Topic 10: Minimum Spanning Tree
- Edge-weighted un-directed graph $G = (V, E)$ and edge weight function $w: E \rightarrow \mathbb{R}$

- E.g., road network, where each node is a city, and each edge is a road, and weight is the length of this road.
A Tree

- An undirected graph $G = (V, E)$ is a tree if:
 - G is connected, and there is no cycle

- Equivalently, an undirected graph $G = (V, E)$ is a tree if:
 - G is connected, and $E = V - 1$

- One key property:
 - Given a tree T on nodes V, if we add any edge e to T, it will create a cycle.
 - That is, $T \cup \{e\}$ contains a cycle for any $e \notin T$.

CSE 2331 / 5331
A Spanning Tree

- A *spanning tree* T of an undirected graph $G = (V, E)$
 - is a tree that includes all vertices V of G
 - $T \subseteq E$

- **Weight** of a spanning tree T:
 - $w(T) = \sum_{(u,v) \in T} w(u, v)$
 - where $w : E \rightarrow R$ is the weight function on edges of G

- A *minimum spanning tree* of G
 - is a spanning tree with smallest weight.

If G is not connected, then no spanning tree exists.
Examples

Is minimum spanning tree unique?
MST

- MST for given G may not be unique

- Since MST is a spanning tree:
 - # edges : |V| - 1

- If the graph is unweighted:
 - All spanning trees have same weight
Key Property of MST

- Given a MST T of $G = (V, E)$, let $e \in E$ be any edge in E but not in T. The following then holds:
 - There is a unique cycle C containing e in $T \cup \{e\}$.
 - e is an edge with largest weight in C.

- Sketch of proof:
 - Why unique?
 - If e does not have largest weight, let $e' \in C$ be an edge with largest weight in C.
 - $T' = T - \{e'\} + \{e\}$ is a spanning tree of G
 - $weight(T') \leq weight(T) \Rightarrow T$ cannot be MST.
 - Contradiction $\Rightarrow e$ must have largest weight in C.

CSE 2331 / 5331
Construct MST

- **Input:**
 - An undirected graph $G = (V, E)$ with weight $w: E \rightarrow R$

- **Output:**
 - A minimum spanning tree MST(G) of G.

- A MST T is $V-1$ number of edges that connect all nodes, with no cycle.

- Intuitively, we will choose “safe” edges to incrementally build T
How to choose the first edge that is “safe”, namely, it must be in *some* MST?

- Note, it is *some*, not *all*!
Intuition

- **Input:**
 - An undirected graph $G = (V, E)$ with weight $w: E \to \mathbb{R}$

- **Output:**
 - A minimum spanning tree $\text{MST}(G)$ of $G.$

- **Intuitively,**
 - Incrementally grow a sub-tree $T(S) \subseteq E$ connecting a subset of nodes $S \subset V$
 - At the beginning of each iteration, $T(S)$ is a sub-tree of some MST of G
 - At each iteration, grow $T(S')$ to include one more vertex $S' = S \cup \{u\}$
 - Such that $T(S')$ is still a sub-tree of some MST of G
Prim’s MST Algorithm: High-level

```
procedure PrimMST(G)
1     U ← V(G) − {v₁};   /* V(G) = set of vertices of graph G */
2     v₁.parent ← NULL;
3     while (U ≠ ∅) and (∃ edge from (V(G) − U) to U) do
4         (vᵢ, vⱼ) ← minimum weight edge from V(G) − U to U;
5         vⱼ.parent ← vᵢ;
6         U ← U − {vⱼ};
7     end
```

- **U**: unconnected vertices
- **S = V − U**: vertices connected by current partial tree
Example

- Greedy algorithm
- Break ties arbitrarily
MST Theorem:

Let T be a sub-tree of a minimum spanning tree.
If e is a minimum weight edge connecting T to some vertex
not in T, then $T \cup \{e\}$ is a subtree of a minimum spanning tree.

- Key to the correctness of PrimMST algorithm.
 - Invariance:
 each time PrimMST() algorithm grows the partial tree (i.e., adds
 another edge to it), the invariance is that the new tree is still a subtree
 of some minimum spanning tree of input graph G.
 - Termination:
 when all nodes are connected, we obtain a MST of G.
Proof of MST Theorem

- By the theorem’s hypothesis, \(T \) is a subtree of some MST \(A \) of \(G \).
- If \(e \) is not an edge of \(A \), then \(A \cup \{e\} \) contains a cycle.
- Let \(C \) be this cycle. There must exists some edge \(e' \in C \) from \(T \) to a vertex not in \(T \).
- Since \(e \) is a minimum weight edge from \(T \) to vertices not in \(T \), \(\text{weight}(e) \leq \text{weight}(e') \).
- Replacing \(e' \in A \) by \(e \) gives a new tree \(B = A - \{e'\} + \{e\} \) such that \(\text{weight}(B) \leq \text{weight}(A) \).
- \(T \cup \{e\} \subseteq B \). So \(T \cup \{e\} \) is also a subtree of some MST.
- Done.
Naive Implementation of Prim’s MST

procedure PrimMST(G)
1 \(U \leftarrow V(G) - \{v_1\} \); /* \(V(G) \) = set of vertices of graph \(G \) */
2 \(v_1.parent \leftarrow \text{NULL}; \)
3 while (\(U \neq \emptyset \) and (\(\exists \) edge from \((V(G) - U) \) to \(U \))) do
4 \((v_i, v_j) \leftarrow \text{minimum weight edge from } V(G) - U \text{ to } U; \)
5 \(v_j.parent \leftarrow v_i; \)
6 \(U \leftarrow U - \{v_j\}; \)
7 end

