Topic 9:
Basic Graph Alg.

- Representations
- Basic traversal algorithms
- Topological sort
What Is A Graph

- Graph $G = (V, E)$
- V: set of nodes
- E: set of edges

Example:
- $V = \{a, b, c, d, e, f\}$
- $E = \{(a, b), (a, d), (a, e), (b, c), (b, d), (b, e), (c, e), (e, f)\}$
- Un-directed graph
 - \(E \leq \binom{V}{2} \)

- Directed graph
 - \(E \leq V^2 \)
Un-directed graphs
Vertex Degree

- \(\text{deg}(v) = \text{degree of } v = \# \text{ edges incident on } v \)

- Lemma: \(\sum_{v_i \in V(G)} \text{deg}(v_i) = 2|E| \)
Some Special Graphs

- Complete graph
- Path
- Cycle
- Planar graph
- Tree
Representations of Graphs

- Adjacency lists
 - Each vertex u has a list, recording its neighbors
 - i.e., all v’s such that $(u, v) \in E$
 - An array of V lists
 - $V[i].degree =$ size of adj list for node v_i
 - $V[i].AdjList =$ adjacency list for node v_i
Adjacency Lists

- For vertex $v \in V$, its adjacency list
 - has size: $\text{deg}(v)$
 - decide whether $(v, u) \in E$ or not in time $O(\text{deg}(v))$

- Size of data structure (space complexity):
 - $O(|V| + |E|) = O(V+E)$
Adjacency Matrix

- $V \times V$ matrix A
 - $A[i, j] = 1$ if (v_i, v_j) is an edge
 - Otherwise, $A[i, j] = 0$
Adjacency Matrix

- Size of data structure:
 - $O(V \times V)$

- Time to determine if $(v, u) \in E$:
 - $O(1)$

- Though larger, it is simpler compared to adjacency list.
Sample Graph Algorithm

- **Input**: Graph G represented by adjacency lists

```plaintext
Func(G)
1   k ← 0;
2   foreach vertex $v_i \in V(G)$ do
3       foreach edge $(v_i, v_j)$ incident on $v_i$ do
4           k ← k + 1;
5       end
6   end
7   return (k);
```

Running time: $O(V + E)$
Connectivity

- A *path* in a graph is a sequence of vertices
 \((u_1, u_2, \ldots, u_k)\) such that there is an edge
 \((u_i, u_{i+1})\) between any two adjacent vertices in the sequence
- Two vertices \(u, w \in V(G)\) are *connected* if there is a path in \(G\) from \(u\) to \(w\).
 - We also say that \(w\) is *reachable* from \(u\).
- A graph \(G\) is *connected* if every pair of nodes \(u, w \in V(G)\) are connected.
Connectivity Checking

How to check if the graph is connected?

One approach: Graph traversal
 - BFS: breadth-first search
 - DFS: depth-first search
BFS: Breadth-first search

- **Input:**
 - Given graph $G = (V, E)$, and a source node $s \in V$

- **Output:**
 - Will visit all nodes in V reachable from s
 - For each $v \in V$, output a value $v.d$
 - $v.d = \text{distance (smallest # of edges) from } s \text{ to } v.$
 - $v.d = \infty$ if v is not reachable from s.
Intuition

- Starting from source node s,
 - Spread a wavefront to visit other nodes
 - First visit all nodes one edge away from s
 - Then all nodes two edges away from s
 - ...
Intuition cont.

- A node can be:
 - un-discovered
 - discovered, but not explored
 - explored (finished)

- $v.d$:
 - is set when node v is first discovered.

