

- Viewing transformation
- Projection transformation
Viewing Transformation

- Transform the object from world to eye space
 - Construct an eye space coordinate frame
 - Construct a matrix to perform the coordinate transformation
Eye Coordinate Frame

- Known: eye position, center of interest, view-up vector
- To find out: new origin and three basis vectors

Assumption: the direction of view is orthogonal to the view plane (the plane that objects will be projected onto)
Eye Coordinate Frame (2)

- Origin: **eye position** (that was easy)
- Three basis vectors: one is the normal vector \(\mathbf{n} \) of the viewing plane, the other two are the ones \(\mathbf{u} \) and \(\mathbf{v} \) that span the viewing plane

\(\mathbf{n} \) is pointing away from the world because we use right hand coordinate system

\[
\mathbf{N} = \text{eye} - \text{COI}
\]

\[
\mathbf{n} = \frac{\mathbf{N}}{||\mathbf{N}||}
\]

Remember \(\mathbf{u}, \mathbf{v}, \mathbf{n} \) should be all unit vectors
Eye Coordinate Frame (3)

- How about u and v?

We can get u first -

\[u \] is a vector that is perpendicular to the plane spanned by N and view up vector (V_up)

\[
U = V_{\text{up}} \times n
\]

\[
u = \frac{U}{|U|}
\]
How about v? Knowing n and u, getting v is easy.

$v = n \times u$

v is already normalized.
Eye Coordinate Frame (5)

Put it all together

Eye space origin: (Eye.x, Eye.y, Eye.z)

Basis vectors:

\[
\begin{align*}
 \mathbf{n} &= \frac{(\mathbf{eye} - \mathbf{COI})}{|\mathbf{eye} - \mathbf{COI}|} \\
 \mathbf{u} &= \frac{(\mathbf{V}_{\text{up}} \times \mathbf{n})}{|\mathbf{V}_{\text{up}} \times \mathbf{n}|} \\
 \mathbf{v} &= \mathbf{n} \times \mathbf{u}
\end{align*}
\]
World to Eye Transformation

- Transformation matrix \((M_{w2e})\)?
 \[P' = M_{w2e} \times P \]

1. Come up with the transformation sequence to move eye coordinate frame to the world

2. And then apply this sequence to the point \(P\) in a reverse order
World to Eye Transformation

- Rotate the eye frame so that it will be “aligned” with the world frame
- Translate (-ex, -ey, -ez)

Rotation:
\[
\begin{bmatrix}
ux & uy & uz & 0 \\
vx & vy & vz & 0 \\
x & y & z & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Translation:
\[
\begin{bmatrix}
1 & 0 & 0 & -ex \\
0 & 1 & 0 & -ey \\
0 & 0 & 1 & -ez \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
World to Eye Transformation (2)

- Transformation order: apply the transformation to the object in a reverse order - translation first, and then rotate

\[
M_{w2e} = \begin{bmatrix}
ux & uy & ux & 0 \\
vx & vy & vz & 0 \\
x & ny & nz & 0 \\
0 & 0 & 1 & 1
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 & -ex \\
0 & 1 & 0 & -ey \\
0 & 0 & 1 & -ez \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
World to Eye Transformation (3)

- Head tilt: Rotate your head by δ
- Just rotate the object about the eye space z axis - δ

$$\mathbf{M}_{w2e} = \begin{bmatrix} \cos(-\delta) & -\sin(-\delta) & 0 & 0 & \mathbf{u}_x & \mathbf{u}_y & \mathbf{u}_x & 0 \\ \sin(-\delta) & \cos(-\delta) & 0 & 0 & \mathbf{v}_x & \mathbf{v}_y & \mathbf{v}_z & 0 \\ 0 & 0 & 1 & 0 & \mathbf{n}_x & \mathbf{n}_y & \mathbf{n}_z & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Why $-\delta$?

When you rotate your head by δ, it is like rotate the object by $-\delta$.

Projection Transformation

- Projection – map the object from 3D space to 2D screen

 Perspective: `gluPerspective()`
 Parallel: `glOrtho()`
Parallel Projection

- After transforming the object to the eye space, parallel projection is relative easy – we could just drop the Z

 \[X_p = x \]

 \[Y_p = y \]

 \[Z_p = -d \]

- We actually want to keep Z – why?
Parallel Projection (2)

- OpenGL maps (projects) everything in the visible volume into a **canonical view volume**

```plaintext
glOrtho(xmin, xmax, ymin, ymax, near, far)
```

Canonical View Volume
Parallel Projection (3)

- Transformation sequence:

1. Translation (M1): \((-\text{near} = z_{\text{max}}, \ -\text{far} = z_{\text{min}})\)

 \[-\frac{(x_{\text{max}}+x_{\text{min}})}{2}, \ -\frac{(y_{\text{max}}+y_{\text{min}})}{2}, \ -\frac{(z_{\text{max}}+z_{\text{min}})}{2}\]

