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Abstract

Until recently, microkernel-based multiserver systems could
not match the performance of monolithic designs due to their
architectural choices which prefer high reliability over high
performance. With the advent of multicore processors, het-
erogeneous and over-provisioned architectures, it is possible
to employ multiple cores to run individual components of the
system, avoid expensive context switching and streamline the
system’s operations. Thus, multiserver systems can overcome
their performance issues without compromising reliability.
However, while resources are becoming abundant, it is impor-
tant to use them efficiently and to select and tune the resources
carefully for the best performance and energy efficiency de-
pending on the current workload. Most of the prior work fo-
cused solely on scheduling and placement of the applications.
In multiserver systems, the operating system itself needs to be
scheduled in time and space as the demand changes. There-
fore the system servers must no longer be opaque processes
and the scheduler must understand the system’s workload to
make good decisions.

1. Introduction

Multiserver systems composed of user space processes run-
ning on top of a microkernel and performing operating system
functions can easily embrace heterogeneous multicore archi-
tectures. Moreover, they can run their components on the
best available cores and can reconfigure themselves to deliver
the best performance. Unfortunately the execution resources
are limited, most of all by power constraints. Essentially all
prior work focused on scheduling applications on such archi-
tectures, usually running on top of a monolithic system like
Linux, Windows or a BSD. In contrast, a multiserver system
does not schedule only applications, but also itself—as the
servers are user space processes that need to share the CPU
core(s) with applications and with each other. Systems like
MINIX 3 [1] or QNX Neutrino [2] make little difference be-
tween scheduling applications and OS servers. For instance in
the case of MINIX 3, the servers only have a higher priority
and a shorter time quantum. However, as completing a single
application request often involves multiple servers, finding the
right order in which to interleave their execution to deliver
optimal performance is difficult.

Unfortunately, the complexity of the problem is exacer-
bated by the trend toward ever more components. Multiservers

systems keep splitting their servers into finer-grained compo-
nents in order to isolate runtime failures and allow for simpler
crash recovery and live updates[5]. In our previous work
on NewtOS [7], an experimental high-performance fork of
MINIX 3, we tackled the performance issues of multiserver
systems by running the performance-critical servers of the
network stack as individual components on dedicated cores.
Similarly, the Loris [3] storage stack replaced the single file
system server with many processes for enhanced reliability
and modularity.

Dedicating cores to servers avoids scheduling on such cores.
Each server has its own core and it can run any time it needs
to. On the other hand, it limits the number of cores left for the
applications. As some parts of the system will be more heavily
used than others and not all parts of the system experience
the same load in all situations, blindly dedicating cores to any
system server is not optimal. In our previous work [6], we
proposed to use emerging heterogeneous multicores as they
could offer a higher number of cores on a die of the same
area with a smaller energy budget, and reduce the amount of
dark silicon as demonstrated in [10]. Meanwhile, the cores
have different capabilities and performance characteristics and
running the servers on the slower cores has the potential to
deliver good (or even better) performance [6] than using the
big fast cores for the OS components. Previous work [11,
12, 13] demonstrated that applications often deliver the best
performance (or performance to energy ratio) when they do
not use the fastest processors in the system. The same holds
for the system servers—they may have a special role, but in
the end, they are just user space processes. Even so, this leaves
open the question of how to schedule what components under
specific workloads.

Although the code of monolithic systems likely has com-
pletely different performance requirements than the applica-
tions [9], the system and the applications share the cores. In
contrast, multiserver systems can pick the right choice inde-
pendently for both the applications and the system servers.
For example, they can easily spread components across multi-
ple cores of different types. However, doing so complicates
scheduling. Prior work on schedulers in monolithic systems
is looking for the best distribution of applications among the
CPUs. The system runs on all of the cores and uses the voltage
and frequency settings selected for the applications. In con-
trast, we need to place the OS servers in the same way as the
applications since they are also user space processes. However,
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Figure 1: NewtOS - network stack and the scheduler’s inputs

unlike the mostly independent applications, the servers coop-
erate heavily, so the scheduler must consider them together
and find a combination of the cores and their settings that is
optimal for groups of servers.