- Need a data structure to store discovered but un-explored nodes
 - FIFO! Queue
Pseudo-code

Time complexity: $O(V+E)$

Use adjacency list representation
Correctness of Algorithm

- A node not reachable from s will not be visited
- A node reachable from s will be visited
- v, d computed is correct:
 - Intuitively, if all nodes k distance away from s are in level k, and no other nodes are in level k,
 - Then all nodes $(k+1)$-distance away from s must be in level $(k+1)$.
 - Rigorous proof by induction
BFS tree

- A node \(v \) is the parent of \(u \) if
 - \(u \) was first discovered when exploring \(v \)

- A BFS tree \(T \)
 - Root: source node \(s \)
 - Nodes in level \(k \) of \(T \) are distance \(k \) away from \(s \)
Connectivity-Checking

procedure QueryConnected(G)
1 foreach vertex \(v_i \) of \(G \) do
2 \hspace{1em} \(v_i \).mark ← NotVisited;
3 end
4 BFS(V, E, \(v_1 \));
5 foreach vertex \(v_i \) of \(G \) do
6 \hspace{1em} if (\(v_i \).mark = NotVisited) then
7 \hspace{2em} return false;
8 \hspace{1em} end
9 end
10 return true;

Time complexity: O(V+E)
Summary for BFS

- Starting from source node s, visits remaining nodes of graph from small distance to large distance.
- This is one way to traverse an input graph.
 - With some special property where nodes are visited in non-decreasing distance to the source node s.
 - Return distance between s to any reachable node in time $O(|V| + |E|)$.
DFS: Depth-First Search

- Another graph traversal algorithm
- BFS:
 - Go as broad as possible in the algorithm
- DFS:
 - Go as deep as possible in the algorithm
Example

- Perform DFS starting from \(v_1 \)
- What if we add edge \((v_1, v_8)\)
DFS

procedure DFS(G, i)
/* Depth first search from vertex v_i */
1 G.V[i].mark ← Visited;
2 foreach edge (i, j) incident on vertex i do
3 if (G.V[j].mark = NotVisited()) then
4 DFS (G, j);
5 end
6 end

- Time complexity
 - O(V+E)
Depth First Search Tree

- If \(v \) is discovered when exploring \(u \)
 - Set \(v.parent = u \)

- The collection of edges
 - \(\{ (v.parent, v) \} \) form a tree,
 - called Depth-first search tree.
procedure DFStree\(G, i\)

\/* Depth first search from vertex \(v_i\) */

1. \(G.V[i].\text{mark} \leftarrow \text{Visited};\)
2. \(\text{foreach edge } (i, j) \text{ incident on vertex } i \text{ do}\)
3. \(\quad \text{if } (G.V[j].\text{mark} = \text{NotVisited}()) \text{ then}\)
4. \(\quad \quad G.V[j].\text{parent} \leftarrow i;\)
5. \(\quad \quad \text{DFStree } (G, j);\)
6. \(\quad \text{end}\)
7. \(\text{end}\)
Example

- Perform DFS starting from v_1
Another Connectivity Test

procedure QueryConnected(G)

1. foreach vertex \(v_i\) of \(G\) do
 2. \(v_i\).mark ← NotVisited;
3. end

4. DFS(G,1);

5. foreach vertex \(v_i\) of \(G\) do
 6. if \((v_i\).mark = NotVisited\) then return false;
7. end

8. return true;
procedure DFS-All(G)

/* Use Depth first search to traverse all nodes v_i in G */

1. foreach vertex v_i of G do
2. $G.V[i].mark \leftarrow \text{NotVisited}$;
3. end

4. for $i \leftarrow 1$ to V do
5. if ($G.V[i].mark = \text{NotVisited}$) then
6. $DFS(G,i)$;
7. end
8. end
Remarks

- DFS\((G, k)\)
 - Another way to compute all nodes reachable to the node \(v_k\)
- Same time complexity as BFS
- There are nice properties of DFS and DFS tree that we are not reviewing in this class.
Directed Graphs
- Un-directed graph
 - \(E \leq \binom{V}{2} \)
- Directed graph
 - Each edge \((u, v)\) is directed from \(u\) to \(v\)
 - \(E \leq V^2 \)
Vertex Degree

- \(\text{indeg}(v) = \# \text{ edges of the form } (u, v)\)
- \(\text{outdeg}(v) = \# \text{ edges of the form } (v, u)\)

Lemma: \(\sum_{v_i \in V(G)} \text{indeg}(v_i) = |E|\)

