Mathematics for Computer Graphics
Outline – Linear Algebra topics

• Scalars
• Vector Space
 – Scalars and vectors
• Affine Space
 – Scalars, vectors, and points
• Euclidean Space
 – Scalars, vectors, points
 – Distance metric
• Projections
• Matrix representations and operations
Scalars

• Scalar – a number
 – Ex: the scale, weight, or magnitude of something

• Two Fundamental Operations
 – Addition and multiplication

\[\forall \alpha, \beta \in S, \ \alpha + \beta \in S, \ \alpha \cdot \beta \in S \]

\[\alpha + \beta = \beta + \alpha \]
Commutative

\[\alpha \cdot \beta = \beta \cdot \alpha \]
Associative

\[\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma \]

\[\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma \]

\[\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma) \]
Distributive
Scalars

• Two Special Scalars

 – Additive identity: 0, multiplicative identity: 1

 \[\alpha + 0 = 0 + \alpha = \alpha \]
 \[\alpha \cdot 1 = 1 \cdot \alpha = \alpha \]

 – Additive inverse $\quad -\alpha \quad \alpha + (-\alpha) = 0$

 – Multiplicative inverse $\quad \alpha^{-1} \quad \alpha \cdot \alpha^{-1} = 1$
2D scalar field

2D array of scalar values

In C#, the data structure might look something like this:

```csharp
float[,] temps;
temps = new float[50,50];
// (allocate after declaring)
```

http://upload.wikimedia.org/wikipedia/commons/a/a8/Scalar_field.png
Vector space

- Two Entities: *Scalars* and *Vectors*
- Vectors
 - Directed line segments
 - n-tuples of scalars
 - Two operations
 - *vector-vector addition*
 - *scalar-vector multiplication*
- Zero Vector
 $$v + 0 = v$$
 $$v + (-v) = 0$$

Directed line segments
Vector space

• In vector space, two vectors are equal if they are represented with the same n-tuple
 – Ex: $\mathbf{v} = (1,2,3) = (1,2,3)$
 - $\mathbf{v} \neq (3,2,1)$

• A vector, by itself, does not have a starting position
 – Visually you can think of a vector starting at $(0,0,0)$
Vector space operations

- Vectors = n-tuples \(\mathbf{v} = (v_0, v_1, \ldots, v_{n-1}) \)

 - Vector-vector addition
 \[
 \mathbf{u} + \mathbf{v} = (u_0, u_1, \ldots, u_{n-1}) + (v_0, v_1, \ldots, v_{n-1}) = (u_0 + v_0, u_1 + v_1, \ldots, u_{n-1} + v_{n-1})
 \]

 - Scalar-vector multiplication
 \[
 \alpha \mathbf{v} = (\alpha v_0, \alpha v_1, \ldots, \alpha v_{n-1})
 \]

 - Vector decomposition
 \[
 \mathbf{u} = \alpha_0 \mathbf{u}_0 + \alpha_1 \mathbf{u}_1 + \cdots + \alpha_{n-1} \mathbf{u}_{n-1}
 \]
Vector space operations

• Scalar-Vector Multiplication
 \(u \) and \(v \): vectors, \(\alpha \) and \(\beta \): scalars
 \[\alpha (u + v) = \alpha u + \alpha v \]
 \[(\alpha + \beta)u = \alpha u + \beta u \]

• Vector-Vector Addition
 – Visualize using head-to-tail axiom
Vector space limitations

• Vector space has no geometric concept
 – Vectors indicate magnitude and direction, not position

• Coordinate System
 – Origin: a particular reference point

Basis vectors located at the origin

Arbitrary placement of basis vectors

Identical vectors
Coordinate system

Boardwork examples: 1D, 2D, 3D coordinate axes

Unity uses left-handed coordinate system with
+x being right and +y being up
Affine Spaces

- Scalars, vectors, and points
- A point is represented as an n-tuple

- Operations [P and Q are points, \mathbf{v} is a vector]
 - Point-point subtraction operation
 \[\mathbf{v} = P - Q \]
 - Vector-point addition operation
 \[P = \mathbf{v} + Q \]
 \[(P - Q) + (Q - R) = (P - R) \]

