Topic 11:
Shortest Path
Basics
Dijkstra Algorithm
Shortest Path

- Given a graph \(G = (V, E) \) with weight function \(w : E \rightarrow R \)

- **Weight of path** \(p = \langle v_0, v_1, \ldots, v_k \rangle \)

 \[
 = \sum_{i=1}^{k} w(v_{i-1}, v_i)
 = \text{sum of edge weights on path } p.
 \]

- **Shortest path weight:**

 \[
 \delta(u, v) = \begin{cases}
 \min \left\{ w(p) : u \xrightarrow{p} v \right\} & \text{if there exists a path } u \xrightarrow{p} v, \\
 \infty & \text{otherwise}.
 \end{cases}
 \]
Various Problems

- **Single-source shortest-paths problem**
 - Given source node s to all nodes from V

- **Single-destination shortest-paths problem**
 - From all nodes in V to a destination u

- **Single-pair shortest-path problem**
 - Shortest path between u and v

- **All-pairs shortest-paths problem**
 - Shortest paths between all pairs of nodes
Example
Negative-weight Edges

- Some edges may have negative weights

- If there is a negative cycle reachable from s:
 - Shortest path is no longer well-defined
 - Example

- Otherwise, it is fine
Cycles

- Shortest path cannot have cycles inside
 - Negative cycles: already eliminated
 - Positive cycles: can be removed
 - 0-weight cycles: can be removed
- A path with no cycles inside is also called a *simple path*.

No-Cycle Theorem:
Given any two vertices of graph, there exists a shortest path between them with no cycle.
Optimal Substructure Property

Optimal Substructure Property (Theorem): If \((u_1, u_2, \ldots, u_m)\) is a shortest path from \(u_1\) to \(u_m\), then any sub-path \((u_i, \ldots, u_j)\) is also a shortest path.

- **Proof**
 - Proof by contradiction.
 - If there is a shorter path \(\pi\) from \(u_i\) to \(u_j\), then the path \((u_1, \ldots, u_i) \circ \pi \circ (u_j, \ldots, u_m)\) is a shorter path from \(u_1\) to \(u_m\). Contradiction.
Shortest-paths Tree

- For every node \(v \in V \), \(\pi[v] \) is the predecessor of \(v \) in a shortest path from source \(s \) to \(v \)
 - Nil if does not exist

- A shortest-path tree
 - Root is source \(s \)
 - Edges are \((\pi[v], v) \)

- The shortest path between \(s \) and \(v \) is the unique tree path from root \(s \) to \(v \).
Example: directed graph
Example: undirected graph

- Key property:
 - Given shortest path tree rooted at s (\(v_1\) in this example), one can obtain the shortest path from s to every other vertex connected to it.
Shortest Path Tree

Question:

- Given a shortest path tree of G rooted at s, how fast can we report the shortest path distance from s to all other vertices in G?

\[O(V) \]

Key property:

- Given shortest path tree rooted at s (\(v_1\) in this example), one can obtain the shortest path from s to every other vertex connected to it.

The output of shortest-path algorithms usually contains both shortest-path tree and distances.
Shortest Path Tree

Related to minimum spanning tree?

Shortest Path Tree:

Minimum Spanning Tree:
Goal:

- **Input:**
 - a weighted graph $G = (V, E)$, with *positive weights*!
 - and a source node $v_s \in V$

- **Output:**
 - For every vertex $v \in V$,
 - $v.\text{distance} = \delta (v_s, v)$
 - $v.\text{parent} = \pi[v]$
 - Shortest-paths tree induced by $v.\text{parent}$
Breadth-First Search

- Recall BFS:
 - Shortest path for unweighted graph (i.e., each edge has weight 1).

- Would the same idea work for weighted graph?
We can no longer guarantee that at the time the algorithm first discovers a node, the distance is shortest.

BFS is only for shortest number of edges to reach a node!

How to guarantee that when we first reach a node, the distance is shortest?
Dijkstra Algorithm

procedure DijkstraShortestPath(G, v_s)
1 U ← V(G) − {v_s}; /* V(G) = set of vertices of graph G */
2 v_s.parent ← NULL;
3 v_s.distance ← 0;
4 while (U ≠ ∅) and (∃ edge from (V(G) − U) to U) do
5 (v_i, v_j) ← edge from V(G) − U to U which minimizes
6 v_i.distance + weight(v_i, v_j);
7 v_j.parent ← v_i;
8 v_j.distance ← v_i.distance + weight(v_i, v_j);
9 end
Intuition:

- If $v_i \cdot distance = \delta(v_s,v_i)$
- Then $v_i \cdot distance + weight(v_i,v_j)$ is the shortest distance to reach v_j through v_i.
- Note, this does not have to be the same as shortest distance to v_j.
Example
Correctness

- **Invariance:**
 - At the beginning of the While-loop, all vertices already discovered have correct shortest distance value.

- **Prove that this invariance is maintained:**
 - Base case: in the first iteration, only v_s is discovered, and this invariance holds.

