Topics in Computer Animation
Animation Techniques

• Artist-Driven animation
 – The artist draws some frames (keyframing)
 – Usually in 2D
 – The computer generates intermediate frames using interpolation
 – The old way...
 – Better than flipbook. No need to draw every frame
 – Still a lot of work...
Animation Techniques

• Data-Driven animation
 – Motion capture from the real world (data capture)
 – Mapping motion from the actor to the virtual character (retargeting)
 – Typically requires markers
 – Markerless? Doable but not easy
 – Synthesize different animations from a data set?
Animation Techniques

• Physically based animation
 – Solving physics equations over time
 – Needs more computational cost
 – Can interact with users (so useful in game)
 – We will study more about this...
Animation Content

• Character animation
 – Character motion planning, synthesis, control
 – Represented in skeleton
 – Retargeting from one character to another, especially if they are very different
 – Usually data-driven
 – Can be physically based
 (by computing the body weights, joint forces, ...)
Animation Content

• Passive animation
 – Everything else that cannot move itself
 – Simulated by physics
Simulation Techniques

• Particle based simulation
 – Just a set of independent particles
 – Can run in parallel (suitable for graphics processors)
 – Has no geometric structure
 – Easy to create, easy to maintain
 – Widely used in games
 – Good for objects without fixed shapes
 – Difficult to obtain the object surface
 (unfriendly to rendering)
Simulation Techniques

- Particle based simulation
 - Example 1: Flame in game engines
Simulation Techniques

• Particle based simulation
 – Example 1: Flame in game engines
 – Example 2: High-quality water animation
 based on Smoothed Particle Hydrodynamics (SPH)
Simulation Techniques

• Particle based simulation
 – Example 1: Flame in game engines
 – Example 2: High-quality water animation based on Smoothed Particle Hydrodynamics (SPH)
 – Example 3: Flocking and crowd
Simulation Techniques

• Particle based simulation
 – Example 1: Flame in game engines
 – Example 2: High-quality water animation based on Smoothed Particle Hydrodynamics (SPH)
 – Example 3: Flocking and crowd
 – Example 4: Snow
Simulation Techniques

• Mesh based simulation
 – Represents the object using meshes
 – Easy to create shape details
 – Easy to extract the surfaces (rendering friendly)
 – Rigid body, soft body (deformable body)
 – Needs to handle collisions... A difficult problem
 (Many games do not consider detailed collisions.)
 – Remeshing is also difficult
 (for example, in fracture animation)
 – Numerical stability problem
Simulation Techniques

• Mesh based simulation
 – Example 1: Cloth animation
 (can be done only in meshes)
Simulation Techniques

• Mesh based simulation
 – Example 1: Cloth animation
 (can be done only in meshes)
 – Example 2: water animation
 (highly detailed, less computationally expensive)
Simulation Techniques

• Mesh based simulation
 – Example 1: Cloth animation
 (can be done only in meshes)
 – Example 2: water animation
 (highly detailed, less computationally expensive)
 – Example 3: Viscoelastic fluid
Simulation Techniques

• Mesh based simulation
 – Example 1: Cloth animation
 (can be done only in meshes)
 – Example 2: water animation
 (highly detailed, less computationally expensive)
 – Example 3: Viscoelastic fluid
 – Example 4: Fracture
Simulation Techniques

• Mesh based simulation
 – Example 1: Cloth animation (can be done only in meshes)
 – Example 2: water animation (highly detailed, less computationally expensive)
 – Example 3: Viscoelastic fluid
 – Example 4: Fracture
 – Example 5: Soft body
Simulation Techniques

• Volume-based simulation
 – Defines the object in a volume
 – No need to handle collisions
 – Nor Remeshing
 – Surface extraction is a problem
 (not difficult, but takes time)
 – Cannot work easily in real time, but can be in very high-quality
Simulation Techniques

• Volume-based simulation
 – Example 1: Oscar-winning smoke animation
 – Example 2: Fluid animation
 (Needs an additional method to represent water surface: the Level set method)
Simulation Techniques

• Volume-based simulation
 – Example 1: Oscar-winning smoke animation
 – Example 2: Fluid animation
 (Needs an additional method to represent water surface: the Level set method)
Simulation Topics Summary

<table>
<thead>
<tr>
<th>Particle (Lagrangian)</th>
<th>Mesh (Lagrangian)</th>
<th>Volume (Eulerian)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flame and smoke (low-quality)</td>
<td></td>
<td>Flame and smoke (high-quality)</td>
</tr>
<tr>
<td>Cloth animation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hair simulation (is 1D string a mesh?)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water animation (low and high-quality)</td>
<td>Water animation (specific, high-quality)</td>
<td>Water animation (high-quality)</td>
</tr>
<tr>
<td>Facial animation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft body animation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rigid body animation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fracture animation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flocking and Crowd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>