Topic 8: Hash Tables
Dictionary Operations

- Given a universe of elements U
- Need to store some keys
- Need to perform the following for keys
 - Insert
 - Search
 - Delete

Let’s call this a dictionary.
First Try:

- Use an array T of the size of universe.

```plaintext
DIRECT-ADDRESS-SEARCH($T, k$)
    return $T[k]$

DIRECT-ADDRESS-INSERT($T, x$)
    $T[\text{key}[x]] = x$

DIRECT-ADDRESS-DELETE($T, x$)
    $T[\text{key}[x]] = \text{NIL}$
```

Each operation: $O(1)$.

Not great if universe size is much larger than the number of keys ever needed.
Hash Table

- U: universe
- $T[0 \ldots m-1]$: a hash table of size m
 - $m \ll |U|$

- Hash functions
 - $h: U \rightarrow \{0, 1, \ldots, m - 1\}$
 - $h(k)$ is called the **hash value** of key k.
 - Given a key k, we will store it in location $h(k)$ of hash table T.
Collisions

- Since the size of hash table is smaller than the universe:
 - Multiple keys may hash to the same slot.

- How to handle collisions?
 - Chaining
 - Open addressing
Collision Resolved by Chaining

- \(T[j] \): a pointer to the head of the linked list of all stored elements that hash to \(j \)
- Nil otherwise
Dictionary Operations

- **Chained-Hash-Insert** \((T, x)\)
 - Insert \(x\) at the head of list \(T[h(key(x))]\)

- **Chained-Hash-Search** \((T, k)\)
 - Search for an element with key \(k\) in list \(T[h(k)]\)

- **Chained-Hash-Delete** \((T, x)\)
 - Delete \(x\) from the list \(T[h(key(x))]\)
Average-case Analysis

- \(n \): \# elements in the table
- \(m \): size of table (\# slots in the table)
- Load factor:
 - \(\alpha = \frac{n}{m} \): average number of elements per linked list
 - Intuitively the optimal time needed
- Individual operation can be slow (\(O(n) \) time)
 - Under certain assumption of the distribution of keys, analyze expected performance.
Simple Uniform Hashing

- Simple uniform hashing assumption:
 - any given element is equally likely to hash into any of the m slots in T

- Let n_j be length of list $T[j]$
 - $n = n_0 + n_1 + \cdots + n_{m-1}$
 - Under simple uniform hashing assumption:
 - expected value $E[n_j] = \alpha = \frac{n}{m}$

Why?
Let \(\{k_1, k_2, \ldots, k_n\} \) be the set of keys

Goal: Estimate \(E(n_j) \)

Let \(X_i = 1 \) if \(h(k_i) = j \)

\(0 \) otherwise

Note: \(n_j = \sum_{i=1}^{n} X_i \)

Hence

\[
E[n_j] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} \frac{1}{m} = \frac{n}{m}
\]

\[
E[X_i] = \Pr[h(k_i) = j] \times 1 = \frac{1}{m}
\]
Search Complexity – Case 1

- If search is unsuccessful
 - Based on simple uniform hashing, a new key is equally likely to be in any slot

 \[ET[h(k)] = \sum_{j=1}^{m} \frac{1}{m} E[n_j] = \alpha = \frac{n}{m} \]

 - Expected search time: \(\Theta(1 + \alpha) \)
Search Complexity – Case 2

- If the search of k is successful
 - Note, simple uniform hashing assumption does not necessarily implies that there is a equal chance for k in any slot.
 - **Assume**: k is equally likely to be any of the n elements already stored in the hash table.

Theorem:
Under simple uniform hashing assumption, the search procedure takes $\Theta(1 + \alpha)$ expected time, when using collision resolution by chaining.
Hash Functions

- Ideally,
 - Hash function satisfies the assumption of simple uniform hashing
- Hard to achieve without knowledge of distribution where keys are drawn from
- Give a few heuristic examples
Division Method

- \(h(k) = k \mod m \)
 - e.g, \(h(k) = k \mod 701 \)

- Choice of \(m \) is important
 - Power of 2 not very good
 - Depends only on few least significant bits
 - Higher bits not used
 - A good choice is a prime number not too close to exact power of 2

- Related: \(h(k) = (k \cdot p) \mod m \)
Multiplication Method

- Choose some $0 < A < 1$
- $h(k) = \lfloor m (k A \mod 1) \rfloor$
- Slower than division method, but choice of m not so critical
- One reasonable choice of A:
 - $A \approx \frac{\sqrt{5} - 1}{2} \approx 0.6180339887 \ldots$
Open-address Hashing

- All keys are stored in the table itself
 - No extra pointers
- Each slot is either a key or NIL
- To hash a key k:
 - In the ith iteration, compute $h(k, i)$
 - If $h(k, i)$ is taken (not NIL)
 - Go to next iteration
 - If $h(k, i)$ is free
 - Store k here in this slot. Terminate.
procedure HashTable.Insert(K, D)
1 j ← 0;
2 repeat
3 i ← h(K, j);
4 if (T[i] is NIL) then
5 T[i] ← (K, D);
6 return;
7 else
8 j ← j + 1;
9 end
10 until (j = m);
11 error “hash table overflow”;
procedure HashTable.Search(K)
1 \(j \leftarrow 0; \)
2 repeat
3 \(i \leftarrow h(K, j); \)
4 if \((T[i].key = K) \) then
5 return \((T[i].data); \)
6 end
7 \(j \leftarrow j + 1; \)
8 until \((j = m) \) or \((T[i] \text{ is NIL}); \)
9 return \((\emptyset); \)
Re-hashing Functions

- \(h: U \times \{0, 1, ..., m - 1\} \rightarrow \{0, 1, ..., m - 1\} \)

 Possible choices
 - **Linear probing:**
 \[h(k, i) = (h'(k) + i) \mod m \]
 - **Quadratic probing:**
 \[h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m \]
 - **Double hashing**
 \[h(k, i) = (h_1(k) + i h_2(k)) \mod m \]

 Tend to cause primary clustering

 Secondary clustering
Remarks

- Advantages:
 - no pointer, no memory allocation during the course

- But:
 - Load factor $\alpha = \frac{n}{m} < 1$
 - Need resizing strategy when $n > m$
Summary

- Hash Table
 - Very practical data structure for dictionary operations
 - Especially when the number of keys necessary is much smaller than the size of universe
 - Need to choose hash functions properly
 - There exist more intelligent hashing schemes