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Introduction

Graph / Network — common data type

Often an input graph G can be viewed as a noisy observation
(perturbed version) of a hidden ground truth graph G ∗

High level goal:

Inference about true graph G∗, or analyze properties of perturbed
graphs
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Our Network Model

The true graph G ∗ = (V ,E ∗) is a random geometric graph(RGG) where:

V = Vn are n points sampled i.i.d from a probability density function
induced by a “nice” measure µ on a “nice” metric space M = (M, d)

E ∗ = E ∗r ,n = {(u, v) | dM(u, v) ≤ r , u, v ∈ V } is the r−neighborhood
graph for some parameter r > 0

The observed graph G is an Erdős-Rényi type(ER) (p, q)-perturbation of
G ∗ where:

p−deletion: For each existing edge (u, v) ∈ E ∗, we delete edge
(u, v) with probability p

q−insertion: For each non-existent edge (u, v) /∈ E ∗, we insert edge
(u, v) with probability q
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Our Network Model

Remark: Our model is related to the continuum percolation theory1.

1Ronald Meester and Rahul Roy. Continuum percolation, volume 119. Cambridge University
Press, 1996.
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Clique Number

The clique number of a graph G, denoted ω(G), is the number of vertices
in a maximum clique of G.

In Erdős-Rényi graphs G (n, p):

If 0 < p < 1 is a constant, then
lim

n→∞
Pr [ω(G (n, p)) = k(n) or k(n)− 1] = 1, where k(n) ∼ 2 log1/p n

(The celebrated two-point concentration2)

In standard random geometric graphs(the underlying space is Rd):

Has dramatically different behaviors when different ranges of r are
chosen .

In our model?

Minghao Tian (OSU) Local cliques in ER-perturbed RGGs November 6, 2018 5 / 26



Clique Number

The clique number of a graph G, denoted ω(G), is the number of vertices
in a maximum clique of G.
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1For the explicit expression of k(n), check: Béla Bollobás and Paul Erdős. Cliques in random
graphs. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 80, pages
419 427. Cambridge University Press, 1976.

Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley Publishing, 4th edition,
2016.

Minghao Tian (OSU) Local cliques in ER-perturbed RGGs November 6, 2018 5 / 26



Clique Number

The clique number of a graph G, denoted ω(G), is the number of vertices
in a maximum clique of G.
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The Clique Number of The Union Graph

G = 3 K3’s (ω(G) = 3) The complement Gc (ω(Gc) = 3)

The union graph is a K9 whose clique number is 9.
(consider

√
n K√n and its complement)
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Edge Clique Number

The edge clique number of an edge e in G, denoted ωG(e), is the number
of vertices in a maximum clique in G containing e.

It is the “local version” of clique number.

Intuitively, an edge in the observed graph G (ER-perturbed) can come
from either the random geometric graph G ∗ or the Erdős-Rényi
perturbation (inserted edges).

(Main result) The edge clique number exhibits fundamentally
different behaviors for these two types of edges.
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“Nice” Measure µ and “Nice” Metric Space M

M — a compact geodesic metric space

Any two points in it are connected by a path whose length equals the
distance between them. Uniqueness of geodesics is not required.
e.g. Riemannian manifolds, path-connected compact sets in the
Euclidean space, etc.

µ — a doubling measure

Every metric ball (with positive radius) has finite and positive measure
and there is a constant L = L(µ) s.t. for all x ∈ M and every R > 0,
we have µ(B2R(x)) ≤ L · µ(BR(x)).
L is the doubling constant and µ is an L−doubling measure.
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Further Assumption on “Nice” Measure µ

For technical reasons, we need an assumption on the parameter r (for the
RGG G ∗), as well as a condition on the measure µ.

Assumption-A

The parameter r and the doubling measure µ satisfy the following
condition:
There exist s ≥ 13 ln n

n

(
= Ω( ln n

n )
)

and a constant ρ such that for any
x ∈ X

(Density-cond) µ
(
Br/2(x)

)
≥ s.

(Regularity-cond) µ
(
Br/2(x)

)
≤ ρs
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Two Types of Edges — Good Edges and Bad Edges

u v
z

r

r

r
2

u v
r

r

Good edge: d(u, v) ≤ r Bad edge: ∀x ∈ NG∗(u), y ∈ NG∗(v),
d(x , y) > r .