In this paper we discuss our experience with finding optimal
configurations in NewtOS [7] operating system and discuss
what information the servers must provide to allow designing
new schedulers specifically for multiserver systems running
on multicore processors.

2. The NewtOS Scheduler and Network Stack
NewtOS is a high performance fork of MINIX 3 that marries
reliability and high performance. In particular, we use its net-
work stack to prototype fast inter-process communication in
extreme situations. We present architecture of the network
stack in Figure 1. NewtOS runs performance-critical com-
ponents on dedicated cores. It allows them to communicate
asynchronously in user space without the overhead of using
the microkernel. In fact, the kernel rarely runs on the dedicated
cores as discussed in detail in [7].

The fact that the applications run on different cores than the
system makes it possible to extended the user space commu-
nication from the stack to the applications. This allows us to
avoid many system calls and memory copying. We expose
the socket buffers to the applications and we let the applica-
tion poll the buffers blocking only if there is no work or a
transmission buffer is full. Since the cost of system calls (espe-
cially non-blocking and select-like calls) dramatically drops,
it makes performance of NewtOS competitive with the state of
the art network stack of Linux. For example, Figure 2 shows
performance of lighttpd serving small files, 10 requests on a
single persistent connection both for NewtOS and Linux. Al-
though the NewtOS cannot compete with Linux where latency
matters since many components are involved in processing
the packets, when one of the servers fails, it is much easier
to repair it while the system stays online. However, where
throughput is more important than latency, NewtOS can even
outperform Linux.

NewtOS inherited the user space scheduler of MINIX 3
which is inspired by L4-based systems. The scheduler is a
process which is consulted by the in-kernel priority round-
robin scheduler every time a process runs out of its quantum.
The kernel sends a message to the scheduler updating it on
basic statistics like the process’ CPU usage, how often it was
blocked, the cache hit rate, etc., while it removes the process
from the run queue. Once the scheduler decides on the pro-
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Figure 2: NewtOS vs Linux performance. Requesting 10 times a 10-
byte file using a persistent connection

cesses’ new scheduling parameters like quantum size, priority
and the CPU where it runs during its next period, it tells the
kernel by the means of a kernel call, an equivalent of a system
call of monolithic systems, that the process can run again.
In the mean time, the kernel lets other ready processes run.
Besides immediate decisions, the scheduler also contiguously
monitors the system. It gathers information from the kernel
and other sources as depicted in Figure 1 and changes the
scheduling parameters pro-actively when it finds that an ad-
justment is needed. For instance, it redistributes processes
when a core is under- or overloaded. In the case of a dedicated
core, the kernel lets the only process run and only periodically
updates the scheduler on the runtime statistics.

As full cores are expensive in die space and energy, we
also exploit hardware multithreading. For instance, the ini-
tial implementation of Intel’s Hyperthreading [8] used only
5% of extra die area which is a relatively cheap way of over-
provisioning. The threads serve as containers for the process’
state, allowing it to use instructions like MWAIT to monitor
memory writes which we require for our fast communication.
The application thus halts its thread when it knows that there
is no work and the hardware scheduler efficiently interleaves
execution of all runnable processes on the core, together effec-
tively avoiding the overhead of the system’s scheduler.

All processes are opaque for the kernel, however, unlike in
other similar systems, the user space scheduler of NewtOS
knows that some processes are special—that a certain process
is a system server, part of the network stack or a driver and if
so, whether it drives a network card or a disk controller. It also
knows that a process is part of the network or storage stack.
The scheduler uses this knowledge to place each component
of the network stack on its own core for the peak performance,
but when the network traffic is low and the stack is mostly
idle, it co-locates all of its processes on a single core to save
resources. Depending on the architecture, it also scales the
frequency of such a core down (e.g., on AMD Opterons). We
know from experience that drivers often do not need powerful
cores and can co-exit on different hardware threads of scaled
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down Intel cores, thus providing some thermal headroom for
the Intel Turbo Boost.

