
TEESec: Pre-Silicon Vulnerability Discovery for Trusted Execution
Environments

Moein Ghaniyoun
ghaniyoun.1@osu.edu

The Ohio State University
Columbus, Ohio, USA

Kristin Barber
kristinbarber@google.com

Google
Mountain View, California, USA

Yuan Xiao
yuan.xiao@intel.com

Intel
Santa Clara, California, USA

Yinqian Zhang
yinqianz@acm.org

SUSTech
Shenzhen, China

Radu Teodorescu
teodores@cse.ohio-state.edu
The Ohio State University
Columbus, Ohio, USA

ABSTRACT

Trusted execution environments (TEE) are CPU hardware exten-
sions that provide security guarantees for applications running on
untrusted operating systems. The security of TEEs is threatened by
a variety of microarchitectural vulnerabilities, which have led to a
large number of demonstrated attacks. While various solutions for
verifying the correctness and security of TEE designs have been pro-
posed, they generally do not extend to jointly verifying the security
of the underlying microarchitecture. This paper presents TEESec,
the first pre-silicon framework for discovering microarchitectural
vulnerabilities in the context of trusted execution environments.
TEESec is designed to jointly and systematically test the TEE and
underlying microarchitecture against data and metadata leakage
across isolation boundaries. We implement TEESec in the Chipyard
framework and evaluate it on two open-source RISC-V out-of-order
processors running the Keystone TEE. Using TEESecwe uncover 10
distinct vulnerabilities in these processors that violate TEE security
principles and could lead to leakage of enclave secrets.

CCS CONCEPTS

• Security and privacy; • Computer systems organization→
Architectures;

KEYWORDS

Security, Trusted Execution Environments, Verification

ACM Reference Format:

Moein Ghaniyoun, Kristin Barber, Yuan Xiao, Yinqian Zhang, and Radu
Teodorescu. 2023. TEESec: Pre-Silicon Vulnerability Discovery for Trusted
Execution Environments. In Proceedings of the 50th Annual International
Symposium on Computer Architecture (ISCA ’23), June 17–21, 2023, Orlando,
FL, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3579
371.3589070

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’23, June 17–21, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0095-8/23/06. . . $15.00
https://doi.org/10.1145/3579371.3589070

1 INTRODUCTION

Trusted Execution Environments (TEEs) [2, 3, 5, 14, 17, 18, 25, 27,
33, 51] were designed to provide confidentiality and integrity guar-
antees to security-critical applications, even when running on un-
trusted operating systems or hypervisors. TEEs provide isolated
execution environments, dubbed enclaves, for applications to run
sensitive code on private data. The hardware-enforced isolation en-
sures that no privileged code can access the memory of the enclave
or any enclave data that are temporarily stored in microarchitec-
tural elements. However, in spite of the increased isolation enabled
by TEEs, vulnerabilities in the underlying microarchitectural imple-
mentations have led to numerous demonstrated attacks and enclave
data leakage [10, 12, 23, 24, 37, 45, 47, 56, 64]. One of the main rea-
sons is that the security afforded by the TEEs relies to a significant
extent on complex microarchitectural implementations.

While the correctness of the TEE hardware/firmware implemen-
tation can be more easily verified [21, 50, 52], the interaction with
the underlying microarchitecture is complex and challenging to
thoroughly test. For example, recent work by Cheang et al.[15]
formally verifies the RISC-V PMP checker hardware module in the
RISC-V Rocket Chip against formalized functional properties of
physical memory protection (PMP) rules. It concludes that this hard-
ware implementation passes the functional verification. However,
as we show in this work, when the same PMP module is used in an
out-of-order processor, it is vulnerable to data leakage.

This paper presents TEESec, the first pre-silicon framework
aimed at comprehensive joint verification of TEE and microarchi-
tecture, with the goal of discovering vulnerabilities (such as leakage
of enclave data or metadata across isolation boundaries) that may
impact TEE security assumptions or guarantees. To that endTEESec
performs a detailed, register transfer level (RTL) verification of a
processor’s microarchitecture and its TEE hardware/software im-
plementation.

The TEESec framework consists of three main components: a
Verification Plan, a Test Gadget Constructor, and TEESec Checker.
The verification plan systematically profiles the processor design
and enumerates all microarchitectural structures which may con-
tain enclave data or metadata. The TEE hardware/software interface
and security guarantees are also profiled in this phase. The veri-
fication plan enumerates all memory access modalities covering
all possible paths through which the enclave data/metadata can be
accessed. In the next phase, TEESec exercises all the memory access

https://orcid.org/0000-0002-1744-7672
https://orcid.org/0009-0003-7249-277X
https://doi.org/10.1145/3579371.3589070
https://doi.org/10.1145/3579371.3589070
https://doi.org/10.1145/3579371.3589070

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Moein Ghaniyoun, Kristin Barber, Yuan Xiao, Yinqian Zhang, and Radu Teodorescu

modalities by crafting and assembling verification gadgets. In the
final phase, the automatically assembled verification codes are run
through a cycle-accurate register transfer level (RTL) simulation of
the design-under-test, which emits a comprehensive simulation log
containing the state of all microarchitectural structures identified
in the verification plan.