- Naïve implementation: linear scan all edges to identify min-weight edge \((v_i, v_j)\) at each iteration
- Total time complexity: \(\Theta(VE)\)
First Improvement of Implementation

- Storing costs at vertices
 - Each unvisited vertex in U maintain the smallest weighted edge to visited vertices
First Improvement: Cost at Vertices

procedure PrimMST(G)
1. \(U \leftarrow V(G) \); /* \(V(G) \) = set of vertices of graph \(G \) */
2. foreach \(v_i \in V(G) - \{v_1\} \) do \(v_i\.cost \leftarrow \infty \);
3. \(v_1\.cost \leftarrow 0 \);
4. \(v_1\.parent \leftarrow \text{NULL} \);
5. while \((U \neq \emptyset) \) and \((v_i\.cost < \infty \text{ for some } v_i \in U) \) do
 6. \(v_j \leftarrow v_i \in U \) with minimum \(v_i\.cost \);
 7. \(U \leftarrow U - \{v_j\} \); /* Remove \(v_j \) from \(U \) */
 8. /* \((v_j, v_j\.parent)\) is an MST edge */
 9. foreach edge \((v_j, v_k)\) incident on \(v_j \) do
 10. if \((v_k \text{ is in } U \text{ and } \text{weight}(v_j, v_k) < v_k\.cost)\) then
 11. \(v_k\.parent \leftarrow v_j \);
 12. \(v_k\.cost \leftarrow \text{weight}(v_j, v_k) \);
 end
 end
13. end
14. end
Analysis

- Time to update cost at each vertex at each iteration (in the While-loop):
 - Line 6: $\Theta(V)$
 - Lines 8—13: $\Theta(\deg(v_j))$

- Total time complexity:
 - $\Theta \left(V^2 + \sum_{v_j \in V} \deg(v_j) \right)$
 - $= \Theta(V^2 + E)$
Second Improvement: Efficient Update

- Consider Line 6 of previous implementation
 - We spend linear time to identify the vertex \(v_j \) with smallest cost from \(U \)
- Can we do better?
- What operations do we need to support?
 - extracting the smallest value from a set,
 - updating the cost of some vertices
 - The cost can only decrease!

Use a min-priority queue!
Second Improvement: Priority Queue

```
procedure PrimMST(G)
1 foreach $v_i \in V(G) - \{v_1\}$ do $Q$.Insert($v_i, \infty$);
2 $Q$.Insert($v_1, 0$); /* $Q$ is a priority queue of vertices */
3 $v_1$.parent $\leftarrow$ NULL;
4 while $Q$.IsNotEmpty() and ($Q$.MinKey() $\neq \infty$) do
5     $v_j \leftarrow Q$.DeleteMin(); /* ($v_j, v_j$.parent) is an MST edge */
6     foreach edge ($v_j, v_k$) incident on $v_j$ do
7         if ($Q$.Contains($v_k$) and $Q$.Key($v_k$) $>$ weight($v_j, v_k$))
8             then
9                 $v_k$.parent $\leftarrow v_j$;
10                $Q$.DecreaseKey($v_k$, weight($v_j, v_k$));
11             end
12         end
13     end
14 end
```
Analysis:

- We use min-heap to implement the priority queue
- The maximum size of Q is V
- # iterations of While-loop?
 - V
- # iterations of each call of the inner for-loop?
 - $\deg(v_j)$
- Total #times lines 7—10 are executed:
 - $\sum_{v_j \in V} \deg(v_j)$
Analysis cont.

- **Q.insert:**
 - Total #: \(V \)
 - Total cost: \(\Theta(V \lg V) \)

- **Q.IsNotEmpty and Q.MinKey:**
 - Total #: \(V \)
 - Total cost: \(\Theta(V) \)

- **Q.DeleteMin**
 - Total #: \(V \)
 - Total cost: \(\Theta(V \lg V) \)

- **Q.DecreaseKey**
 - Total #: \(2E \)
 - Total cost: \(\Theta(E \lg V) \)

- **Q.Contains and Q.Key**
 - Total #: \(2E \)
 - Total cost: \(\Theta(E) \)

Total time complexity:
\[\Theta((V + E) \lg V) = \Theta(E \lg V) \]
Remarks

- Prim’s algorithm is a greedy algorithm
 - The choice of the minimum-weight edge at each iteration
- One can use even more efficient Priority-Queue implementation, based on the Fibonacci Heap
 - $\Theta(V \lg V + E)$

- There are many possible MST algorithms
 - Another popular one is Kruskal Algorithm, which also runs in $\Theta(E \lg V)$ time