In [6], we evaluated our stack and showed that the system
has potential to deliver the same performance when running on
less powerful cores and with careful tuning may deliver even
higher performance than on fast cores running at full throt-
tle. However, the scheduler requires much richer information
about the state of the system to make its decisions.

3. Network Traffic Indicators
Current schedulers derive the nature of the applications, for
example whether they are interactive or long running jobs,
based on their CPU usage and other runtime factors. Similarly,
to schedule the components of the network stack optimally,
the scheduler needs to know the nature of the current traffic
and it needs to guess whether the current workload is request-
response oriented, how many connections open and close or
whether it is a long running bulk transfer. Different types of
load stress the system differently and the scheduler needs to
react accordingly. Although the programmer may be able to
provide some additional performance related information, for
instance in the case of server applications, the actual runtime
requirements depend highly on external factors.

The scheduler of a multiserver system is isolated and its
only way of gathering information is explicit communication
with other servers. While the kernel provides basic profiling
information like CPU load or cache misses, the rest must come
directly from the system servers—in the case of the network
stack in a form of traffic class indicators.

Collecting the information as well as sending the informa-
tion to the scheduler must be cheap so it does not impact
performance. We opt for a set of indicators similar to the
CPU performance counters. Based on their readings the user
space scheduler can make an educated guess about the work-
load. Each of the components exports periodically the values
in a message to the scheduler. The indicators exported by
individual components are summarized in Table 1.

TCP RX / TX bytes and segments; new outbound
connections; accepted and closed connections

UDP RX / TX bytes; new sockets; closed sockets

IP RX / TX sum of bytes, protocol including headers,
ARP and ICMP protocols

Table 1: Network Traffic Indicators

The number of received (RX) and transmitted (TX) bytes
for UDP and TCP includes only the size of the payload while
IP reports a sum of all bytes including transport and link
layer headers and protocols handled by IP only. Although the
number of TX/RX bytes is a key indicator, it is by no means
the only metric which determines the load of the stack. In the
case of TCP, it is extremely important to know whether the

bytes were sent in many small segments or in large ones as the
per-byte overhead is inversely proportional to the segment size.
Since the stack hardly touches the outgoing data, preparation
of the headers, computation of their checksums (assuming
that the network interface can checksum the data) routing of
individual packets, splitting TCP data into the segments which
fit in the allowed window and assigning data to individual
sockets is what matters. In addition, small segments may
indicate interactive or request-response traffic which is latency
sensitive. Large segments are a sign for bulk transfers and
elephant flows, which put much less stress on the system,
especially when TCP offloading is used, the per-byte overhead
drops and much slower, simpler and less power hungry cores
can do the job. In contrast, request-response type of workloads
take advantage of fast cores as it reduces the latency.

TCP receives and sends many segments which do not con-
tain any payload and serve only as acknowledgment for the
payload transfers. This overhead needs to be accounted for
as the overhead is significant when sending or receiving only
a few bytes, while the bitrate is in the order of a few tens or
hundreds of megabits per second. Looking at the bitrate only
may suggest that the load is low if we consider multigigabit
network speeds. Large transfers of many gigabits per second
usually do not stress the cores much. On the other hand, the
stack copies received data to the right socket buffers which
puts high load on memory. Therefore placement of the stack
close to the application (in terms of memory communication)
is critical.

Another indicator is the frequency and number of connec-
tions the system sets up. Setting up TCP connections requires
an exchange of packets which do not carry any data. However,
their processing requires resources which may be significant,
especially in the case of short-lived connections. Handling
such connections on high rate (for example in the test in Fig-
ure 2) overloads the application as well as the stack due to
many management system calls which do not result in sending
or receiving any payload. Hence the connection rate, rather
than bitrate, is the indicator which tells the scheduler what is
the root cause of the problem. Similarly, it is also important to
know whether the connections are mostly initiated from this
system (it is a client) or whether it is a server

It is the task of the user space scheduler to gather the data
and generate richer statistical information. For example, the
mean overhead for transmitted or received byte, the segments
needed for setting up connections or the mean life-time of
connections. The frequency of updating the scheduler decides
how quickly and how precisely the system is able to respond,
however, high rate of updates introduces communication over-
head and the updates which come from different sources may
not be synchronized.