- Frame: a Point P_0 and a Set of Vectors $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_{n-1}$
 - All vectors and points in the space are defined relative to these
 \[\mathbf{v} = \alpha_0 \mathbf{v}_0 + \alpha_1 \mathbf{v}_1 + \cdots + \alpha_{n-1} \mathbf{v}_{n-1} \]
 \[P = P_0 + \beta_0 \mathbf{v}_0 + \beta_1 \mathbf{v}_1 + \cdots + \beta_{n-1} \mathbf{v}_{n-1} \]
Euclidean Spaces

• Affine space does not include an operation or metric for distance between points

• Create a new operation: Inner (dot) Product
 – Input: two vectors Output: scalar
 – $\alpha, \beta :$ scalars $u, v, w :$ vectors

 – Properties we want: $u \cdot v = v \cdot u$
 $(\alpha u + \beta v) \cdot w = \alpha u \cdot w + \beta v \cdot w$
 $v \cdot v > 0$ if $v \neq 0$
 $0 \cdot 0 = 0$
 For orthogonal vectors $u \cdot v = 0$
Euclidean Spaces – dot product

• If we can multiply two n-tuples, this implies

 – Magnitude (length) of a vector \(|v| = \sqrt{v \cdot v} \)

 – Distance between two points \(|P - Q| = \sqrt{(P - Q) \cdot (P - Q)} \)

 – Measure of the angle between two vectors \(u \cdot v = |u||v|\cos \theta \)

 • \(\cos \theta = 0 \) \(\Rightarrow \) orthogonal
 • \(\cos \theta = 1 \) \(\Rightarrow \) parallel

• Computation of dot product

 \[u \cdot v = \sum_{i=0}^{n-1} u_i \cdot v_i = u_0 \cdot v_0 + u_1 \cdot v_1 + \ldots + u_{n-1} \cdot v_{n-1} \]
Projections

• We can determine if two points are “close” to each other, what about vectors?
• How much of \(w \) is in the same direction as \(v \)?
• Given vectors \(v \) and \(w \), decompose \(w \) into two parts, one parallel to \(v \) and one orthogonal to \(v \)

\[
w = \alpha v + u
\]

\[
w \cdot v = \alpha v \cdot v + u \cdot v = \alpha v \cdot v
\]

\[
\therefore \alpha = \frac{w \cdot v}{v \cdot v}
\]

\[
\therefore u = w - \alpha v = w - \frac{w \cdot v}{v \cdot v}v
\]
Matrices

• Definitions
• Matrix Operations
• Row and Column Matrices
• Change of Representation
• Relating matrices and vectors
What is a Matrix?

• A matrix is a set of elements, organized into rows and columns.

\[
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\]
Definitions

• \(n \times m \) Array of Scalars (\(n \) Rows and \(m \) Columns)
 – \(n \): row \textit{dimension} of a matrix, \(m \): column \textit{dimension}
 – \(m = n \) \(\Rightarrow \) \textit{square matrix} of dimension \(n \)
 – Element \(\{a_{ij}\}, \ i = 0, \ldots, n-1, \ j = 0, \ldots, m-1 \)
 \[
 A = \begin{bmatrix} a_{ij} \end{bmatrix}
 \]
 – \textit{Transpose}: interchanging the rows and columns of a matrix
 \[
 A^T = \begin{bmatrix} a_{ji} \end{bmatrix}
 \]

• Column Matrices and Row Matrices
 – \textit{Column matrix} (\(n \times 1 \) matrix): \(\mathbf{b} = [b_i] = \begin{bmatrix} b_0 \\ \vdots \\ b_n \end{bmatrix} \)
 – \textit{Row matrix} (\(1 \times n \) matrix):
 \[
 \mathbf{b}^T = \begin{bmatrix} b_0 & b_1 & \ldots & b_{n-1} \end{bmatrix}
 \]
Matrix Operations

• Scalar- Matrix Multiplication \(\alpha A = [\alpha a_{ij}] \)
 – Multiply every element by the scalar

• Matrix-Matrix Addition \(C = A + B = [a_{ij} + b_{ij}] \)
 – Add elements with same index

• Matrix-Matrix Multiplication
 – A: \(n \times l \) matrix, B: \(l \times m \) \(\Rightarrow \) C: \(n \times m \) matrix

\[
C = AB = \begin{bmatrix} c_{ij} \end{bmatrix}
\]

\[
c_{ij} = \sum_{k=0}^{l-1} a_{ik} b_{kj}
\]