The simulation log is automatically analyzed to look for any
traces of enclave data or metadata that violate desired TEE secu-
rity principles. In our threat model we define two TEE security
principles: (1) No enclave data should be fetched into or remain in
the CPU microarchitectural state when the CPU is not in trusted
enclave execution mode, and (2) Microarchitectural state that is
modified by the enclave code should not affect the execution of any
non-enclave code. Any violation of these two security principles
may lead to microarchitectural vulnerabilities that are potentially
exploitable. While we believe these security principles serve a broad
threat model, TEESec can be adapted to verify other security needs
under different threat models.

We implement TEESec using the Chipyard framework [4] for
designing full-system hardware and we evaluate our work on two
different open source RISC-V processors: the BOOM [13, 70] and
XiangShan [62], [65] designs. Both processors are equipped with
Keystone [27], an open-source framework for designing trusted
execution environments in RISC-V systems. Using TEESec, we
discover enclave data leakage in processor internal buffers (LFB),
register file and metadata leakage via performance counters and
branch prediction unit (BPU). Overall, we discover and identify 10
distinct design or implementation issues in these two RISC-V pro-
cessors that enable secret leakage from enclaves or trusted firmware
to the untrusted world. We note that the Keystone TEE offers no
out-of-the-box side-channel resistance, leaving it up to the microar-
chitectural implementation to provide such protection. TEESec can
be used to verify that such deployments are correct and meet isola-
tion and security guarantees. We show that the naive deployment
of Keystone (or similar TEEs) on out-of-order processors such as
BOOM and XiangShan cannot guarantee isolation.

This paper makes the following contributions:
• Presents TEESec, the first pre-silicon framework for co-
verification of software and hardware implementations of
trusted execution environments.

• Summarizes two fundamental security principles that TEE
designs should follow and presents a systematic approach
to generating test cases to verify these security principles in
the CPU microarchitecture.

• Implements TEESec in the Chipyard framework and evalu-
ates it on two open-source RISC-V CPU cores, running the
Keystone TEE.

• Demonstrates the effectiveness of TEESec by identifying 10
distinct vulnerabilities in the evaluated designs.

The rest of this paper is organized as follows: Section 2 pro-
vides background on TEEs designs, existing attacks and verifica-
tion approaches. Section 3 outlines the threat model and a set of
security principles. Sections 4 and 5 present the TEESec frame-
work design and implementation. Section 6 details the experimental
methodology. Section 7 presents a number of case studies based
on vulnerabilities detected by TEESec. Section 8 discusses possible
countermeasures. Section 9 concludes.

2 BACKGROUND AND RELATEDWORK

2.1 Trusted Execution Environments

A Trusted Execution Environment (TEE) provides isolation and in-
creased security guarantees to security-critical code. This is usually
achieved with help from both hardware and software primitives
that define and enforce isolation boundaries. There have been a
number of TEE designs proposed by both industry and academia
with the aim of protecting sensitive code and data from untrusted
elements of the the software stack, including the operating system
and hypervisor. Some of the most popular commercial TEE designs
include: Intel SGX [25], AMD SEV [2], ARM TrustZone [5].

Several TEE frameworks have targeted the open-source RISC
V ISA. Sanctum [17] was the first such framework, prototyped on
the RISC-V Rocket architecture. In Sanctum, enclave setup and
management are implemented in a Security Monitor, which runs
in machine mode – the highest privilege level for a RISC-V system.
The Security Monitor is responsible for verifying and attesting
enclaves. Enclave isolation is enforced through hardware support
in the Page Table Walker (PTW), which prevents unauthorized
access to enclave memory.

MI6 [9] extends Sanctum’s isolation guarantees to out-of-order
processors through hardware support added to the RiscyOO [67]
out-of-order core and by expanding the threat model to include
side-channel and speculative execution attacks. In order to mitigate
speculative execution and timing side-channel attacks, MI6 intro-
duces a purge instruction with hardware support to flush sensitive
data from microarchitectural buffers and the L1 Data Cache before
context switches.

We evaluate TEESec on Keystone [27], an open-source frame-
work for designing trusted execution environments in RISC-V sys-
tems. Keystone uses RISC-V Physical Memory Protection (PMP)
to define security domains and isolate these domains from each
other. Unlike other TEEs, Keystone requires no additional hardware
support beyond PMP.

2.2 TEE Attacks Exploiting Microarchitectural

Channels

Many demonstrated attacks have exploited microarchitectural side
channels to break TEE security guarantees. For example, in addition
to general cache side channel attacks such as Prime+Probe [1, 35,
36, 40–42, 55, 68] and Flush+Reload [8, 8, 69], several side-channel
attacks specifically target TEE designs like Intel SGX [10, 23, 24, 45,
56, 71] and AMD SEV [29, 30, 38, 39, 60].

Other attacks exploit the near-total control of the untrusted OS
over TEE instances to extract enclave data [12, 16, 28, 32, 47, 64].
Some force page faults in order to infer the control flow of the
enclave code and leak secrets in applications with secret-dependent
memory access patterns [47, 64]. Other attacks [12] exploit the side
effects of accessing unprotected page table memory during address
translation. The side effects of each page table walk can then be
further examined to learn the memory access pattern of the enclave.
Translation Lookaside Buffer (TLB) poisoning attacks [32] exploit
the fact that the hypervisor is responsible for flushing the TLB in
AMD SEV virtual machines (VMs). An attacker process can interfere
with the execution of the victim process in the same VM by skipping

TEESec: Pre-Silicon Vulnerability Discovery for Trusted Execution Environments ISCA ’23, June 17–21, 2023, Orlando, FL, USA

TLB flushes with a malicious hypervisor. Branch shadowing attacks
[28] infer enclave control flow by inducing collisions in the Branch
Target Buffer (BTB) of the CPU. SgxPectre [16] leaks enclave secrets
by inducing speculative execution of instructions that lead to cache
state changes. This is achieved bymanipulating the branch predictor
state (shared by enclave and non-enclave code) from outside the
TEE.