4. Web Server Profiles
We have conducted several measurements of the lighttpd web
server running on NewtOS with the focus on stressing the net-
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(b) 100-kB file
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Figure 3: Requesting a file of a size between 10-B and 10-MB using 8 simultaneous connections. Fixed frequency of TCP and IP cores.

work stack by various workloads to demonstrate that selecting
the right configuration is not a trivial task. Web servers are
a common case which demands high performance and spans
across a large range of workloads. We use a dual-socket quad-
core Xeon E5520 machine. One of the chips hosts the system
while the other one is left for the applications. We use a single
lighttpd process. We set the speed of the system chip to 160-
MHz and we let the other chip run at the peak 2267 MHz. We
use thermal throttling of the individual cores to emulate high
and low performing heterogeneous cores for the system with
frequency ranging from 1600 MHz to 200 MHz. Our goal
is to explore the range in which various cores may become a
bottleneck. For simplicity, we excluded the packet filter (and
UDP is obviously not used). This leaves TCP, IP and a 10G
Ethernet driver.

Figure 3 presents a subset of measurements in which we
scale the IP and TCP cores together (individual lines—legend
in Figure 4b) and the driver core separately (the X axis) as
our experiments suggest that the speed of the driver influences
the performance the most. TCP and IP have similar CPU
usage. The second set of figures in Figure 4 presents the same
data. However, we now fix the frequency of the driver’s core
instead. We carried out all the measurements requesting a file
of various sizes using 8 simultaneous connections issuing 10

requests per a single connection. This is enough to overload
the stack cores when they run at low clock speed.

Some of the workload patterns show the scaling we would
expect. For instance requesting a 100-kB file scales almost
linearly depending on the performance of both IP and TCP
cores. On the other hand, the speed of the driver’s core has no
impact. However, when requesting a tiny 10-B file, the speed
of the driver’s core matters. The lowest speed of 200 MHz
delivers the same performance as if the core were running
at 1600 MHz. Comparing the results to the same test when
all the cores run at the peak clock frequency of 2267 MHz
(Figure 2, data point 8), it shows the request rate may even drop
again when we use even faster cores. The potential energy
savings make the choice obvious, however, we would also
need to have a good understanding of the energy consumption
profiles of individual cores’ types and their dynamic voltage
and frequency scaling (DVFS) states. Part of this information
is provided by a firmware like ACPI, however, it is important
to have accurate online energy measurements provided by the
cores themselves rather than letting the scheduler estimate
the energy consumption indirectly, for instance by using the
existing performance counters [4].

Counterintuitively, when the response size grows into the
order of mega bytes, running TCP and IP on fast cores may
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Figure 4: Requesting a file of a size between 10-B and 10-MB using 8 simultaneous connections. Fixed frequency of the driver’s core.

have negative impact on the performance. This depends on
the frequency of the driver’s core, that is, whether it is below
or above 400 MHz. The difference is the amount of sleep time
of the underutilized fast cores and how much latency adds
waking them up. In this case, saving energy on a fast core
significantly impacts performance and a more utilized slower
core can deliver the best of both measures.

An important observation is that even in situations which
scale monotonously (10-B and 100-kB case), increasing the
speed of the cores beyond a certain point does not deliver
any increase in request or bit rate. In such a situation, the
application core is usually (close to being) overloaded. It is
pointless to scale the stack’s cores up or move it to faster cores
if the application is the bottleneck. In contrast, the scheduler
needs to find such cores and settings for the stack that it frees
up resources for the applications. For instance, by moving the
stack to a different chip to let the application use Turbo Boost
on the Intel processors or letting to power on faster cores.