2. Scaling (M2):

 \[\frac{2}{(x_{\text{max}}-x_{\text{min}})}, \ \frac{2}{(y_{\text{max}}-y_{\text{min}})}, \ -\frac{2}{(z_{\text{max}}-z_{\text{min}})}\]

\[
M_2 \times M_1 = \begin{pmatrix}
\frac{2}{(x_{\text{max}}-x_{\text{min}})} & 0 & 0 & -\frac{(x_{\text{max}}+x_{\text{min}})}{(x_{\text{max}}-x_{\text{min}})} \\
0 & \frac{2}{(y_{\text{max}}-y_{\text{min}})} & 0 & -\frac{(y_{\text{max}}+y_{\text{min}})}{(y_{\text{max}}-y_{\text{min}})} \\
0 & 0 & \frac{2}{(z_{\text{max}}-z_{\text{min}})} & -\frac{(z_{\text{max}}+z_{\text{min}})}{(z_{\text{max}}-z_{\text{min}})} \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
Perspective Projection

- Side view:

 Based on similar triangle:

 \[
 \frac{y}{y'} = \frac{-z}{d}
 \]

 \[
 Y' = y \times \frac{d}{-z}
 \]
Perspective Projection (2)

- Same for x. So we have:

x' = x \times \frac{d}{-z}

y' = y \times \frac{d}{-z}

z' = -d

- Put in a matrix form:

\[
\begin{bmatrix}
 x' \\
y' \\
z' \\
w
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & (1/-d) & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix}
\]

- OpenGL assume d = near, i.e. the image plane is at z = -near
Perspective Projection (3)

- We are not done yet. We want to somewhat keep the z information so that we can perform depth comparison.

- Use pseudo depth – OpenGL maps the near plane to -1, and far plane to 1.

- Need to modify the projection matrix: solve a and b.

\[
\begin{align*}
x' &= 1 \quad 0 \quad 0 \quad 0 \quad x \\
y' &= 0 \quad 1 \quad 0 \quad 0 \quad y \\
z' &= 0 \quad 0 \quad a \quad b \quad z \\
w &= 0 \quad 0 \quad (1/-d) \quad 0 \quad 1
\end{align*}
\]

How to solve a and b?
Perspective Projection (4)

- Solve a and b

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 w
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 & 0 & x \\
 0 & 1 & 0 & 0 & y \\
 0 & 0 & a & b & z \\
 0 & 0 & (1/-d) & 0 & 1
\end{bmatrix}
\]

- \((0,0,-1)^T = M \times (0,0,-\text{near})^T\)
- \((0,0,1)^T = M \times (0,0,-\text{far})^T\)

- \(a = \frac{\text{far}+\text{near}}{d(\text{far}-\text{near})}\) Verify this!
- \(b = \frac{2 \times \text{far} \times \text{near}}{d(\text{far}-\text{near})}\)
Perspective Projection (5)

- Not done yet. OpenGL also normalizes the x and y ranges of the viewing frustum to $[-1, 1]$ (translate and scale)

- And takes care the case that eye is not at the center of the view volume (shear)
Perspective Projection (6)

Final Projection Matrix:

\[
x' = \begin{bmatrix} 2N/(xmax-xmin) & 0 & (xmax+xmin)/(xmax-xmin) & 0 & x \\ 0 & 2N/(ymax-ymin) & (ymax+ymin)/(ymax-ymin) & 0 & y \\ 0 & 0 & -(F + N)/(F-N) & -2F*N/(F-N) & z \\ 0 & 0 & -1 & 0 & 1 \end{bmatrix}
\]

\text{glFrustum(xmin, xmax, ymin, ymax, N, F)} \quad N = \text{near plane, } F = \text{far plane}
After perspective projection, the viewing frustum is also projected into a canonical view volume (like in parallel projection).

Canonical View Volume:

- Front plane: $(1, 1, -1)$
- Back plane: $(-1, -1, 1)$

Diagram:

- Perspective projection of the viewing frustum.
- Canonical view volume highlighted in blue.
Flexible Camera Control

- Instead of provide COI, it is possible to just give camera orientation.
- Just like control a airplane’s orientation.

Diagram showing camera orientations labeled as pitch, yaw, and roll.
Flexible Camera Control

- How to compute the viewing vector \((x, y, z)\) from pitch(\(\phi\)) and yaw(\(\theta\))?

\[
x = R \cos(\phi) \cos(\theta)
\]

\[
y = R \sin(\phi)
\]

\[
z = R \cos(\phi) \cos(90-\theta)
\]

\[
\phi = 0
\]

\[
\theta = 0
\]
Flexible Camera Control

- `gluLookAt()` does not let you to control pitch and yaw
- you need to compute/maintain the vector by yourself
- And then calculate $\text{COI} = \text{Eye} + (x,y,z)$ before you can call `gluLookAt()`.