Most of the aforementioned vulnerabilities result from the com-
plex interaction between TEE security and isolation expectations
and the reality of the underlying microarchitectural implementa-
tion. This makes comprehensive verification of the TEE and its
implementation very challenging.

2.3 Existing Pre-Silicon Verification Approaches

Each TEE design defines a set of security guarantees with respect
to its threat model. We survey existing work on design-time (pre-
silicon) verification of hardware designs in general and TEEs in
particular. Prior work on pre-silicon verification falls under two
broad categories: static (formal) and dynamic verification.

Formal Verification. Formal verification [15, 19, 21, 48, 50, 52]
can be used to mathematically prove that formally specified require-
ments of a TEE design are met. For example, TAP [50] formally
verifies TEE platforms by first defining the requirements of enclave
secure remote execution and then creating a trusted abstract plat-
form which is an idealization of the TEE framework with respect
to a threat model. The enclave platform is verified by machine-
checked proofs to ensure it satisfies the integrity, confidentiality
and secure measurement requirements.

The hardware implementation component of TEE designs can
also be formally verified. For example, an implementation of the
RISC-V Physical Memory Protection (PMP), which provides the
core security guarantees for the Keystone TEE framework, is for-
mally verified in [15]. The PMP rules are first formalized based
on the RISC-V ISA specifications. A hardware implementation of
PMP is then translated to the Uclid5 [46] verification language. Fi-
nally, by encoding the formal specification in Uclid5, the hardware
implementation of PMP is verified against formalized rules. In a
similar approach, UPEC [19] introduces a hardware property that is
formulated based on the formal definition of security with respect
to transient execution attacks.

Formal verification is a powerful tool for ensuring the functional
correctness or security of a design. However, formal verification has
limitations that prevent it from being universally applicable. For
example, formal verification can only be applied where there exists
formal descriptions for both design specification and implementa-
tion. Moreover, the complexity of formal specifications increases
exponentially with that of the design, making formal verification
impractical for most components of a modern high-performance
processor.

Dynamic Verification Pre-silicon verification is extensively
applied for functional correctness verification as well as security.
In this approach, the design is simulated using cycle-accurate rep-
resentations and exercised using test stimuli. Simulation-based test
environments usually consist of generators, driver monitors, and
checkers to produce the stimuli, transform the stimuli to actual
inputs that run on the design-under-test, record the state of design

and its outputs and validate the output against the expected re-
sult. Prior work has proposed several improvements to this process
to make it more effective for security verification. For example,
SecVerilog [66] uses a new type system extension of the Verilog
hardware description language (HDL), which allows information
flow policies to be described and verified at compile-time. GLIFT
[53] instruments the design at gate-level and enforces the infor-
mation flow policies at run-time. CellIFT [49] proposes a similar
dynamic information flow tracking approach, but improves scal-
ability to larger models by leveraging macrocell abstractions (a
higher design abstraction than the gate-level representation used
in GLIFT). In [7] pre-silicon simulation is used to detect violations
of constant-time execution in security-critical code.

Other prior work has focused on fuzzing-based verification of
hardware designs [22, 54, 63]. SpeechMiner [63] leverages a fuzzing
framework to identify Meltdown-type vulnerabilities in existing
processors. IntroSpectre [22] uses gadget fuzzing and register-
transfer level (RTL) simulation to detect transient execution vul-
nerabilities in out-of-order processor designs. TEESec leverages
the IntroSpectre logging framework. Our approach, however, goes
beyond transient execution leakage to capture all paths for data
and metadata leakage across enclave boundaries. Unlike prior work,
TEESec enables the comprehensive and joint verification of both
TEE hardware and software on complex, high-performance proces-
sor designs.

3 TEE SECURITY PRINCIPLES

In this section, we first outline the threat model we consider in this
paper and then discuss the security principles the TEE design should
follow to offer strong security in the considered threat model.

3.1 Threat Model

TEESec targets microarchitectural vulnerabilities that can poten-
tially leak secrets across the boundary between an enclave and the
untrusted world. Specifically, the secrets considered in this work
are data and code protected by the enclave, and metadata created
during enclave execution. Enclave data can leak either directly or as
new values derived from enclave data, and can be found in microar-
chitectural structures such as caches, line fill buffers (LFB), load
queues and store buffers, etc. Metadata include state of the branch
prediction units and values of hardware performance counters and
generally any enclave execution information except for timing. We
assume the adversary is in control of any software component out-
side the targeted enclave, which includes the application code, the
system software, or other enclaves running on the system.

We do not target specific attack methods with which the enclave
secrets may be exfiltrated. These methods could include access-
driven side-channel attacks that steal secrets through shared mi-
croarchitectural state, or transient execution attacks that exploit
speculation features. Timing-based attacks that infer secrets by ob-
serving the execution time of certain instructions [43, 57] are out of
scope. Off-chip memory attacks and in general any type of physical
attacks that require physical accesses of the machine (and hence the
processor chip) are also not considered in this work. Attacks against

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Moein Ghaniyoun, Kristin Barber, Yuan Xiao, Yinqian Zhang, and Radu Teodorescu

encrypted off-chip enclave memory [31] are also out of scope. Fi-
nally, we do not consider any tampering with trusted firmware or
any attestation-related bypassing techniques [11, 16, 58].