(Edges from RGG) (Edges from ER perturbation)

Remark: There are “not-so-bad” edges other than these two types.
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Main Results

Theorem (Simplified, Insertion-only)

Let G ∗ be the true graph generated as described, and G a graph obtained
after random q−insertion. Under Assumption-A, for any insertion
probability q = o(1), with high probability,

for all good edges e ∈ G , we have ωG (e) = Θ(sn)

for all bad edges e ∈ G , we have ωG (e) = o(sn)

Theorem (Simplified, (p, q)−perturbation)

Let G ∗ be the true graph generated as described, and G a graph obtained
after random p−deletion and q−insertion. Under Assumption-A and
assume sn = Θ(ln n), for any constant p ∈ (0, 1) and

q = o
((

1
n

) c
ln ln n ln ln n

ln n

)
, with high probability,

for all good edges e ∈ G , we have ωG (e) = Ω(ln ln n)

for all bad edges e ∈ G , we have ωG (e) = o(ln ln n)
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Sketch of Proof of the Insertion-only Case

The lower bound for good edges

u v
z

r

r

r
2

Br (u) ∩ Br (v) must contain an r/2 centered at the midpoint z of a
geodesic connecting u to v in M
At most

(
n
2

)
such r/2−balls

The number of points in any r/2−ball can be bounded from below
with very high probability by applying the Chernoff bound
Union bound
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Sketch of Proof of the Insertion-only Case (cont’d)

The upper bound for bad edges

Two cases

u v u v

BV
r (u) BV

r (v)

Case (a) — Ãuv Case (b) — Buv

By the pigeonhole principle and the union bound, we have:

P [G has a uv -clique of size ≥ K]

≤P
[
G |Ãuv

has a uv -clique of size ≥
K

2

]
+ P

[
G |Buv has a uv -clique of size ≥

K

2

]
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Case (b)

u v

BV
r (u) BV

r (v)

With very high probability, the number of points in any r−ball can be
bounded from above by applying the Chernoff bound

Estimate the expectation of the number of uv−cliques with size K/2

Apply Markov’s inequality (first moment method):
P[has a K/2 uv-clique] ≤ E[# of K/2 uv-cliques]

To let the probability go to 0, we derive some requirement on q and K

Minghao Tian (OSU) Local cliques in ER-perturbed RGGs November 6, 2018 14 / 26



Case (b)

u v

BV
r (u) BV

r (v)

With very high probability, the number of points in any r−ball can be
bounded from above by applying the Chernoff bound

Estimate the expectation of the number of uv−cliques with size K/2

Apply Markov’s inequality (first moment method):
P[has a K/2 uv-clique] ≤ E[# of K/2 uv-cliques]

To let the probability go to 0, we derive some requirement on q and K

Minghao Tian (OSU) Local cliques in ER-perturbed RGGs November 6, 2018 14 / 26



Case (b)

u v

BV
r (u) BV

r (v)

With very high probability, the number of points in any r−ball can be
bounded from above by applying the Chernoff bound

Estimate the expectation of the number of uv−cliques with size K/2

Apply Markov’s inequality (first moment method):
P[has a K/2 uv-clique] ≤ E[# of K/2 uv-cliques]

To let the probability go to 0, we derive some requirement on q and K

Minghao Tian (OSU) Local cliques in ER-perturbed RGGs November 6, 2018 14 / 26



Case (b)

u v

BV
r (u) BV

r (v)

With very high probability, the number of points in any r−ball can be
bounded from above by applying the Chernoff bound

Estimate the expectation of the number of uv−cliques with size K/2

Apply Markov’s inequality (first moment method):
P[has a K/2 uv-clique] ≤ E[# of K/2 uv-cliques]

To let the probability go to 0, we derive some requirement on q and K

Minghao Tian (OSU) Local cliques in ER-perturbed RGGs November 6, 2018 14 / 26



Case (b)

u v

BV
r (u) BV

r (v)

With very high probability, the number of points in any r−ball can be
bounded from above by applying the Chernoff bound
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Case (a)

Decouple the randomness by checking a constant number of
induced subgraphs (well-separated clique-partitions)

u v ⇒ u v
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Well-separated Clique-partitions Family

Consider an arbitrary RGG G ∗ = G ∗X (r). A family P = {Pi}i∈Λ, where
Pi ⊆ V and Λ is the index set of Pi s, forms a well-separated
clique-partitions family of G ∗ if:

1. V = ∪i∈ΛPi .

2. ∀i ∈ Λ, Pi can be partitioned as Pi = C
(i)
1 t C

(i)
2 t · · · t C

(i)
mi where

(2-a) ∀j ∈ [1,mi ], there exist v̄
(i)
j ∈ V such that C

(i)
j ⊆ Br/2

(
v̄

(i)
j

)
∩ V .

(2-b) For any j1, j2 ∈ [1,mi ] with j1 6= j2, dH
(
C

(i)
j1
,C

(i)
j2

)
> r , where dH is

the Hausdorff distance between two sets in metric space (X , d).

