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Abstract
Graphs and network data are ubiquitous across a wide spectrum of scientific and application domains.

An interesting and important observation that arises very often in real networks is the so-called small-
world effect, which is often referred to as the “six degrees of separation” in popular culture. It basically
says that the average shortest-path distance between vertex pairs is very short. Many beautiful generative
models for graphs have been proposed, partly aiming to understand this small-world effect observed from
real networks. Inspired by the celebrated small-world network model proposed by Watts and Strogatz,
a variety of follow-up work consider the model that an observed network is obtained by adding random
perturbation to a specific type of underlying “structured graph” (such as a grid or a ring). In this proposal,
we advocate the perspective that an observed graph is often a noisy version of some discretized 1-skeleton
of a hidden domain.

We aim to anaylze two aspects of this type of model — geometry and topology. Specifically, the geo-
metric problem we aim to solve is to recover the metric structure of the hidden domain from the observed
graph, which is orthogonal to the usual studies of network models (which often focuses on characteriz-
ing / predicting behaviors and properties of real-world networks). We will consider the following natural
network model (called ER-perturbed random geometric graphs or noisy random geometric graphs): We
assume that there is a true graphG∗X which is a certain proximity graph for points sampled from a hidden
domainX ; while the observed graph ĜX is an Erdős–Rényi type perturbed version ofG∗X . Two methods
are proposed in this research proposal to recover the metric structure of X from ĜX : Jaccard-filtering
process, which based on Jaccard (similarity) index, and clique-filtering process, which based on edge
clique number (a local version of the clique number). We show that these two simple filtering processes
can recover this metric within a constant multiplicative factor under our network model.

We also consider global and local topological features of the observed graph. We first focus on the
clique number of the ER-perturbed random geometric graph ĜX , which is an important global graph
quantity in both network analysis and graph theory. We provide asymptotic tight bounds of the clique
number of ĜX under different common settings. Then, we take a refined view of the noisy graphs.
Specifically, we focus on two types of local subgraphs — neighborhood subgraphs Gloc

u,v for any edge
(u, v) in G, which defined as the induced subgraph over the common neighbors of u and v in G, and
rooted (k-neighborhood) subgraphs Gk

u for any vertex u in G, which is the induced subgraph over the
vertices within k distance (shortest-path distance) away from u. We show that the edge clique number in
ĜX presents two fundamentally different types of behaviors, depending on which “type” of randomness
it is generated from. Also, we notice that many graph representations proposed recently are based on
rooted subgraphs (or similar substrutures), which may be later used in tasks like network comparison
and network classification. However, as we know, the theoretical understanding of the topology of these
subgraphs is rather limited. We take a first step to explore the topological features of the rooted subgraphs
in Erdős–Rényi random graph G(n, p). Specifically, we show that the 1-dimensional Betti number of 1-
ring subgraphs (the induced subgraph over vertices exactly 1 distance away from the randomly selected
root vertex) satisfies a central limit theorem.

1 Introduction

Graphs and networks are ubiquitous across a wide spectrum of scientific and application domains. Analyzing
various types of graphs and network data play a fundamental role in modern data science. In the past
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several decades, there has been a large amount of research studying various aspects of graphs, ranging from
developing efficient algorithms to process graphs, to graph-based data mining.

Among them a varity of empirical studies focus on the graph properties (such as the degree distribution
and the clustering coefficient) of different types of real networks. An interesting and important observation
that arises very often and has practical implications is the celebrated small-world effect [41] discovered in
a seminal work of Milgram [37], which is often referred to as the “six degrees of separation” in popular
culture. It basically says that the average shortest-path distance, appropriately defined, between vertex pairs
is very short. Although first studied in friendship networks, this phenomenon appears to be occurring in
almost all types of networks.

Many beautiful generative models for graphs have been proposed, partly aiming to understand this small-
world effect observed from real networks [41, 56]. One of the most classic models with theoretical guarantee
is the Erdős–Rényi random graph model G(n, p) [16, 17], constructed by adding edges between all pairs
of n vertices with probability p independently. However, since this model is purely combinatorial, it fails
to capture the geometry (shape) of the network. For example, most people make friends based on common
interests, location, age and so on. In other words, in friendship networks, vertices could be sampled from
some feature space of people, and two people could be connected if they are nearby in the feature space.
Obviously, the structure of the feature space cannot be encoded in the Erdős–Rényi random graph model
G(n, p).

Another line of such generative graph models assumes that an observed network is obtained by adding
random perturbation to a specific type of underlying “structured graph” (such as a grid or a ring). For
example, the much-celebrated model introduced by Watts and Strogatz [56] generates a network by starting
with a k-nearest neighbor graph spanned by vertices regularly distributed along a ring. It then randomly
“rewires” some of the edges connecting neighboring points to instead connect nodes possibly far away.
Watts and Strogatz showed that this simple model displays two important characteristics seen in small-world
networks: low diameter in shortest path metric and high clustering coefficients. There have since been many
variants of this model proposed so as to generate small-world networks, such as adding random edges in
a distance-dependent manner [28, 50], or extending similar ideas to incorporate hierarchical structures in
networks; e.g, [29, 55]. See [30] for a survey on this topic.

Statement of the problems. Inspired by the small-world model by Watts and Strogatz (and some later
variants), we take the perspective that an observed graph can be deemed as a noisy snapshot of the graph
representation (discretized 1-skeleton) of a hidden domain of interest. However, orthogonal to the usual
studies of this type of network models (which often focuses on simulating real-world networks and inter-
preting the observed phenomena), we aim to answer the following two main questions:

1. (Geometry) What can we infer about the hidden domain from the observed graph?