3.2 Security Principles

The large number of demonstrated attacks that have exploited mi-
croarchitectural vulnerabilities in existing TEE implementations
highlight the need for precise definition of the expected security
principles that the microarchitecture underlying the TEE imple-
mentation should adhere to. With the aforementioned threat model
in mind, we identify the following high-level security principles
that the microarchitecture should follow in order to prevent leakage
across the TEE boundary.

• P1: No enclave data should be fetched into or remain in the
CPU microarchitectural state when the CPU is not in trusted
enclave execution mode.

• P2: The microarchitectural state that is influenced by the
enclave code should not affect the execution of any non-
enclave code.

The reasons behind P1 are twofold: First, the untrusted world
should not be able to access data in enclave memory. A memory
access can be either explicit or implicit. An explicit access is
a memory access initiated directly by the execution of memory-
related instructions such as loads and stores. Any explicit illegal
accesses to enclave memory regardless of the execution privilege
should raise an exception and be promptly handled. An implicit

memory access is initiated by the hardware and can serve different
purposes including memory management (e.g., page table walks
or page walker cache refills), performance optimizations (e.g., data
prefetching), etc.

Second, enclave data should be cleansed from the microarchitec-
ture state when the processor is not running in the enclave mode.
This means flushing of all microarchitectural buffers, such as caches,
TLBs, LFBs, etc., has to be enforced during context switches from
the enclave to the untrusted world. It also implies that the enclave
and the untrusted world cannot share microarchitectural compo-
nents (e.g., last-level cache) simultaneously. We do acknowledge
that in practice vendors might be reluctant, for performance rea-
sons, to enforce some of these isolation mechanisms (e.g. full cache
flush). In such cases additional hardware support might be used to
provide the same guarantees with lower performance impact.

Principle P2 ensures that enclave metadata cannot be indirectly
leaked frommicroarchitectural structures.Whilemicroarchitectural
states are not directly visible to software, secrets can still be leaked
through various side-channels. P2 suggests a reset of the microar-
chitectural state is required when a context switch from enclave
mode to non-enclave mode takes place. It also precludes sharing of
microarchitectural components by enclave and non-enclave code.

We note that, while a violation of these security principles does
not always lead to exploitable vulnerabilities, a design following
these principles is guaranteed to mitigate all known attacks under
our threat model.

4 THE TEESEC FRAMEWORK

TEESec is a pre-silicon framework designed to verify register-
transfer level (RTL) implementations of TEE-protected CPUs. The

framework could be deployed stand-alone or as part of the func-
tional verification process of the design. We choose RTL-level veri-
fication as opposed to post-silicon for two important reasons: (1)
The RTL design fully represents the functionality of the CPU (un-
like higher-level architectural simulations which include neces-
sary approximations/simplifications) and (2) the RTL simulation
infrastructure provides full visibility to the complete set of microar-
chitectural structures (unlike the final hardware, in which much
of the microarchitectural state is invisible to direct observation).
TEESec is currently implemented using the RISC-V based Chipyard
framework. In our case studies we choose the Keystone TEE [27] as
a verification target, but stress that TEESec can be equally applied
to other TEE designs.

The TEESec framework consists of three main components: (1)
A Verification Plan, (2) Test Gadget Constructor and (3) the
TEESec Checker. In the initial phase, we analyze the design and
specifications of the target system to construct a verification plan,
which enumerates the relevant components that will be part of the
verification, as well as the TEE software API and security specifi-
cations. The verification plan is used to generate a set of testing
gadgets that follow the verification plan and assemble those gadgets
into test code sequences that will run on the processor under test.
The TEESec checker is integrated into an RTL simulator, uses test
inputs generated from the testing gadgets, logs detailed execution
state specified by the verification plan and verifies that the security
principles and TEE API contracts are enforced. Figure 1 illustrates
a high-level view of TEESec framework and its three components,
which are described in detail next.

4.1 Constructing a Verification Plan

The verification plan consists of a comprehensive analysis of the
relevant microarchitectural features of the processor under test,
including a complete enumeration of all memory access paths im-
plemented by the processor, all architectural and microarchitectural
data andmetadata storage elements and the software API of the TEE.
Some of these steps are automated while others rely on designer
input.

4.1.1 Enclave Memory Access Paths. A comprehensive approach
for identifying the potential for secret leakage requires first iden-
tifying all paths through which data, metadata and code can be
retrieved from memory into the processor. This must include all
possible paths to access memory. While most memory accesses are
explicit (initiated by load and store instructions), many are implicit
requests needed to service other functions (prefetcher requests,
page table walks, etc.). These implicit memory access paths are
often overlooked by vulnerability detection tools.