 - Inductive step: If the invariance holds at the beginning of the k-th iteration, then it holds at the end of k-th iteration (i.e., it holds at the beginning of $(k + 1)$-th iteration).
Proof of Induction Step

- Let \((v_i, v_j)\) as identified in Line 5 of the algorithm.
 - Let \(P\) be the shortest path from \(v_s\) to \(v_i\).
 - \(v_i.\ distance + weight(v_s, v_i)\) is the weight of the path \(P \cup \{(v_i, v_j)\}\).
- Proof that any other path from \(v_s\) to \(v_j\) has larger weight.
 - Consider any other path \(P'\) from \(v_s\) to \(v_j\).
 - Let \((x, y)\) be the first edge in \(P'\) that connects a vertex from \(V - U\) to a vertex in \(U\).
 - Argue that the weight of subpath from \(v_s\) to \(y\) is at least \(v_i.\ distance + weight(v_s, v_i)\).
 - Hence the weight of \(P'\) is larger than that of \(P \cup \{(v_i, v_j)\}\).
- Done.
Why do we require that the weights are all positive?

Example.
procedure DijkstraShortestPath(G, v_s)
1 \(U \leftarrow V(G) - \{v_s\} \); /* \(V(G) = \) set of vertices of graph \(G \) */
2 \(v_s.parent \leftarrow \text{NULL}; \)
3 \(v_s.distance \leftarrow 0; \)
4 while \((U \neq \emptyset) \) and \((\exists \) edge from \((V(G) - U) \) to \(U \) \) do
5 \((v_i, v_j) \leftarrow \) edge from \(V(G) - U \) to \(U \) which minimizes \(v_i.distance + \text{weight}(v_i, v_j); \)
6 \(v_j.parent \leftarrow v_i; \)
7 \(v_j.distance \leftarrow v_i.distance + \text{weight}(v_i, v_j); \)
8 \(U \leftarrow U - \{v_j\}; \)
9 end
Running Time Analysis

- Naïve implementation:
 - Spend $O(E)$ time to identify (v_i, v_j) in Line 5.
 - Total time: $O(VE)$

- How to identify (v_i, v_j) more efficiently?
 - First improvement: Storing cost at vertices.
 - v.distance:
 - current estimate of shortest path weight from v_s to v.

CSE 2331 / 5331
Storing Cost at Vertices

```plaintext
procedure DijkstraShortestPath(G, v_s)
    1 $U \leftarrow V(G)$; /* $V(G) =$ set of vertices of graph $G$ */
    2 foreach $v_i \in V(G) - \{v_s\}$ do $v_i$.distance $\leftarrow \infty$;
    3 $v_s$.distance $\leftarrow 0$;
    4 $v_s$.parent $\leftarrow$ NULL;
    5 while ($U \neq \emptyset$) and ($v_i$.distance $< \infty$ for some $v_i \in U$) do
        6 $v_j \leftarrow v_i \in U$ with minimum $v_i$.distance;
        7 $U \leftarrow U - \{v_j\}$; /* Remove $v_j$ from $U$ */
        8 /* ($v_j$, $v_j$.parent) is a shortest path edge */
        9 foreach edge ($v_j$, $v_k$) incident on $v_j$ do
            10 newDist $\leftarrow v_j$.distance + weight($v_j$, $v_k$);
            11 if ($v_k \in U$ and newDist $< v_k$.distance) then
                12 $v_k$.parent $\leftarrow v_j$;
                13 $v_k$.distance $\leftarrow$ newDist;
            14 end
        15 end
end
```
Running Time Analysis

- First improvement:
 - Spend $O(V)$ time to identify (v_i, v_j) in Line 5.
 - Total time: $O(V^2)$
 - Note: the weight stored at v_j is NOT the smallest weight of edge connecting v_j to any visited vertex
 - That is how Prim’s MST algorithm works.

- How to identify (v_i, v_j) more efficiently?
 - Second improvement: Use Priority Queue to store / maintain vertex costs!
 - v.distance: current estimate of shortest path weight from v_s to v.
procedure DijkstraShortestPath(G, v_s)
1 foreach v_i ∈ V(G) − {v_s} do Q.Insert(v_i, ∞);
2 Q.Insert(v_s, 0); /* Q is a priority queue of vertices */
3 v_s.parent ← NULL;
4 v_s.distance ← 0;
5 while Q.IsNotEmpty() and (Q.MinKey() ≠ ∞) do
6 v_j ← Q.DeleteMin();
7 /* (v_j, v_j.parent) is a shortest path edge */
8 foreach edge (v_j, v_k) incident on v_j do
9 newDist ← v_j.distance + weight(v_j, v_k);
10 if (v_k is in U and newDist < v_k.distance) then
11 v_k.parent ← v_j;
12 Q.DecreaseKey(v_k, newDist);
13 v_k.distance ← newDist;
14 end
15 end
Running Time Analysis

- **Priority Queue: \(Q \):**
 - Total size: \(O(V) \)
 - \# \(Q.\text{insert} \): \(O(V) \)
 - Total time: \(O(V \ lg V) \)
 - \# \(Q.\text{DeleteMin} \): \(O(V) \)
 - Total time: \(O(V \ lg V) \)
 - \# \(Q.\text{isEmpty}() \) and \# \(Q.\text{MinKey}() \): \(O(V) \)
 - Total time: \(O(V) \)
 - \# \(Q.\text{DecreaseKey} \): \(O(E) \)
 - Total time: \(O(E \ lg V) \)

Total time: \(O((V + E) \ lg V) \)
Remarks

- Similar idea as breadth first search:
 - Greedy type of algorithm
 - Guarantees that when we first discover a node, the distance is the correct shortest path weight
- Similar to Prim’s Alg for MST:
 - But the cost at each vertex is defined differently.
- Also works for directed graphs
- But require weights to be positive
- $O(V \log V + E \log V) = O((V + E) \log V)$
 - Can be improved to $O(E + V \log V)$ by using a better implementation of priority queue (Fibonacci heap)