\(c_{ij} \) = the sum of multiplying elements in row \(i \) of matrix \(a \) times elements in column \(j \) of matrix \(b \)
Matrix Operation Examples

\[
\begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix} + \begin{bmatrix}
e & f \\
g & h \\
\end{bmatrix} = \begin{bmatrix}
a+e & b+f \\
c+g & d+h \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix} - \begin{bmatrix}
e & f \\
g & h \\
\end{bmatrix} = \begin{bmatrix}
a-e & b-f \\
c-g & d-h \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix} \begin{bmatrix}
e & f \\
g & h \\
\end{bmatrix} = \begin{bmatrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{bmatrix}
\]
Matrix Operations

• Properties of Scalar-Matrix Multiplication
 \[\alpha (\beta A) = (\alpha \beta) A \]
 \[\alpha \beta A = \beta \alpha A \]

• Properties of Matrix-Matrix Addition
 – Commutative: \(A + B = B + A \)
 – Associative: \(A + (B + C) = (A + B) + C \)

• Properties of Matrix-Matrix Multiplication
 \[A (BC) = (AB) C \]
 \[AB \neq BA \]

• Identity Matrix \(I \) (Square Matrix)
 \[
 I = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]
 \[a_{ij} = \begin{cases}
 1 & \text{if } i = j \\
 0 & \text{otherwise}
 \end{cases} \]
 \[AI = A \]
 \[IB = B \]
Matrix Multiplication Order

• Is $AB = BA$? Maybe, but maybe not!

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & \ldots \\ \ldots & \ldots \end{bmatrix} \quad \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ea + fc & \ldots \\ \ldots & \ldots \end{bmatrix}$$

• In general, matrix multiplication is NOT commutative!

• The order of matrix multiplications is important!
Row and Column Matrices + points

• Column Matrix

 \[
 \mathbf{p} = \begin{bmatrix}
 x \\
 y \\
 z
 \end{bmatrix}
 \]

 By convention we will use \(\mathbf{p} \) column matrices for points

 - Row matrix

 \[
 \mathbf{p}^T = \begin{bmatrix}
 x \\
 y \\
 z
 \end{bmatrix}
 \]

• Concatenations

 \[
 \mathbf{p}' = \mathbf{A}\mathbf{p}
 \]

 - Associative

 \[
 \mathbf{p}' = \mathbf{A}\mathbf{B}\mathbf{C}\mathbf{p}
 \]

• By Row Matrix

 \[
 (\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T
 \]

 \[
 \mathbf{p}'^T = \mathbf{p}^T \mathbf{C}^T \mathbf{B}^T \mathbf{A}^T
 \]
Vector Operations

• Vector: 1 x N matrix
• Interpretation: a line in N dimensional space
• Dot Product and Magnitude operations

\[\vec{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \]
Vectors: Dot Product

\[a \cdot b = ab^T = \begin{bmatrix} d \\ e \\ f \end{bmatrix} = ad + be + cf \]

Think of the dot product as a matrix multiplication

The magnitude is the dot product of a vector with itself

If \(a \) and \(b \) are both length one, the angle between them is the \(\cos^{-1} \) of their dot product

\[\|a\|^2 = aa^T = \sqrt{aa + bb + cc} \]
Inverse of a Matrix

- Identity matrix:
 \[AI = A \]
- Some matrices have an inverse, such that:
 \[AA^{-1} = I \]

\[I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

\[A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \]

\[A^{-1} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \]
Inverse of a Matrix

• Some matrices do not have an inverse

\[
A = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} \quad A^{-1} = \begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}
\]

\[
AA^{-1}_{00} = 0 \cdot a + 0 \cdot d + 0 \cdot g = 0 \neq 1
\]
Inverse of Matrix Concatenation

• Inversion of concatenations

\[(ABC)^{-1} = C^{-1}B^{-1}A^{-1}\]

\[A * B * C * X = I\]
\[A * B * C * C^{-1} = A * B\]
\[A * B * B^{-1} = A\]
\[A * A^{-1} = I\]

Order is important, so \[X = C^{-1}B^{-1}A^{-1}\]
Summary

• Primitives: scalars, vectors, points

• Operations: addition and multiplication

• Matrix representation and operations