As an example of an implicit memory access, let us consider
a load instruction that causes a TLB miss in the RISC-V BOOM
[70] design. In this case, the processor has to request a hardware-
managed "page table walk". The page table walker unit accesses
the root page table and depending on the virtual memory imple-
mentation, there may be multiple accesses to memory to resolve
the mapping and update the TLB. All these accesses are implicit
and essentially invisible to the program/user. Depending on the
implementation of the page table, multiple page table accesses can
miss in the cache, leading to several additional implicit requests

TEESec: Pre-Silicon Vulnerability Discovery for Trusted Execution Environments ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Processor Microarchitectural & TEE API Analysis

Security Principles

No	enclave	data	should	be	fetched	 into	or	remain	 in	the	
CPU	 microarchitectural	 state	 when	 the	 CPU	 is	 not	 in	
trusted	enclave	execution	mode

The	 Microarchitectural	 state	 that	 is	 influenced	 by	
enclave	 code,	 should	 not	 affect	 the	 execution	 of	 any	
non-enclave	code

P2

Test Gadget Construction RTL Simulation & Sim Log Analysis

Building Blocks

G
adget

A
ssem

bler

Verification Plan

TEE HW/SW

Processor
uArch

uArch Storage Elements
1. ST Buffer, LFB, L1D$,…

2. PTW Cache, Prefetcher,…

3. HW Perf Counters

4. DTLB/ITLB Entries

5. Branch Prediction Unit

TEE API
1. Create, Run, Resume, Stop,…

2. Root of Trust, Perm Management,…

Enclave Memory Access Paths

1. LD/ST Unit

3. LD/ST Unit

2. PTW(Cache)

4. Prefetcher

RTL
Simulation

Execution
Log

RTL

RTL Sim Log
Cycle #X
RegFile
LFB
TLB
Perf Counters
STBuffer
Cache
BPU

LFB

Perf Counters

Enclave
Data Secret

Enclave
Metadata
Secret

Fill Enc Mem()
Create/Exe Enclave()

Exp Acc Enc L1()

Fill Enc Mem()

Rd PerfCounters()
Resume Enclave()

Rd PerfCounters()

TEESec Checker

Data Leakage

Metadata Leakage

E
xe

cu
te

C
o

ns
tr

uc
t

Test Gadget Constructor

R
ep

o
rt

Access	Gadgets

Helper	Gadgets

Setup	Gadgets

 Enc Mem to L1()

Stop Enclave()

Stop Enclave()

Create/Exe Enclave()

Test Case #N

L1 Cache

L1 Cache

L2 Cache

ST Buffer

I
E
I
E

Test Case #1

Test Case #2

5. LD/ST Unit LFB E

3. Hardware Primitives (e.g., PMP)

Stop Enclave()

I Implicit Access

E Explicit Access

Permission Check Enforced

Permission Check Bypass

No Permission Check

P1

Figure 1: TEESec architecture and workflow. TEESec consists of three main components: a Verification Plan, a Test Gadget

Constructor and TEESec Checker which is designed to run in conjunction with an RTL simulator.

to the memory hierarchy. Other examples of implicit accesses are
prefetch requests. The BOOM processor is equipped with a simple
next-line prefetcher which prefetches the next 64 bytes (cache line
size) of memory in case of a cache miss. In this case, the hardware
prefetcher logic initiates this implicit access.

As these examples illustrate, implicit accesses involve distinct
mechanisms with different access paths that need to be included
in the verification plan to ensure full coverage of all possible leak-
age channels. TEESec relies on the complete list of memory access
paths for verification. This can be constructed from design specifica-
tions or direct RTL code analysis. This list will be used to generate
access gadgets that exercise all possible paths through which data,
metadata and code can be accessed.

4.1.2 Permissions Check Handling. Correct and secure access per-
mission enforcement is fundamental to secure TEE designs. For
example, the first variant of Meltdown [34] exploits a speculative
permissions check implementation, which occurs in parallel with
the memory access. This implementation choice may seem benign
at first glance because the illegal access and all instructions executed
after it are eventually squashed. However, the potential to leak the
secret still exists because, before the instructions are squashed, the
accessed secret can be forwarded to a transmitter gadget and leaked
through a side channel.

It is also important to note that not all memory accesses undergo
access permissions checks. Implicit memory accesses frequently
forgo such checks, for example those initiated by the prefetcher. In
these cases an attacker can craft code to induce the prefetcher to
access memory regions inaccessible to the attacker process. Since
hardware prefetching does not check permissions, no exceptions
will be raised for these illegal accesses. Similarly, accesses gener-
ated by the hardware page table walker (PTW) undergo speculative
checks that can be bypassed by Meltdown-like attacks, or no per-
mission checks at all.

In order to verify TEE vulnerabilities to these and other types
of attacks, TEESec enumerates all permission check policies for all

memory access paths. This information is used to generate/select
test gadgets that exercise all these policies for verification.

4.1.3 Microarchitectural Data/Metadata Storage Elements. Modern
out-of-order processor designs conduct complex operations with
data stored in program-invisible microarchitectural structures. This
complexity and lack of visibility into the implementation details
has lead to multiple vulnerabilities. For example, data was leaked
from the line fill buffer (LFB), an otherwise obscure structure, in
[44]. Depending on the processor design, multiple paths may exist
to service a load instruction. These include the store queue, the line
fill buffer, L1 data cache, etc. Accesses through all these paths can
leave secret data traces that can lead to exploits.

In addition to data, some microarchitectural structures can leak
metadata that can be used in an attack. For example, branch tar-
get buffers (BTB) provide the predicted target address for branch
instructions. The BTB is usually implemented as a set-associative
structure which makes it susceptible to collision-based attacks (Sec-
tion 7.2.2). Another set of storage elements containing metadata
are hardware performance counters that hold information such as
number of L1 cache misses, TLB misses, store-to-load forwarding,
exceptions, etc. This information can be used by the untrusted host
to infer the enclave program flow and memory accesses, which
could be exploited by an attacker to leak enclave secrets. In Section
7.2.1, we describe a case study where the inaccessible performance
counters can be read by an underprivileged user.