2. (Topology) What are the topological properties (such as the clique number) of the observed graph?

To be more specific, we propose the following network model in [45]: Assume that the hidden space that
generates data is a “nice” probability measure µ supported on a compact metric spaceX = (X, dX) (e.g, the
uniform probability measure supported on an embedded smooth low-dimensional Riemannian manifold).
Suppose that the data points V are sampled i.i.d from this probability measure µ, and the “true graph”
G∗r connecting them is the r-neighborhood graph spanned by V (i.e, two points u, v are connected if their
distance dX(u, v) ≤ r). The observed graph Ĝ however is only a noisy version of the true proximity graph
G∗r , and we model this noise by an Erdös-Rényi (ER) type perturbation – each edge in the true graph G∗r
can be deleted with probability p, while a “short-cut” edge between two unconnected vertices u, v could be
inserted to G∗r with probability q. This model is later called the ER-perturbed random geometric graph [25]
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or the noisy random geometric graph [26], as the true proximity graph G∗r generated in this way is in fact a
random geometric graph in random graph theory [46].

To motivate this model, imagine in a social network a person typically makes friends with other persons
that are close to herself in the unknown feature space modeled by our metric space X . The distribution of
people (graph vertices) is captured by the measure µ on X . However, there are always (or may be even
many) exceptions – friends could be established by chance, and two seemingly similar persons (say, close
geographically and in tastes) may not develop friendship. Thus it is reasonable to model an observed social
network Ĝ as an ER-type perturbation of the proximity graph G∗r to account for such exceptions.

Assumptions and notations. All the graphs mentioned in this proposal are simple undirected graphs,
which means there are no duplicate edges or loops (a loop is an edge that connects a vertex to itself). For any
graph G, let V (G) and E(G) refer to its vertex set and edge set, and let NG(u) denote the set of neighbors
of vertex u in G (i.e. vertices connected to u ∈ V (G) by edges in E(G)). We also use the terminology with
high probability. If A1, A2, · · · is a sequence of events, then “An happens with high probability” means that
limn→∞ P[An] = 1 + o(1).

1.1 Geometry — Metric recovery

It is proved (Theorem 2.5 in [45]) that under some general assumptions (X is a compact geodesic metric
space equipped with a doubling measure µ), for any two vertices in the hidden metric space X , the distance
between them inX can be approximated by rescaling the shortest-path distance between them in the induced
r−neighborhood graph G∗r . Thus, the main geometric problem we aim to solve is to recover the metric
structure of G∗r , which reflects that of the hidden space X , from the observed graph Ĝ.

There are different motivations for this problem. For example, it could be that the true graph G∗r is the
real object of interest, and we wish to “denoise” the observed graph Ĝ to get a more accurate representation
of G∗r . Indeed, in [18], Godberg and Roth empirically show how to use small-world model to help remove
false edges in protein-protein interaction (PPI) networks. See [5] for more examples.

1.2 Topology — Graph properties

The observed graph Ĝ generated by adding p-deletion and q−insertion (ER type perturbation) to a random
geometric graph G∗r is of interest itself. Ĝ in some sense is a mixed model of two classic random graph
models — Erdős–Rényi random graph and random geometric graph. The main topological problem we aim
to solve is to get a topological summary of the observed graph Ĝ based on its graph properties (such as the
clique number).

In fact, Ĝ is related to the continuum percolation theory [36]. However, our understanding about the
model so far is still limited: In previous studies, the underlying spaces are typically plane (called the Gilbert
disc model) [8], cubes [11] and tori [23]; the vertices are often chosen as the standard lattices of the space;
and the results usually concern the connectivity [9, 47] or diameter (e.g, [57]).

To be more concrete, we consider the following two problems.

1. Global property — the clique number
Cliques in graphs are important objects in many application domains (e.g, in social networks [20], chemistry
[13] and PPI networks [51]). Not surprisingly, the occurrence of a clique is often viewed as a highly cohesive
subgroup in social networks [41]. The clique number of a graph is the number of vertices in a maximum
clique in the graph. In other words, it is the largest dimension of the non-trivial homology group of the
induced clique (flag) complex, which is now a popular topic in network analysis [52, 27, 22] due to the fast
developing field called topological data analysis (TDA).
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We are interested in the clique number of the observed graph Ĝ. From the theoretical aspect, the clique
number in Erdős–Rényi random graph has been studied extensively in 20th century [19, 7], and is a relative
new topic in random geometric graph [46]. Even in the case when we only add q-insertion, which means
that the observed graph Ĝ can be viewed as a union of these two types of random graphs, understanding the
behavior of the clique number of each of them seems not enough. In general, the clique number of the union
graph G = G1 ∪G2 of two graphs G1 and G2 could be significantly larger than the clique number in each
individual graph Gi: Consider for example G1 is a collection of

√
n disjoint cliques, each of size

√
n, while

G2 equals to the complement of G1. The union G1 ∪G2 is the complete graph and the clique number is n.
However, the clique number of G1 or of G2 is

√
n.