We also call C
(i)
1 t C

(i)
2 t · · · t C

(i)
mi a clique-partition of Pi (w.r.t. G

∗),
and its size (cardinality) is mi . The size of the well-separated
clique-partitions family P is its cardinality |P| = |Λ|.
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Well-separated Clique-partitions Family (cont’d)

> r

> r

> r

> r

Figure: Points in the solid balls are P1, and those in dashed balls are P2. Each
adapts a clique-partition of size m1 = m2 = 4. Assuming that all nodes in G∗ are
shown in this figure, then P = {P1,P2} forms a well-separated clique-partitions
family of G∗.
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Well-separated Clique-partitions Family (cont’d)

Theorem (Besicovitch Covering Lemma, doubling space version)
aLet X = (X , d) be a doubling space. Then, there exists a constant
β = β(X ) ∈ N such that for any P ⊂ X and δ > 0, there are β number of
δ-packings w.r.t. P, denoted by {B1, · · · ,Bβ}, whose union also covers P.

aAntti Kaenmaki, Tapio Rajala, and Ville Suomala. Local homogeneity and
dimensions of measures. ANNALI DELLA SCUOLA NORMALE SUPERIORE
DI PISA-CLASSE DI SCIENZE, 16(4):1315 1351, 2016.

We call the constant β(X ) above the Besicovitch constant.

Theorem (Existence of finite-size W.S.C.P family)

Let G ∗ = G ∗X (r) be an n-node random geometric graph generated from
(X , µ, r) where X = (X , d) and µ is a doubling measure supported on X .
There is a well-separated clique-partitions family P = {Pi}i∈Λ of G ∗ with
|Λ| ≤ β2, where β = β(X ) is the Besicovitch constant of X .
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Case (a) (cont’d)

u v

Figure: A well-separated clique partition P = {P1,P2} of Auv — points in the
solid ball are P1, and those in dashed ball are P2.
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Case (a) (cont’d)

In each induced subgraph (well-separated clique-partition)

u v

Use the same strategy as in case (b)
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Clique Number in Standard RGG + q−Insertion

Theorem (By-product)

Suppose n−ε � nrdn � log n for all ε > 0. Then, for the q−perturbed
random geometric graph G̃q(Xn; rn), the following holds

If q ≤ C1

(
nrdn

log n

)C2

, where C1,C2 are two constants, then with high

probability, we have

ω
(
G̃q(Xn; rn)

)
= Θ

 log n

log log n
nrdn


If
(

nrdn
log n

)ξ
� q ≤ C3 for all ξ > 0 where C3 is a constant, then with

high probability, we have

ω
(
G̃q(Xn; rn)

)
= Θ

(
log 1

q
n
)
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(p, q)−perturbation Case

The lower bound for good edges

u v
z

r

r

r
2

Br (u) ∩ Br (v) must contain an r/2 centered at the midpoint z of a
geodesic connecting u to v in M
At most

(
n
2

)
such r/2−balls

The number of points in any r/2−ball can be bounded from below, say
Nz , with very high probability by applying the Chernoff bound

.

Roughly speaking, we have a corresponding G (Nz , 1− p) for each good
edge locally with Nz = O(log n)
Apply Janson’s Inequality to get a lower bound for the clique number
Union bound

The upper bound for bad edges (Same strategy!)

Minghao Tian (OSU) Local cliques in ER-perturbed RGGs November 6, 2018 22 / 26



(p, q)−perturbation Case

The lower bound for good edges

u v
z

r

r

r
2

Br (u) ∩ Br (v) must contain an r/2 centered at the midpoint z of a
geodesic connecting u to v in M

At most
(
n
2

)
such r/2−balls

The number of points in any r/2−ball can be bounded from below, say
Nz , with very high probability by applying the Chernoff bound

.

Roughly speaking, we have a corresponding G (Nz , 1− p) for each good
edge locally with Nz = O(log n)
Apply Janson’s Inequality to get a lower bound for the clique number
Union bound

The upper bound for bad edges (Same strategy!)

Minghao Tian (OSU) Local cliques in ER-perturbed RGGs November 6, 2018 22 / 26



(p, q)−perturbation Case

The lower bound for good edges

u v
z

r

r

r
2

Br (u) ∩ Br (v) must contain an r/2 centered at the midpoint z of a
geodesic connecting u to v in M
At most

(
n
2

)
such r/2−balls

The number of points in any r/2−ball can be bounded from below, say
Nz , with very high probability by applying the Chernoff bound

.

Roughly speaking, we have a corresponding G (Nz , 1− p) for each good
edge locally with Nz = O(log n)
Apply Janson’s Inequality to get a lower bound for the clique number
Union bound

The upper bound for bad edges (Same strategy!)

