Behavioral animation
Animation Category Recap

• **Procedural**
 – Artist specifies translation and rotation over time

• **Physically based**
 – Artist specifies forces acting on objects
 – Motion equations dictate movement

• **Interpolation**
 – Artist draws the scene at the beginning and end of a time interval
 – Intermediate positions are calculated

• **Behavioral**
 – Artist directs autonomous agents
Behavioral Animation

• Control the motion of one or more objects using virtual actors

• Goal: realistic or believable motion so that the object appears to be autonomous

• Matt Lewis’ page on BA
 http://accad.osu.edu/~mlewis/Class/behavior.html
Behavioral animation

• Character or object motion based on:
 – Knowledge of the environment
 – Aggregate behavior
 – Primitive behavior
 – Intelligent behavior
 – Crowd management
Actor motion: Moving forward/backward

Position \((x, y)\)

Goal \((x_g, y_g)\)

\[V = \text{Goal} - \text{Position} \]

\[\text{Next Position} = \text{Position} + V \times dt \]
Actor motion: Rotation

Orientation \((ox, oy)\) = transform.forward

\[V_{target} = \text{Goal} - \text{Position} \]

Determine which rotation \((\pm \theta)\) orients the actor closer to the goal using dot product.

In Unity, you can use RotateTowards().
class OrientedAgent2D {

 // Data
 Vector3 position;
 GameObject model; // Use this for geometry and orientation

 // Methods
 Update(float deltaTime);
 TurnLeft();
 TurnRight();
 MoveForward();
 MoveBackward();
};
Knowing the environment

- Vision and other senses
 - Information available now

- Memory
 - Information stored from the past
Actor Vision

• General vision
 – What can the actor see?

• Targeted vision
 – Can the actor see object X?

• Computation vs. accuracy
 – How much of an object needs to be seen to be identified?
 – Do we need to model visual perception?
Vision Model 1: Omniscience

Everything in the scene is known.
Vision Model 1: Field of View

Those in the field of view are visible.
Use dot product, to get the cosine of the angle between O and V. Visible, when the angle between O and V is less then or equal to $\theta/2$.

Vision Model 1: Field of View

Angle of cone = θ
Vector3 agentPosition, orientation, objectPosition;
float visionLimit;

Vector3 agentToVertex = objectPosition – agentPosition;
agentToVertex.Normalize();
if(Vector3.Dot(agentToVertex,orientation) > visionLimit)
 // agent can see object
Vision Model 1: Occluded Vision

Ray casting with collision detection
Sample the environment
For each object, Target-testing vision

Binary:
Can the actor see X?
Cast a ray

Detailed:
How well can the actor see X?
Use multiple rays
Target-testing vision (to know what is visible)

Sample the vision cone
Cast multiple rays
Predator Prey vision anatomy
Prey-Predator (vision)
Motion – force based

Apply a force on the predator towards the prey when in view

Force = c * \(\text{pos}_{\text{prey}} - \text{pos}_{\text{pred}} \)
Motion – kinematic based

Determine the closest prey in view then turn towards it and increase forward velocity
The Boids Model

• Invented by Craig Reynolds in 1986
• Artificial life system: bird
• The complexity of the system comes from a set of simple rules applied on the agents (birds):
 • Separation: avoid crowding
 • Alignment: follow other birds’ motions nearby
 • Cohesion: Stay together with other birds
• https://www.youtube.com/watch?v=rN8DzIgLgMt3M
• https://www.youtube.com/watch?v=lKh_IzRb9Ro
Other flocking issues

• Global control
 – script flock leader
 – global migratory urge

• Negotiating the motion
 – Separation, alignment, and cohesion may compete/contradict

• Collision avoidance
 – Once an object is in sight, start steering to avoid

• Splitting and rejoining (difficult)
 – Collision avoidance too strong – flock may never rejoin after split
 – Flock membership too strong – flock does not split and formation changes

• Modeling flight
Motion Planning

Forces
Or
"Reasoning"
(e.g. rule-based)
Navigating obstacles

Penalty Force
(Collision)

Plan ahead
(Intelligence)

Attempt at parallel movement

Attempt at finding a passageway
Modeling flight – common in flocking
Modeling flight

Geometric flight – dynamic, incremental rigid transformation of an object moving along a tangent to a three dimensional curve
Modeling Flight – Lift

Air passing above wing most travel longer than air below it. Less pressure above wing = lift
Modeling Flight – turn by rolling

Diagram showing the forces involved in modeling flight, with lift and gravity forces depicted for a plane in a stationary position and in a turn.
Emergent behavior

• Complex systems and patterns arising out of simple rules

• Aints – AI ants
 http://www.youtube.com/watch?v=rsqsZCH36Hk