2. Properties of local subgraphs
Besides the global topological properties like the clique number, inspired by the network motifs analysis
[38], we also consider the topological properties of local subgraphs of our model Ĝ. Naturally, for any
graph G = (V,E), there are two types of local subgraphs:

1. Neighborhood subgraphs: defined for each edge (u, v) ∈ E as the induced subgraph over the set of
vertices (Nu ∩Nv) ∪ {u} ∪ {v}. Denote such subgraph by Glocu,v;

2. Rooted (k-neighborhood) subgraphs: for a given integer k, defined for each vertex u ∈ V as the
induced subgraph rooted at u over the set of vertices Γku = {v ∈ V : dG(u, v) ≤ k}, where dG is the
shortest-path metric. Denote such subgraph as Gku.

We remark that both of the subgraphs are used intensively in network analysis and data mining, not only
to understand and further predict the individual behavior [59, 2] but also to find representations of the global
graph by using features observed in these subgraphs [40, 12, 42, 58].

We consider the topological properties for both types of subgraphs. For neighborhood subgraphs, we
introduce a local adapted version of the clique number called “edge clique number” [25, 26], which is
defined for each edge (u, v) in a graph G as the clique number of Glocu,v (or equivalently, the size of the
largest clique containing (u, v) in G). Specifically, we consider the edge clique numbers of the observed
graph Ĝ (noisy random geometric graph). Roughly speaking, there are two types of edges in Ĝ: “long-
range” edges generated from q-insertion and “short” edges generated from the geometric graph. We are
interested in comparing the edge clique numbers of both types of edges.

To study rooted (k-neighborhood) subgraphs, inspired by the work on the topolgy of metric graphs
[15, 44], we consider the extended persistence diagram (induced by the distance-to-root function) for each
rooted subgraph (rooted at any vertex) of an observed graph. A topological representation of the graph can
be derived by combining all these diagrams. There exist a variety of approaches proposed to get different
representations of graphs and further used for graph comparison (e.g., see [43, 31] for surveys on graph
kernels). More recently, methods using neural networks are developed [32, 60, 39]. Although empirically
they show competitive performance, the theoretical understanding is rather limited. We take a first step to
explore the topological features of the rooted subgraphs in Erdős–Rényi random graph G(n, p) from the
perspective of random graph theory.

2 Current progress

In this section, all the problems mentioned in Section 2 will be discussed. Before answering the questions,
we first give a detailed rigorous mathematical description of our graph model. Suppose we are given a
compact geodesic metric space X = (X, d) [10] 1. We consider “nice” measures on X . Specifically,

1A geodesic metric space is a metric space where any two points in it are connected by a path whose length equals the distance
between them. Uniqueness of geodesics is not required. Riemannian manifolds or path-connected compact sets in the Euclidean
space are all geodesic metric spaces.
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Definition 1 (Doubling measure [21]). Given a metric spaceX = (X, d), letBr(x) ⊂ X denotes the closed
metric ball Br(x) = {y ∈ X | d(x, y) ≤ r}. A measure µ on X is said to be doubling if every metric ball
(with positive radius) has finite and positive measure and there is a constant L = L(µ) s.t. for all x ∈ X
and every r > 0, we have µ(B2r(x)) ≤ L · µ(Br(x)). We call L the doubling constant and say µ is an
L-doubling measure.

Intuitively, the doubling measure generalizes a nice measure on the Euclidean space, but still behaves
nicely in the sense that the growth of the mass within a metric ball is bounded as the radius of the ball
increases.

ER-perturbed random geometric graph [45]. We consider the following random graph model: Given a
compact metric space X = (X, d) and a L-doubling probability measure µ supported onX , let V be a set of
n points sampled i.i.d. from µ. We build the r−neighborhood graph G∗r(X ) = (V,E∗) for some parameter
r > 0 on V ; that is, E∗ = {(u, v) | d(u, v) ≤ r, u, v ∈ V }. G∗r(X ) is often called a random geometric
graph [46] generated from (X , µ, r). Now we add the following two types of random perturbations:

p-deletion: For each existing edge (u, v) ∈ E∗, we delete edge (u, v) with probability p.

q-insertion: For each non-existent edge (u, v) /∈ E∗, we insert edge (u, v) with probability q.

The order of applying the above two types of perturbations doesn’t matter since they are applied to two
disjoint sets respectively. The final graph Ĝp,qr (X ) = (V, Ê) is called a (p, q)-perturbation of G∗r(X ), or
simply an ER-perturbed random geometric graph. The reference X and parameters r, p, q are sometimes
omitted from the notations when their choices are clear.

In what follows, we will first focus on geometry — the metric recovery problem, where two denoising
methods with theoretical guarantee are presented. Later we will move to the study of topological features
of the local subgraphs. For clarity and conciseness, some results are given in a very brief manner and
all the proofs are omitted. The complete statements of the theorems and their proofs can be found in the
corresponding cited papers.

2.1 Geometry

First recall the metric recovery problem introduced in Section 2.1:

Shortest-path metric recovery
Input: An observed graph Ĝ = Ĝp,qr (X )

Output: Recover (approximately) the shortest path metric dG∗r(X ) from Ĝ

To describe the proximity, we define the so-called c-approximation as follows.

Definition 2 (c-approximation). Let G and G′ be two graphs on the same set of nodes V , and equipped
with graph shortest path metric dG and dG′ , respectively. By dG ≤ cdG′ , we mean that for any two nodes
u, v ∈ V , we have that dG(u, v) ≤ cdG′(u, v). We say that dG′ is a c-approximation of dG if (1/c)dG ≤
dG′ ≤ cdG.