5. Profile Based Scheduling

Since the profiling shows that the system’s behavior is not
linear, finding an optimal solution is a hard problem. Many
schedulers use a trivial algorithm which would scale all the

cores of the network stack simultaneously as long as the bi-
trate increases. Doing so would find the optimal setting for the
performance in the case of 10-byte files. However, it would be
far from the energy optimum (dashed line in Figure 3a). In ad-
dition, the same algorithm would find neither the performance
nor the energy optimum in the case of 1 or 10-megabyte files
(Figure 4c). Moreover, many schedulers scale up or down only
when a certain CPU usage threshold is reached. It is tricky to
pick such thresholds which would suite any deployment and
workload.

A solution which would find the optimum dynamically is
further complicated by the fact that after selecting a different
configuration the performance is worse or better either due
to the new configuration or because the load of the system
has changed due to external events. Unlike in the case of
local storage (for example), in the case of networking, the
remote machines as well as the network itself react to the
changed timings. Therefore we need the richer indicators
from which we can conclude that, say, the mix of requested
files did not change, but only the service rate is higher or lower.
In our model we assume that the workload does not change
abruptly and that although the load of the system fluctuates,
a recent history of the readings of the traffic indicators allow
us to observe a trend. If the scheduler’s decision significantly
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worsens the trend, it is likely a wrong decision.
The solution we propose at this moment is a Profile Based

Scheduling which assumes that we can estimate the expected
workloads, benchmark them and create their profiles. Based on
the current indicators’ readings, the scheduler decides which
of the profiles is the closest match and applies the best settings
for the given profile.

For example, in the case of a web server, the workload can
temporarily change either in the number of connections or
requests per second or in the mix of requests. Therefore, to
approximate the optimal behavior requires many profiles along
several dimensions. The profiles cannot capture all possible
scenarios and we select a configuration based on an approxi-
mation of the observed load and the profiled ones. Therefore
each of the load and configuration pairs can serve as a new
data point in an online profile which makes approximation
finer and further increases precision of our future selections.

A large number of profiles is not always required. A node in
high-performance computing may just switch between handful
of its roles. For example, when the node receives data for its
computation, when it sends out the results and when it com-
putes. In the last case, it can power off the networking cores
as it needs the energy elsewhere. Alternatively, if the cores
employ hardware threading, we can co-locate the network
stack on the same cores as other parts of the system which
are mutually exclusive in different periods of the operation of
such a node. Since we would not need to power off a set of
cores to power on another set, this decreases the latency of
switching between different modes of operation. Although
the load of the network stack’s cores can hint whether the
node uses the network or not, the extra indicators can detect
whether it sends or receives data and allow the scheduler to
act accordingly. For example, sending data is typically less
demanding, therefore we can pick a profile which scales the
network stack’s cores down, while in the case of receiving the
profile suggest to use faster cores.

The need for the profiles should not prohibit deployment of
multiserver systems as it is already a good practice to carefully
evaluate and tune current commodity systems and applica-
tions before production deployment. Generating the required
profiles is easily scriptable and can be part of the initial eval-
uation process. The added value of our approach is that the
hardware and the system is not only tuned for the expected
peak load, but the system can adapt as the workload changes
and pick the most appropriate resources. Heterogeneous and
over-provisioned architectures are newly emerging products
with different characteristics and we can apply profiling prior
deployment equally to any of them.

6. Conclusions and Future Work
We presented an operating system which is designed for high
reliability and dependability. Running on multicore processors
allows the system to reduce the overheads of its design and
even surpass performance of the state of the art systems. This

system is able to embrace a heterogeneous over-provisioned
machine and reconfigure itself based on the changes in the
workload. To further improve its performance it can use more
resources and the most appropriate resources and free the re-
sources when they are not needed. We use current commodity
hardware to emulate heterogeneous environment and we show
that trivial solutions cannot reach the optimal performance
to energy ratio. We show the potential of the system and we
present a basic method which allows the system to adapt to
changing scenarios. For now, evaluation of more diverse ar-
chitectures and a truly comprehensive algorithm that adapts
the system to any situation remains work in progress.
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