Using STT-RAM to Enable Energy-Efficient Near-Threshold Chip Multiprocessors

Xiang Pan and Radu Teodorescu
Computer Architecture Research Lab, The Ohio State University
Near-Threshold CMP Design Challenges

Problem: Increasing core counts in CMPs → “Power Wall” → “Dark Silicon”

Solution: Near-Threshold Computing

Challenges:
1. performance degradation;
2. amplified process variation;
3. leakage power dominates.

Leakage power dominates in NT-region

Cache power is mainly leakage dominated

Using STT-RAM to Enable Energy-Efficient Near-Threshold Chip Multiprocessors

Xiang Pan and Radu Teodorescu
Using STT-RAM to Enable Energy-Efficient Near-Threshold Chip Multiprocessors
Xiang Pan and Radu Teodorescu
STT-RAM Based NT-CMP Design

Key Ideas:

• Use STT-RAM for all caches:
 • STT-RAM @ High-Vdd, cores @ NT-Vdd → fast cache reads.
 • Clustered-CMP in which the L1 caches are shared within each cluster, removing coherence costs.

• Address variation-induced performance heterogeneity:
 • Shared L1 cache enables low overhead within-cluster thread migration.
 • Periodically migrating threads between “fast” and “slow” cores achieves homogeneous CMP performance.

Proposed design reduces power consumption by 7%, improves performance by 17%, and reduces energy by 21%.