Suppose for any two nodes u, v connected in G∗r share sufficient number of common neighbors, in-
tuitively, even after removing a constant fraction of edges in G∗r , we can still guarantee that with high
probability u and v will have some common neighbors left, and thus u and v can be connected through
that common neighbor by a path of length 2 in Ĝp,0r . In fact, under the following density-condition, we
can prove that with high probability, the shortest-path metric d

Ĝp,0r
is a 2-approximation of the shortest-path

metric dG∗r for even constant deletion probability p [45].
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(Density-cond) The parameter r and the doubling measure µ satisfy the following condition: There exists
s ≥ 13 lnn/n (= Ω(lnn/n)) such that for any x ∈ X , µ

(
Br/2(x)

)
≥ s.

Intuitively, r is large enough such that with high probability each vertex v in G∗r has degree Ω(lnn).
Note that requiring r to be large enough to have an Ω(lnn/n) lower bound on the measure of any metric ball
is natural. For example, for a random geometric graph constructed as the r-neighborhood graph for points
sampled i.i.d. from a uniform measure on a Euclidean cube, asymptotically this is the same requirement so
that the resulting r-neighborhood graph is connected with high probability [46].

However, the long-range edges (say edge (u, v) ∈ Ĝp,qr with dX(u, v) > 2r) generated by q-insertion
can extensively distort the shortest-path metric ofG∗r . This also reveals the essence why Watts and Strogatz’s
network model (see Section 1) has the small-world effect. Therefore, the key point of shortest-path metric
recovery is to remove those long-range edges. We call this task as filtering. In what follows, we give two
graph filtering techniques, which can be proved to remove almost all the long-range edges in Ĝp,qr with high
probability, and thus can be further used to construct a filtered graph G̃ such that dG̃ approximates dG∗r .

2.1.1 Filtering by using Jaccard (similarity) index

In this section, we show that a simple filtering process based on the so-called Jaccard (similarity) index can
be used to recover the shortest-path metric of G∗r up to a factor of 2 with high probability.

Definition 3 (Jaccard (similarity) index). Given any edge (u, v) ∈ E(G) in any graph G, the Jaccard index
ρu,v of this edge is defined as

ρu,v(G) =
|NG(u) ∩NG(v)|
|NG(u) ∪NG(v)|

. (1)

We remark that Jaccard index is a popular way to measure similarity between a pair of vertices connected
by an edge in a graph [33], and has been commonly used in practice for denoising and sparsification pur-
poses [49, 48]. Our results provide a theoretical understanding for such empirical Jaccard-based denoising
approaches.

We now propose the following Jaccard-Index-based filtering process, which we call a τ -Jaccard filtering,
as it uses a parameter τ . We represent the output filtered graph as G̃Jτ :

τ -Jaccard filtering: Given graph Ĝ, we construct another graph G̃Jτ on the same vertex set as follows: for
each edge (u, v) ∈ E

(
Ĝ
)

, we insert the edge (u, v) into E
(
G̃Jτ

)
if and only if ρu,v

(
Ĝ
)
≥ τ . That

is, V
(
G̃Jτ

)
= V

(
Ĝ
)

and E
(
G̃Jτ

)
:=
{

(u, v) ∈ E
(
Ĝ
)
| ρu,v(Ĝ) ≥ τ

}
.

We have the following theorem to show the effectiveness of τ -Jaccard filtering.

Theorem 4 (Metric recovery based on Jaccard filtering [45], simplifed). Under Density-cond, and assume
p ≤ 1

4 , q ≤ s with s = ω (lnn/n), there exists a range of τ such that the shortest-path metric dG̃Jτ 2-

approximates dG∗r with high probability, where G̃Jτ is the filtered graph of Ĝp,qr by τ -Jaccard filtering.

Remark. The insertion probaility can be increased at the cost of decreasing the range of valid τ ’s. Also
note that the insertion probability cannot be larger than s which affects the number of points falling in any
r/2 ball. It is reasonable since once the underlying graph G∗r is dense enough, the diameter of G∗r (the
largest shortest-path distance between all pairs of vertices) will be small (probably a constant) and thus the
q-insertion won’t distort the shortest-path metric much. However, the method introduced in the next section
shows that even if G∗r is not extremely dense, or specifically, the number of points falling in any r/2 ball
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is only Θ(lnn), we can still handle very large insertion probability, say q = o(1), due to the geometry
of the underlying space. It is quite surprising as it shows that even if the number of edges inserted is of
order ω(n lnn) (can almost reach Θ(n2)), which is much larger than the number of edges in G∗r (which is
Θ(n lnn)), we can still recover the shortest-path metric of G∗r .

2.1.2 Filtering by using edge clique number

First recall that Glocu,v the neighborhood subgraph at edge (u, v) is the induced subggraph over the set of
vertices (Nu ∩Nv) ∪ {u} ∪ {v}. We now give the defintion of the so-called edge clique number.

Definition 5 (Edge clique number [25, 26]). Given a graph G = (V,E), for any edge (u, v) ∈ E, its edge
clique number ωu,v(G) is defined as

ωu,v(G) = the clique number of the neighborhood subgraph Glocu,v.

Easy to see that it is also the size of the largest clique in G containing edge (u, v). Similar to τ -Jaccard
filtering process, we introduce our edge-clique-number based filtering process.