Minghao Tian (OSU) Local cliques in ER-perturbed RGGs November 6, 2018 22 / 26



(p, q)−perturbation Case

The lower bound for good edges

u v
z

r

r

r
2

Br (u) ∩ Br (v) must contain an r/2 centered at the midpoint z of a
geodesic connecting u to v in M
At most

(
n
2

)
such r/2−balls

The number of points in any r/2−ball can be bounded from below, say
Nz , with very high probability by applying the Chernoff bound.

Roughly speaking, we have a corresponding G (Nz , 1− p) for each good
edge locally with Nz = O(log n)
Apply Janson’s Inequality to get a lower bound for the clique number
Union bound

The upper bound for bad edges (Same strategy!)

Minghao Tian (OSU) Local cliques in ER-perturbed RGGs November 6, 2018 22 / 26



(p, q)−perturbation Case

The lower bound for good edges

u v
z

r

r

r
2

Br (u) ∩ Br (v) must contain an r/2 centered at the midpoint z of a
geodesic connecting u to v in M
At most

(
n
2

)
such r/2−balls

The number of points in any r/2−ball can be bounded from below, say
Nz , with very high probability by applying the Chernoff bound.
Roughly speaking, we have a corresponding G (Nz , 1− p) for each good
edge locally with Nz = O(log n)

Apply Janson’s Inequality to get a lower bound for the clique number
Union bound

The upper bound for bad edges (Same strategy!)

Minghao Tian (OSU) Local cliques in ER-perturbed RGGs November 6, 2018 22 / 26



(p, q)−perturbation Case

The lower bound for good edges

u v
z

r

r

r
2

Br (u) ∩ Br (v) must contain an r/2 centered at the midpoint z of a
geodesic connecting u to v in M
At most

(
n
2

)
such r/2−balls

The number of points in any r/2−ball can be bounded from below, say
Nz , with very high probability by applying the Chernoff bound.
Roughly speaking, we have a corresponding G (Nz , 1− p) for each good
edge locally with Nz = O(log n)
Apply Janson’s Inequality to get a lower bound for the clique number

Union bound

The upper bound for bad edges (Same strategy!)

Minghao Tian (OSU) Local cliques in ER-perturbed RGGs November 6, 2018 22 / 26



(p, q)−perturbation Case

The lower bound for good edges

u v
z

r

r

r
2

Br (u) ∩ Br (v) must contain an r/2 centered at the midpoint z of a
geodesic connecting u to v in M
At most

(
n
2

)
such r/2−balls

The number of points in any r/2−ball can be bounded from below, say
Nz , with very high probability by applying the Chernoff bound.
Roughly speaking, we have a corresponding G (Nz , 1− p) for each good
edge locally with Nz = O(log n)
Apply Janson’s Inequality to get a lower bound for the clique number
Union bound

The upper bound for bad edges (Same strategy!)

Minghao Tian (OSU) Local cliques in ER-perturbed RGGs November 6, 2018 22 / 26



(p, q)−perturbation Case

The lower bound for good edges

u v
z

r

r

r
2

Br (u) ∩ Br (v) must contain an r/2 centered at the midpoint z of a
geodesic connecting u to v in M
At most

(
n
2

)
such r/2−balls

The number of points in any r/2−ball can be bounded from below, say
Nz , with very high probability by applying the Chernoff bound.
Roughly speaking, we have a corresponding G (Nz , 1− p) for each good
edge locally with Nz = O(log n)
Apply Janson’s Inequality to get a lower bound for the clique number
Union bound

The upper bound for bad edges (Same strategy!)

Minghao Tian (OSU) Local cliques in ER-perturbed RGGs November 6, 2018 22 / 26



Clique Number in Standard RGG + p−Deletion

For regime “nrdn ≤ n−α for some α”

Directly apply the Poisson approximation (the Stein-Chen method)

For regime “n−ε � nrdn � log n for all ε > 0”

Need put some constraint on p to fit the Poisson approximation setting

For other regime? (e.g. σnrdn
log n → t ∈ (0,∞))
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Remarks

This result can be used to filter bad edges in the observed graph G .

τ -Clique filtering

Given graph G , we construct another graph Ĝτ on the same vertex set as
follows: For each edge (u, v) ∈ E (G ), we insert the edge (u, v) into E (Ĝτ )
if and only if ωu,v (G ) ≥ τ . That is, V (Ĝτ ) = V (G ) and

E (Ĝτ ) := {(u, v) ∈ E (G ) | ωu,v (G ) ≥ τ}.

By carefully choosing τ , the shortest-path metric d
Ĝτ

is a
3-approximation of dG∗ .

Significantly larger range of insertion probability q than the case with
Jaccard-filtering.

However, Jaccard-filtering is computationally much more feasible.
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Open Questions

Other regimes? (e.g. sparse, thermodynamic limit, etc.)

Other quantities to look at? (e.g. chromatic number, Lovász number)

Other metric structures? (e.g. diffusion distance)
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Thank you for your attention!
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