Lemma: \(\sum_{v_i \in V(G)} \text{outdeg}(v_i) = |E|\)
Representations of Graphs

- **Adjacency lists**
 - Each vertex \(u \) has a list, recording its neighbors
 - i.e., all \(v \)’s such that \((u, v) \in E\)
 - An array of \(V \) lists
 - \(V[i].degree = \) size of adj list for node \(v_i \)
 - \(V[i].AdjList = \) adjacency list for node \(v_i \)
Adjacency Lists

- For vertex $v \in V$, its adjacency list
 - has size: $\text{outdeg}(v)$
 - decide whether $(v, u) \in E$ or not in time $O(\text{outdeg}(v))$

- Size of data structure (space complexity):
 - $O(V+E)$
Adjacency Matrix

- $V \times V$ matrix A
 - $A[i, j] = 1$ if (v_i, v_j) is an edge
 - Otherwise, $A[i, j] = 0$
Adjacency Matrix

- Size of data structure:
 - $O(V \times V)$
- Time to determine if $(v, u) \in E$:
 - $O(1)$
- Though larger, it is simpler compared to adjacency list.
Sample Graph Algorithm

- Input: Directed graph G represented by adjacency list

```plaintext
Func(G)
1  k ← 0;
2   foreach vertex $v_i \in V(G)$ do
3      foreach edge $(v_i, v_j)$ incident on $v_i$ do
4         k ← k + 1;
5      end
6   end
7  return (k);
```

Running time: $O(V + E)$
Connectivity

- A *path* in a graph is a sequence of vertices $(u_1, u_2, ..., u_k)$ such that there is an edge (u_i, u_{i+1}) between any two adjacent vertices in the sequence.

- Given two vertices $u, w \in V(G)$, we say that w is *reachable* from u if there is a path in G from u to w.
 - Note: w is reachable from u DOES NOT necessarily mean that u is reachable from w.
Reachability Test

- How many (or which) vertices are reachable from a source node, say v_1?
BFS and DFS

- The algorithms for BFS and DFS remain the same
 - Each edge is now understood as a directed edge

- BFS\((V,E,s) \):
 - visits all nodes reachable from \(s \) in non-decreasing order
BFS

- Starting from source node s,
 - Spread a wavefront to visit other nodes
 - First visit all nodes one edge away from s
 - Then all nodes two edges away from s
 - ...
Pseudo-code

Use adjacency list representation

Time complexity: O(V+E)
Number of Reachable Nodes

```
procedure NumReachable(G, v_k)
1   foreach vertex v_i of G do
2       v_i.mark ← NotVisited;
3   end
4   BFS(V, E, v_k);
5   count ← 0;
6   foreach vertex v_i of G do
7       if (v_i.mark = Visited) then
8           count ← count + 1;
9       end
10   end
11 return count;
```

Compute # nodes reachable from \(v_k\)

Time complexity: \(O(V+E)\)
DFS: Depth-First Search

- Similarly, DFS remains the same
 - Each edge is now a directed edge
- If we start with all nodes unvisited,
 - Then DFS(G, \(k\)) visits all nodes reachable to node \(v_k\)
- BFS from previous NumReachable() procedure can be replaced with DFS.
More Example

- Is \(v_1 \) reachable from \(v_{12} \) ?
- Is \(v_{12} \) reachable from \(v_1 \) ?
procedure IsReachable(G, k, q)
1 foreach vertex v_i of G do
2 v_i.mark ← NotVisited;
3 end
4 DFS(G, k);
5 if (v_q.mark = Visited) then return true;
6 else return false;

- DFS above can be replaced with BFS
Topological Sort
A directed cycle is a sequence \((u_1, u_2, \ldots, u_k, u_1)\) such that there is a directed edge between any two consecutive nodes.

DAG: directed acyclic graph

- Is a directed graph with no directed cycles.
A topological sort of a DAG $G = (V, E)$

- A linear ordering A of all vertices from V
- If edge $(u,v) \in E \Rightarrow A[u] < A[v]$

Diagram:

- **undershorts**
 - **pants**
 - **belt**
 - **shirt**
 - **tie**
 - **jacket**
 - **shoes**
 - **socks**
 - **watch**
Another Example

Why requires DAG?