γ-Clique filtering: Given graph Ĝ, we construct another graph G̃Cγ on the same vertex set as follows: For

each edge (u, v) ∈ E
(
Ĝ
)

, we insert the edge (u, v) into E
(
G̃Cγ

)
if and only if ωu,v

(
Ĝ
)
≥ γ. That

is, V
(
G̃Cγ

)
= V

(
Ĝ
)

and E
(
G̃Cγ

)
:=
{

(u, v) ∈ E
(
Ĝ
)
| ωu,v

(
Ĝ
)
≥ γ

}
.

We need the following technical assumption called Assumption-R on the parameter r and probability
measure µ, where an additional condition is required along with Density-cond.

[Assumption-R]: The parameter r and the doubling measure µ satisfy the following condition:

There exist s ≥ 13 lnn
n

(
= Ω( lnnn )

)
and a constant ρ such that for any x ∈ X

(Density-cond) µ
(
Br/2(x)

)
≥ s.

(Regularity-cond) µ
(
Br/2(x)

)
≤ ρs

It basically says that the mass contained inside all radius-r metric balls are similar (within a constant ρ
factor); so the measure µ is roughly uniform at this scale r and thus the number neighbors of any vertex in
G∗r is Θ(sn) (can potentially be Θ(lnn) if pick s = Θ(lnn/n)). These conditions can be satisfied when
the input measure is the so-called (Ahlfors) d-regular measure [21], which is in fact stronger and essentially
requires that such a bound on the mass in a metric ball Br′(x) holds for every radius r′.

We now show the result for Ĝ0,q
r where only q-insertion is added to G∗r .

Theorem 6 (Metric recovery based on Clique filtering [25], q-insertion only, simplified). Under Assumption-
R, there exist constant c1, c2, c3 such that if γ < sn/4 and q ≤ min

{
c1, c2 (1/n)c3/γ (γ/sn)

}
, then the

shortest-path metric dG̃Cγ 3-approximates dG∗r with high probability, where G̃Cγ is the filtered graph of Ĝ0,q
r

by γ-Clique filtering.

Remark. Here we give an example of the above theorem. If we choose γ = lnn and assume that sn > 4γ,
then with high probability we can recover the shortest-path metric within a factor of 3 as long as q ≤ c lnnsn
for some constant c > 0. If sn = Θ(lnn) (but sn > 4γ = 4 lnn), then q is only required to be smaller than
a (sufficiently small) constant. Next, if sn = lna n for some a > 1, then we require that q ≤ c/(lna−1 n).
In constrast, the Jaccard-filtering process (Theorem 4) requires that q = o(s), which is q = o(lna n/n). The
gap (ratio) between these two bounds is nearly a factor of n.
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We also have the result for G̃p,qr (omitted intentionally for conciseness; See Theorem 4.3 in [25] for the
complete result). It can be proved that for a constant deletion probability p, our clique filtering process still
requires a much larger range of insertion probability q compared to what’s required by Jaccard filtering,
although the gap is much smaller than the case for p = 0.

However, we do point out that the Jaccard-filtering process is algorithmically much simpler and faster,
and can be done in O(n2) time, while the clique-filtering requires the computation of edge-clique numbers,
which is computationally expensive.

2.2 Topology

In this section, we focus on the topological features. We first consider the clique number of noisy random
geometric graph (ER-perturbed random geometric graph generated in Euclidean space). As we mentioned
in Section 1, the clique number of random graphs is not only an important graph property [7, 46], but also a
central topic in the topological analysis on random graphs, especially in the analysis of random clique (flag)
complexes [24, 6]. The reason why we discuss the Euclidean version of noisy random geometric graph is
to align with the standard notations and assumptions often seen random graph literature. The conclusions
derived below can also be extended for general ER-perturbed random geometric graphs.

In the second part of this section, we discuss the topology of two types of subgraphs — neighborhood
subgraphs and rooted subgraphs, both of which are mentioned early in Section 1. The result on edge clique
numbers (clique numbers for neighborhood graphs) are given there. Not surperisingly, the effectiveness of
Clique-filtering process (Theorem 6) can be derived directly by using those results.

The other object we are interested in is the extended persistence diagram for each rooted subgraph
(treated as a metric graph) in Erdős–Rényi random graphs G(n, p). In particular, we study a specific type
of points in the diagram, which can be easily interpreted as the cyclomatic number (or the 1st Betti number)
of 1-ring of the rooted subgraph. We show that the number of this type of points satisfies a central limit
theorem, which gives some basic understanding of the diagrams generated by local subgraphs.

2.2.1 Global property — the clique number

In this section, to align with the standard defintion of random geometric graph [46], we focus on the follow-
ing setting of noisy random geometric graphs, which we refer to as the standard-setting:

• The space we consider is the d-dimensional Euclidean space Rd with a fixed dimension d, equipped
with some arbitrary norm ‖·‖ on Rd.

• ν is a probability distribution with finite maximum density σ; andX1, X2, · · · are independent random
variables sampled from ν.

• r = (r(1), r(2), · · · ) is a sequence of positive real numbers such that r(n)→ 0 as n→∞.

• p and q = q(n) are real numbers between 0 and 1 (for simplicity, we only consider the case when p is
a fixed constant).

• Gn, Gp,qn denote the random geometric graph G(X1, · · · , Xn; r(n)) and its (p, q)-perturbation (p-
deletion, q-insertion), respectively.

Remark. Different from the Density-cond or Assumption-R in Section 2.1, here in standard random
geometric graphs, only the upper bound of the density function is required, which means we now only have
an upper bound for the number of points in any “local ball” (similar to Regularity-cond in Assumption-R).