In order to detect such vulnerabilities TEESec seeks to exhaus-
tively identify all microarchitectural structures that have state and
capture that state in the execution log used for leakage verification.
The goal is to capture all potential paths inside the microarchitec-
ture that can be traveled by enclave data, code or metadata as a
result of both explicit and implicit memory accesses. The lists of
microarchitectural storage elements can be compiled automatically
using tools such as the the Yosys Verilog RTL synthesis tool [61],
which can be used to identify all HDL constructs that could be
mapped to memory objects and eventually to memory cells. This

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Moein Ghaniyoun, Kristin Barber, Yuan Xiao, Yinqian Zhang, and Radu Teodorescu

mapping happens as a pass in Yosys synthesis steps and can be
extended to compile a record of all the modules containing storage
elements along with their interfaces, to help with integration into
the logging mechanism of the TEESec Checker.

4.1.4 The TEE Software API. TEESec verifies that the TEE API
functions follow the outlined security principles. This requires
identifying all relevant TEE APIs (e.g Enclave Create(), Resume(),
Destroy(), etc.) and summarizing their expected behavior. TEESec
will then verify that the microarchitectural state is leakage-free
with respect to the security principles defined in Section 3.2 fol-
lowing privilege transition boundaries (e.g. after Enclave Destroy()
calls). Note that TEESec is focused on identifying data/metadata
leakage, not the functional correctness of the TEE API, which is
orthogonal to this work. The TEE API is also used to establish the
test boundaries, generate setup gadgets to initialize the system state
to the desired parameters before each test.

4.2 Test Gadget Construction

The second main component of TEESec is the test gadget genera-
tion framework, illustrated in the middle section of Figure 1. The
Verification Plan is used to enumerate all data/metadata memory
access paths and microarchitectural storage structures. It also out-
lines the TEE API functions and expected behavior with respect
to enclave data/metadata protections. Using this plan we generate
test sequences to reproduce all the access paths, both explicit and
implicit. We use a modular, gadget-based test generation approach
to increase the scalability, coverage and re-usability of the test code.
The use of targeted gadgets also limits the number of possible test
sequences in order to keep testing time reasonable. Each gadget
is composed of a few assembly instructions with parameterized
variables. Three types of gadgets are used in TEESec:

Helper Gadgets are responsible for setting up themicroarchitec-
tural state and seeding secret data in enclavememory. These gadgets
are used in cases that require a specific state for enclave data/meta-
data. As an example, the Fill_Enc_Mem() gadget includes a few
store instructions in a loop, which populate enclave memory with
secret values. These secrets are computed as a hash function of the
memory address where they are stored. The memory address is
provided to the gadget as an input. This way, any secret leakage
identified in the simulation log can be traced back to the original
memory access. Other gadget examples include bringing certain en-
clave data to cache, causing cache misses in enclave data, triggering
hardware prefetch of certain addresses, etc.

Setup Gadgets provide the necessary set of instructions to set
up the execution environment and a means of communication
between enclave and non-enclave world. Setup gadgets are con-
structed to follow the TEE Software API specifications outlined in
the verification plan. Gadgets such as Create_Enclave(), Exe_En-
clave() and Stop_Enclave() setup and/or destroy enclaves and
perform context switches between enclave and non-enclave exe-
cution. TEESec uses these gadgets to verify that leakage does not
occur following TEE API calls, for example when an enclave is
created, stopped, resumed and stopped again, exited, destroyed, etc.

Access Gadgets reproduce and exercise all the memory access
paths identified in the verification plan. This is achieved with assis-
tance from helper gadgets that insert/remove enclave data/metadata

in the cache and processor buffers. For example, access gadget Exp_-
Acc_Enc_L1() requires the accessed enclave data to be present in
the L1 cache to reproduce one of enclave memory accesses in Figure
1. Similarly, Imp_Acc_Pref() access gadget requires the targeted
enclave data to be present in L2 and not in L1 so that it can be
brought to the L1 by an implicit access initiated by the prefetcher.
Depending on the microarchitectural state at the time of each gad-
get’s execution, we can have multiple permutations of the same
gadget. For example, Exp_Acc_Enc_L1() can be executed when the
accessed data is only in L1, L1 and LFB, L1 and store buffer, etc.

GadgetAssembler.The final step of the test gadget construction
is accomplished by the Gadget Assembler, which automatically
generates complete test sequences that cover all valid permutations
that exercise the entire range of both implicit and explicit memory
access paths with different permissions, and for all TEE API calls.
In order to guide the assembler to generate valid test sequences,
an execution model is constructed automatically to capture the
expected microarchitectural state following gadget execution. The
execution model ensures the expected pre-conditions exist for each
access gadget to exercise the targeted memory access path.

4.3 TEESec Checker

The final component of our framework is the TEESec Checker,
illustrated in the third panel of Figure 1. The Checker is responsible
for executing the verification code sequences and analyzing the
system for potential leakage. The TEESec Checker is integrated
into an RTL simulator. The source code is instrumented to log
the content of all microarchitectural storage elements outlined in
the verification plan, at cycle granularity. In order to identify data
leakage, the checker searches the log for verbatim enclave secrets in
processor buffers and microarchitectural structures when the CPU
is not executing in enclave mode. Similarly, to identify potential
for metadata leakage, the TEESec checker searches for enclave
metadata residue such as branch prediction history in CPU buffers.
This metadata leakage is a potential security vulnerability as it
might lead to exploits that leak enclave data or control flow.