Is the sorting order unique?
A topological sorted order of graph G exists if and only if G is a directed acyclic graph (DAG).
Question

- How to topologically sort a given DAG?

Intuition:

- Which node can be the first node in the topological sort order?
- A node with in-degree 0!
- After we remove this, the process can be repeated.
Example

- undershorts
- pants
- belt
- shirt
- tie
- jacket
- socks
- shoes
- watch
procedure TopologicalSort(G)
 /* Report vertices of G in topologically sorted order */
 1 foreach vertex v_i of G do
 /* S is a stack of vertices. */
 2 if (indeg(v_i) = 0) then S.Push(v_i);
 3 end
 4 while (S is not empty) do
 5 v_i ← S.Pop();
 6 Report v_i;
 7 foreach edge (v_i, v_j) incident on v_i do
 8 Delete (v_i, v_j) from G;
 9 if (indeg(v_j) = 0) then S.Push(v_j);
 10 end
 11 end
procedure TopologicalSort(G)
 /* Report vertices of G in topologically sorted order */
 1 foreach vertex \(v_i \) of G do
 /* \(S \) is a stack of vertices. */
 2 \(\text{inCount}[v_i] \leftarrow \text{indeg}(v_i); \)
 3 if \(\text{inCount}[v_i] = 0 \) then \(S.\text{Push}(v_i); \)
 4 end
 5 while \((S \) is not empty) do
 6 \(v_i \leftarrow S.\text{Pop}(); \)
 7 Report \(v_i; \)
 8 foreach edge \((v_i, v_j) \) incident on \(v_i \) do
 9 \(\text{inCount}[v_j] \leftarrow \text{inCount}[v_j] - 1; \)
 10 if \(\text{inCount}[v_j] = 0 \) then \(S.\text{Push}(v_j); \)
 11 end
 12 end
Time complexity
- $O(V+E)$

Correctness:
- What if the algorithm terminates before we finish visiting all nodes?
- Procedure `TopologicalSort(G)` outputs a sorted list of all nodes if and only if the input graph G is a DAG
 - If G is not DAG, the algorithm outputs only a partial list of vertices.
Remarks

- Other topological sort algorithm by using properties of DFS
Analyzing graph algorithms
- Adjacency list representation or
- Adjacency matrix representation
Edge-weighted un-directed graph $G = (V, E)$ and edge weight function $w: E \to R$

- E.g, road network, where each node is a city, and each edge is a road, and weight is the length of this road.
Example 1

Assume G is represented by adjacency list

Q is priority-queue implemented by min-heap

```
Func3(G)
/* G = edge weighted graph */
1 foreach vertex v_i of G do
2     k ← i;
3     foreach edge (v_i, v_j) incident on v_i do
4         if (k = i) or (weight(v_i, v_k) > weight(v_i, v_j)) then
5             k ← j;
6         end
7     end
8     Q.Insert((v_i, v_k), weight(v_i, v_k));
9 end
10 while Q is not empty do
11     (v_i, v_j) ← Q.ExtractMin();
12     Report edge (v_i, v_j);
13 end
```
Example 2

Assume G is represented by adjacency matrix

```
Func(G)
/* G = edge weighted graph */
1 foreach vertex $v_i$ of $G$ do
2    \[ k \leftarrow i; \]
3    foreach vertex $v_j$ of $G$ do
4       if $A[i,j] == 1$ then
5          if ($k = i$) or ($weight(v_i,v_k) > weight(v_i,v_j)$) then
6              \[ k \leftarrow j; \]
7          end
8    end
9 end
10 $Q$.Insert((\[ v_i,v_k \], weight(v_i,v_k))); 
11 end
12 while $Q$ is not empty do
13    \[ (v_i,v_j) \leftarrow Q$.ExtractMin(); \]
14    Report edge (\[ v_i,v_j \]);
15 end
```