We use the terminology almost surely (or a.s.): In particular, if ξ1, ξ2, · · · is a sequence of random
variables and k1, k2, · · · is a sequence of positive numbers, then ξn = O(kn) a.s. means that there exist
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C1 > 0 such that P [ξn ≤ C1kn]→ 1 as n→∞. Similarly, ξn = Ω(kn) a.s. and ξn = Θ(kn) a.s. are also
defined in the same pattern.

Many properties of G(X1, · · · , Xn; r) are qualitatively different depending on which distance r = r(n)
is chosen. In some sense, the distance r here plays a role similar to the edge-adding probability p(n) in
Erdős–Rényi random graphs G(n, p). Following standard settings in the literature [35, 46], we consider the
following three regimes of r, or more precisely, of the quantity nrd:

I. (“very sparse”) nrd ≤ n−α for some fixed α > 0;

II. (“quite sparse”) n−ε � nrd � lnn for all ε > 0;

III. (“dense”) σnrd/ lnn→ t ∈ (0,∞);

Recall that the clique number of a graph is the number of vertices in a maximum clique in the graph.
We denote the clique number of any graph G by clique(G). For simplicity, we only show the result for the
case when nrd is in the dense regime. Results for other regimes can be found in [26].

Theorem 7 (The clique number of noisy random geometric graphs, “dense” regime [26]). Suppose Gp,qn is
a (p, q)-perturbed noisy random geometric graph in the standard-setting with a constant p ∈ (0, 1). Then
there exists a constant T > 0 such that if σnrd/ lnn→ t ∈ (T,∞), then there exists two constants C1, C2

such that

a) if q ≤ (1/n)C1/ ln lnn (ln lnn/ lnn), then

clique (Gp,qn ) = Θ
(

ln
(
nrd
))

a.s.

b) and if q = Θ(1) and q ≤ C2, then

clique (Gp,qn ) = Θ
(

log 1
q
n
)

a.s.

Remark. The theorem above basically says that under those setting of parameters r, p, q, we can get a tight
asymptotic bound for the clique number. However, there is a gap of q between the conditions of a) and b),
where only very loose bound can be derived currently. One potential future work is to develop techniques
to solve the clique number problem when q falls in this gap.

2.2.2 Properties of local subgraphs

In this section, we consider the topological properties of two types of (local) subgraphs — neighborhood
subgraphs and rooted subgraphs (see Section 1). Specifically, we first discuss the behavior of the clique
numbers of neighborhood subgraphs (equivalently, the edge clique numbers) induced by different types of
edges in Ĝp,qr (X ). After that we give some understanding of the extended persistence diagrams (induced by
the super-level set filtration based on the the distance-to-root function) of rooted subgraphs in Erdős–Rényi
random graphs G(n, p).

1. The behavior of the edge clique numbers in Ĝp,qr (X )
Recall that the edge clique number of any edge (u, v) in any graph G, denoted by ωu,v(G), is the clique
number of the neighborhood subgraph Glocu,v. In what follows, we show that the edge clique number in
Ĝp,qr (X ) presents two fundamentally different types of behaviors, depending on which “type” of randomness
it is generated from. We would like to point out that the result on the effectiveness of Clique-filtering process
in Section 2.1.2 is a direct application of this observation. Again, we only give the result for the insertion-
only case for simplicity.
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Theorem 8 (Two different behaviors of edge clique number [25], q-insertion only, simplified). Under
Assumption-R, for any insertion probability q = o(1), with high probability,

• for all “good edge” (u, v) ∈ Ĝ0,q
r (i.e., dX(u, v) ≤ r), we have ωu,v

(
Ĝ0,q
r

)
≥ sn;

• for all “bad edge” (u, v) ∈ Ĝ0,q
r (i.e., dX(u, v) ≥ 3r), we have ωu,v

(
Ĝ0,q
r

)
= o(sn);

Remark. The above theorem shows that there is a gap between the edge clique number of edges gener-
ated by the random geometric graph G∗r (“good edges”) and some “very long” edges generated by (0, q)-
perturbation (“bad edges”), and thus we can further differentiate these two types of edges by using edge
clique number. Moreover, this result also provides topological information about the neighborhood sub-
graphs, which may be potentially used in some representation of the global graph.

2. Topology of rooted subgraphs in G(n, p)

We now move to the rooted subgraphs. As we mentioned in Section 1, many graph representations pro-
posed recently are based on rooted subgraphs (or similar substrutures). However, as we know, the theoretical
understanding of the topology of these subgraphs is limited. We take a first step to analyze the topology of
rooted subgraphs in Erdős–Rényi random graph G(n, p).

Recall that given a positive integer k, a rooted (k-neighborhood) subgraph of any graph G at vertex
u, denoted by Gku, is defined as the induced subgraph rooted at u over the set of vertices Γku = {v ∈ V :
dG(u, v) ≤ k}, where dG is the shortest-path metric. By setting different k, we can get different scales of
local subgraphs. Furthermore, we define the so-called l-ring subgraphs as follows, which provide a refined
view of root subgraphs.

Definition 9 (l-ring subgraphs [53]). Given a graph G = (V,E), for any vertex u ∈ V , the l-ring subgraph
of u is the induced subgraph over the vertex set ∆l

u = {v ∈ V : dG(u, v) = l}, where dG is the shortest-path
metric. Denote such subgraph by Gl→u.