5 TEESEC IMPLEMENTATION

We implement TEESec in the Chipyard framework, with deep in-
tegration into the Verilator RTL simulator. TEESec is designed to
be used by microprocessor architects and security verification en-
gineers with a high-level understanding of the design. It does not
require a detailed knowledge of the underlying microarchitectural
implementation. It requires awareness of which processor struc-
tures that can initiate memory accesses, in order to be included
in the verification plan. This process could potentially be auto-
mated through a profiling pass. TEESec also requires enumeration
of all possible privilege levels, but it does not require knowledge of
how permissions are enforced by the microarchitecture. Permission
enforcement is part of the automatic verification process of TEESec.

As TEESec is still a prototype, some of the steps that are now
manual could be automated in a production system. In the cur-
rent TEESec prototype the identification of data/metadata storage
elements is automatic. Based on the storage elements discovered
such as line-fill buffer (LFB), write-back buffer, store buffer, etc.
and design specifications, enumerating all memory access paths is

TEESec: Pre-Silicon Vulnerability Discovery for Trusted Execution Environments ISCA ’23, June 17–21, 2023, Orlando, FL, USA

automatable, but currently a manual pass. Generating access gad-
gets to exercise each possible access path is also a manual process.
Since gadgets are parameterized, we rely on fuzzing for gadget
assembly and to generate varied test cases. After the verification
plan is established and the gadgets constructed, the gadget fuzzing
process, the RTL simulation log analysis, and leakage discovery are
all automatic. Table 1 shows a summary of TEESec components
highlighting, for each component, whether it is currently automatic,
automatable in a production system, or manual for the time being.

TEESec Components Manual Automatic

Verification

Plan

Identifying Storage Ele-
ments - ✓

Listing Memory Access
Paths (✓) -

Listing TEE HW/SW
APIs (✓) -

Test Gadget

Constructor

Access Gadgets Tar-
geting Memory Access
Paths

✓ -

Test Case Assembly - ✓

TEESec

Checker

RTL Simulation Log
Analysis - ✓

Leakage Discovery - ✓

Table 1: The main components of the TEESec framework.

✓ indicate components that are automatic, and (✓) indicate
steps that are automatable but currently implemented as a

manual pass.

In the implementation of the TEESec prototype we used 8 setup
gadgets, 12 helper gadgets, 2 metadata access gadgets and 13 data
access gadgets (one for each memory access path). Each gadget is
parameterized allowing the fuzzer to generate multiple test cases
in order to maximize coverage. TEESec generated 585 test cases,
which cover all access paths. Generating, running and analyzing
each test case takes approximately 5 minutes on our systems. Table
2 summarizes the number of gadgets used in our evaluation, as well
as the time overhead of the main TEESec steps (manual or auto-
matic). Currently the most time-intensive component of TEESec is
the development of the verification plan for a new TEE/microar-
chitecture, at around 40 person-hours. Once a verification plan
is developed for a given microarchitecture, deploying it to a new
TEE is relatively straightforward, with only incremental changes.
The main cost of the verification plan is ensuring coverage of all
memory access paths.

6 EVALUATION METHODOLOGY

We evaluated two open-source, dynamically scheduled, out-of-order
processor designs: XiangShan [62] and BOOM [13, 70]. While they
are both RISC-V processors, they have substantially different ar-
chitectures and implementations. For BOOM, we evaluated two
versions which includes the latest release, SonicBOOM (v3.1), and
the last stable release (v2.3) before SonicBOOM.

We deploy Keystone, an open-source framework for designing
TEEs and managing secure hardware enclaves on RISC-V systems

Gadgets Setup Helper Access

Total Test

Cases

No. 8 12 15 585

TEESec Verification

Plan

Gadget

Construc-

tor

Checker

Avg.

Time

Time 40* person-
hour ∼1min ∼4min ∼5min

Table 2: Total number of test cases generated along with the

average time to generate/execute/analyze each test case.

*one-time cost.

to both BOOM and XiangShan. Keystone uses a security monitor
that runs at the highest execution privilege level on RISC-V systems
(Machine Mode) and is responsible for creating, running, stopping,
attesting and destroying hardware enclaves. Keystone requires
limited hardware modification to be deployed to a RISC-V core.
Similar to other RISC-V TEEs [6, 20], Keystone utilizes RISC-V
Physical Memory Protection (PMP) to define security domains and
isolate these domains from each other. RISC-V PMP provides a set
of control and status registers (CSRs) which can be configured to
specify the access privileges of each physical memory region. The
size and address boundaries of each region is also managed by a
similar set of PMP CSRs.

To test TEESec on both XiangShan and BOOM cores, we used
the Keystone-enabled version of Berkeley Bootloader included with
the standard security monitor. For our OS needs, we developed a
modified version of riscv-pk (proxy kernel) that supports RISC-V
sv39 virtual memory management and provides basic exception
handling features. Also, our modified riscv-pk interacts with the
security monitor via the Supervisor Binary Interface (SBI) which
is triggered by executing an ECALL instruction that generates
an environment call exception. Depending on the value stored in
register 𝑎0 at the time of ECALL execution, different functions
in the security monitor such as create/stop enclave can be called.
The created enclaves support two levels of execution privilege and
all context switches from/to enclaves to the host go through the
security monitor.

