Question 1. (1 point) Given the incoming direction of the light \(L = [1, 3, 2] \) and the surface normal direction \(N = [0, 1, 1] \), what is the mirror reflection direction \(R \)? (You need to normalize \(L \) and \(N \) first.)

Question 2. (3 points) Please use the forward Euler method, the midpoint method, and the trapezoid rule method to compute the integral \(\int_1^2 \frac{1}{t} \, dt \). Which method is the most accurate in this example? (Use the slides or wikipedia as your reference. The exact solution is: 0.69)
Question 3. (1 points) To see why an explicit mass-spring system will cause instability issues, let us consider a single 1D spring. One end of the spring is attached to the origin, and the other end is attached to a particle with mass 1. The spring length is initially 1, so the particle is located at $x = 1$. Suppose the time step Δt is 1 and the spring stiffness is 10, we can formulate the whole system as:

$$\begin{align*}
 v^{t+1} &= v^t - 10(x^t - 1) \\
 x^{t+1} &= x^t + v^t
\end{align*}$$

(1)

If we move the particle to $x^0 = 2$ and then release it with no initial velocity ($v^0 = 0$), where is the particle located at time $t = 1$? Where is the particle located at time $t = 2$?

Submission Guideline Please submit your solution either in person or by email to our grader. If you finish it early, you may also give it to the professor after class.