For a given rooted subgraph Gku, it can be viewed as a metric graph [15] equipped with the distance-to-
root function fGku : for any vertex v in Gku, fGku(v) = dGku(v, u); then we do linear interpolation for each

edge. For example, suppose z is the mid point of edge (v, w), then fGku(z) =
[
fGku(v) + fGku(w)

]
/2.

Now consider the 1-dimensional extended persistence diagrams [4] of these rooted subgraphs induced
by the super-level set filtration of the distance-to-root function. A special type of points in the diagrams
is the points on the diagonal. By an argument on reading the Betti number of some substructures from
the extended persistence diagrams (Theorem 2 in [4]), it is easy to see that the number of (t, t) in the
diagram associated with vertex u is the 1-dimensional Betti number ofGt→u (as an 1-dimensional simplicial
complex). Equivalently, this quantity can also be interpreted as the so-called cyclomatic number of Gt→u,
which is the minimum number of edges that must be removed from the graph to break all its cycles.

In particular, we are interested in the behavior of the number of (1, 1) points in the extended persistence
diagrams of the rooted subgraphs in Erdős–Rényi random graph G(n, p). In other words, we consider the
cyclomatic numbers of 1-ring subgraphs ofG(n, p). More precisely, we focus on the bahavior of the random
variable C(1)

n,p defined as follows:

1. Sample a graph G from G(n, p);

2. Randomly pick a vertex v in G;

3. Set C(1)
n,p := β1(G1→v), where β1(·) is the 1-dimensional Betti number;
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A sequence {Xn}∞n=1 of random variables is said to converge weakly to a limiting random variable X
(written Xn ⇒ X) if limn→∞ E[f(Xn)] = E[f(X)] for all bounded continuous function f .

Now we are ready to state our result on C(1)
n,p.

Theorem 10 (Central limit theorem for C(1)
n,p [53]). If n−1/2 � p < 1, then

C
(1)
n,p − E

[
C

(1)
n,p

]
√

Var
[
C

(1)
n,p

] ⇒ N (0, 1)

Remark. In the above theorem, we only consider the 1-dimensional Betti number (cyclomatic numbers)
of 1-ring subgraphs. Based on some empirical results, we conjecture that the 1-dimensional Betti number
for l-ring subgraphs with l ≥ 2 (if exist) also satisfies a central limit theorem in some different range of
p. Let β1,d(G) := |{v ∈ V : β1 (G1→v) = d}|, where β1(·) is the 1-dimensional Betti number. We also
conjecture that the distribution of β1,d (G(n, p)) should follow a Normal distribution. Check Section 3.2.2
for more discussions.

3 Future directions

Here are some directions either I am currently working on or may explore in the future.

3.1 Geometry

Recall the shortest-path metric recovery problem mentioned at the beginning of Section 2.1: we want to
recover (approximately) dG∗r(X ) the shortest path metric of the random geometric graph from the (p, q)-
perturbation of G∗r(X ). We proposed two filtering techniques, τ -Jaccard filtering and γ-Clique filtering, to
solve this problem. τ -Jaccard filtering is algorithmically much simpler and faster, but theoretically speaking,
it cannot be used to handle much larger noise (say the insertion probability q is large). Although such
situation can still be solved by γ-Clique filtering, in general, finding maximum cliques (sub)graphs (or even
approximating it) is algorithmically expensive. Thus, we are looking for other graph quantities, which is
easy to compute like Jaccard index and can be applied to the noise level where γ-Clique filtering still works.

3.1.1 Filtering by using truss number

Given a graph G, the k-truss of G is the largest subgraph of G in which every edge is contained in at least
(k − 2) triangles within the subgraph [54]. We now give the definition of the so-called edge truss number
(or trussness).

Definition 11 (Edge truss number [54]). Given a graph G = (V,E), for any edge (u, v) ∈ E, its edge truss
number Tu,v(G) is defined as

Tu,v(G) = max
{
k : the neighborhood subgraph Glocu,v has a k-truss

}
.

For example, if Nu(G) ∩Nv(G) = ∅, then Tu,v(G) = 2; if |Nu(G) ∩Nv(G)| = 1, then Tu,v(G) = 3.
It is easy to see that Tu,v(G) ≥ ωu,v(G) holds for all edges (u, v) ∈ E.

On the computational aspect, computing the edge truss numbers Tu,v(G) for all (u, v) ∈ E has a
polynomial time complexity by using an efficeint in-memory algorithm for truss decomposition [54]. Our
empirical result shows that in our graph model Ĝ = Ĝp,qr (X ), the edge truss number Tu,v has the similar
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(a) Edge clique number v.s. Edge truss number (b) Edge clique number v.s. Degeneracy
Figure 1: In these figures, we compute the edge truss number, the degeneracy [41] (core number) of the
(edge) neighborhood graphs, and the edge clique number for all edges in a (0, 0.01)-perturbation of the ran-
dom geometric graph whose vertices are sampled uniformly on a sphere (# nodes: 4957, # edges: 197201).
(a) The edge truss number in such graph has the same trend as the edge clique number; (b) The behavior of
the degeneracy of the edge neighborhood graph somehow is very different from the edge clique number.

behavior as the edge clique number ωu,v. See Figure 1 for an example. Thus, we conjecture that the edge
truss number should be a good candidate for solving the shortest-path metric recovery problem.

Right now I am working on the theoretical perpective of this observed phenomenon.

3.1.2 Filtering by using Ricci curvature

Given a graph G = (V,E), a probability distribution over the vertex set V is a mapping m : V → [0, 1]
such that

∑
v∈V m(v) = 1. Suppose two probability distributions m1,m2 have finite support. A coupling

between m1 and m2 is a mapping A : V × V → [0, 1] with the finite support so that∑
u∈V

A(u, v) = m1(v) and
∑
v∈V

A(u, v) = m2(v)

The graph transportation distance between m1 and m2 is defined as follows.

W (m1,m2) := inf
A

∑
u,v∈V

A(u, v)d(u, v)

where d(u, v) is the shortest-path distance between u and v in graph G. For any α ∈ [0, 1] and any vertex
u ∈ V , we define the following probability measure mα

u .

mα
u(v) =


α, if v = u,

(1− α)/|Nu(G)|, if v ∈ Nu(G),
0, otherwise.

Now we are ready to define the α-Ricci curvature of any pair of vertices u, v ∈ V .

Definition 12 (α-Ricci curvature [34]). For any α ∈ [0, 1] and u, v ∈ V , we define α-Ricci-curvature καu,v
to be

καu,v = 1− W (mα
u ,m

α
v )

d(u, v)
.
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As a first step, instead of proving something in noisy random geometric graphs, I am now working on
the καu,v of two different types of edges in stochastic block model [1]. Similar to the (p, q)-perturbation of
random geometric graphs, we also randomly remove edges in communities. To be more specific, we are
interested in the behavior of καu,v of edges (u, v) with u, v sitting in the same community (block) as well as
those with u, v sitting in different communities. We hope to see a dramatic difference between these two
types of edges for reasonable noise level. And if it is true, then a Ricci-curvature based filtering process can
be used to differentiate those two types of edges, and it may further be used to design a new method to solve
the recovery problem [1].

3.2 Topology

3.2.1 Open problems related to Gp,qn

As a new graph model, there are many interesting open problems. For example, the combined case is not
yet completely resolved (there are still gaps in the regimes; see Theorem 7 for a concrete example). Also
currently we only provide asymptotic tight bounds, and it would be interesting to identify the exact constant
for the high order terms too.

Besides the clique number, the other quantity I would like to study in the future is the chromatic number
of Gp,qn . Given a graph G, the chromatic number of G, denoted by χ(G), is the smallest number of colors
needed to color the vertices of G such that each vertex is colored by exact one color, and no two vertices
sharing the same edge have the same color. It is well-known that in Erdős–Rényi random graphs G(n, p),
χ(G(n, p)) = Θ(n/ log n) and clique(G(n, p)) = Θ(log n) when p is a constant [3]. Hence, the chromatic
number is much larger than the clique number in Erdős–Rényi random graphs G(n, p). However, this
is no longer true in random geometric graphs Gn. Interestingly, in random geometric graphs Gn, with
high probability, χ(Gn) the chromatic number is of the same order of clique(Gn) the clique number in
all regimes of nrd [35]. Thus, we are curious about the relationship between the clique number and the
chromatic number of Gp,qn (the (p, q)-perturbation of Gn).

3.2.2 Open problems related to C(l)
n,p

Let β1,d(G) := |{v ∈ V : β1 (G1→v) = d}|. Inspired by the standard results on the degree distribution of
random graphs (Section 3.1 in [17]), a natural question arises: what is the distribution of β1,d(G) when
G is an Erdős–Rényi random graph G(n, p)? Based on our empirical result (see Figure 2), we conjecture
that when p is large enough, then β1,d should obey a normal distribution. I am now working on proving or
disproving this conjecture.

We only considered the 1-ring subgraphs in G(n, p) in this proposal. So how about l-ring subgraphs?
Interestingly, for l = 2, 3, our empirical result indicates that there should exist two disjoint ranges of p such
that when p falls in either range, a central limit theorem of C(l)

n,p holds (see Figure 3).
Note that C(l)

n,p is the number of (l, l) points in the extended persistence diagrams of rooted subgraphs in
Erdős–Rényi random graphs G(n, p). Besides this type of points in the diagrams, we are also interested in
other quantities. For example, from the 0-dimensional diagram and 1-dimensional diagram, we can recover
the number of vertices, number of edges in each “layer” (Gk→u) and the number of crossing edges between
two consecutive “layers” (edges between Gk→u and G(k+1)→u). Our next goal is to analyze other quantities
in these local diagrams, since these local diagrams may potentially be used to construct a representation of
the global graph.
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(a) G(1000, p) with p ∈ [0, .5]
Figure 2: Given a graph G sampled from Erdős–Rényi random graph G(1000, p), we perform the so-called
D’Agostino-Pearson test [14] on the 1000 samples {β1(G1→v) : v ∈ G} (one value for each vertex). We
simply use the function SCIPY.STATS.NORMALTEST in Python to compute the p-values of these tests (y-
axis). Note that a large p-value doesn’t mean that the samples are sampled from a normal distribution.
However, the result still gives us a hint on how large p should be such that the distribution of β1,d(G) looks
like a normal distribution.
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D'Agostino-Pearson test, 3-ring subgraphs, # nodes = 10000

(a) G(1000, p) with p ∈ [0, .125] (b) G(10000, p) with p ∈ [0, .005]

Figure 3: Again, we perform the D’Agostino-Pearson tests on 1000 samples of C(2)
1000,p and C(3)

10000,p, re-
spectively. These empirical results don’t directly support our conjecture, but they still give us a hint on the
range of p in which a central limit theorem of the corresponding 1-dim Betti number holds.
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