We run all tests on a machine equipped with an Intel Xeon E5-
2440, 2.40GHz CPU, 32GB of RAM, running RHEL 7.9. For the RTL
simulation, we opted for Verilator, an open-source RTL simulator
which converts the Verilog code to C++, which is then used to build
the simulator.

7 RESULTS AND CASE STUDIES

The deployment of TEESec on the two processors lead to the dis-
covery of 10 distinct violations of the security principles P1 and
P2 outlined in Section 3. These findings are listed in Table 3. The
leakage cases fall into two classes: (A) enclave data leakage (D1 –
D8) and (B) enclave metadata leakage (M1 and M2). The first class
represents violations of P1 and the second class violations of P2.

7.1 Enclave Data Leakage

By following the TEESec Verification Plan and targeting all mem-
ory access paths on BOOM and XiangShan, we discovered eight
instances where the enclave secret is leaked to the untrusted host

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Moein Ghaniyoun, Kristin Barber, Yuan Xiao, Yinqian Zhang, and Radu Teodorescu

Type Leaking Cases Secret Access Path Source BOOM XS

Data

D1 Leaking enclave data via L1D
prefetcher abuse

Load Inst (Exp) —> L1 Cache Miss —> Prefetcher (Imp)
—> L2 Cache Req —> LFB Refill LFB ✓ -

D2 Leaking enclave/SM data through
page table walks

Load Inst (Exp) —> TLB Miss —> Page Table Walk (Imp)
—> L1 Cache Miss —> L2 Cache Req —> LFB Refill LFB ✓ -

D3 Leaking LFB residual data after en-
clave destroy

Store Inst (Exp) —> L1 Cache Miss —> L2 Cache Req —>
LFB Refill (Stale enclave data) LFB ✓ -

D4 Leaking enclave data/code to host
user/supervisor

Load Inst (Exp) —> TLB/PMP Check —> L1 Cache Hit —>
Write-back RF —> Secret Forwarded RF ✓ ✓

D5 Leaking Keystone SM data/code to
host user/supervisor

Load Inst (Exp) —> TLB/PMP Check —> L1 Cache Hit —>
Write-back RF —> Secret Forwarded RF ✓ ✓

D6 Leaking enclave data/code to an-
other enclave

Load Inst (Exp) —> TLB/PMP Check —> L1 Cache Hit —>
Write-back RF —> Secret Forwarded RF ✓ ✓

D7 Leaking host user/supervisor data/-
code to enclave

Load Inst (Exp) —> TLB/PMP Check —> L1 Cache Hit —>
Write-back RF —> Secret Forwarded RF ✓ ✓

D8 Leaking enclave data/code through
store buffer

Load Inst (Exp) —> TLB/PMP Check —> Store Buffer Hit
—> Write-back RF —> Secret Forwarded RF - ✓

Metadata

M1
Revealing enclave control-
flow/data access patterns via
performance counters

Reset Perf Counters —> Enter Enclave —> Stop Enclave
—> Read Perf Counters HPC ✓ ✓

M2
Revealing enclave control-flow via
conflicts on branch prediction
units

Enter Enclave —> Execute a Cond. Branch —> Stop En-
clave —> Execute a Cond. Branch Mapping to the Same
uBTB Entry —> Check Cycle Count

BPU ✓ ✓

Table 3: Enclave data/metadata leakage cases, the secret source and access path.

or another enclave, as shown in Table 3. In the first three cases (D1-
D3), enclave secrets were found in the BOOM Line Fill Buffer (LFB)
while the processor was executing in non-enclave mode. In the
other five case studies (D4-D8), enclave secrets were written-back
to the register file and/or forwarded to next dependent instruction,
even when the CPU was running in non-enclave mode.

7.1.1 D1: Leakage via the Hardware Prefetcher. In order to verify
the prefetcher implicit memory access path, an access gadget is
designed to access data in a memory page adjacent to an enclave
page protected by PMP. When the accessed data is located at the
boundary-straddling addresses of the accessible page, the prefetcher
triggers memory requests for the next cache line that falls in the
enclave memory region, as illustrated in Figure 2. Since no permis-
sion checks are performed for the prefetch accesses, the Line Fill
Buffer receives 64 bytes (cache line size) of enclave data (Refill
from L2 to LFB). The TEESec Checker identifies these traces of
PMP-protected memory in the LFB as a potential vulnerability. The
same test does not identify a vulnerability in XiangShan as this
processor lacks an L1 prefetcher.

7.1.2 D2: Leakage through Page Table Walks. TLBs store the map-
pings of virtual memory pages to physical pages to speed up address
translation. A TLB miss occurs when the processor requests an ad-
dress translation that is not present in the TLB. For performance
reasons many processors implement the miss handling mechanism
in hardware, generally using a page table walker (PTW). On a TLB
miss, the page table walker first looks up the root page table and
then generates multiple memory accesses to traverse the page ta-
ble hierarchy and reach the targeted page table entry. All memory
accesses to page tables are implicit and invisible to software.

Virtual
Memory

Host Supervisor/
User Page

PMP Protected
Enclave Page

0x4000 0x5000 0x6000

Accessible Page Inaccessible Page

0x4FF8 0x5008

Li a4, Accessible Page
Req

L1 Cache

Cache Miss

L2 Cache

Next Line Prefetcher
Req

Enclave

Addr: 0x4ff8

Cache Line: 0x4fc0

Next Cache Line: 0x5000Req

Re
q

LFB

XXXXXXXX

Ld a5, 0xff8(a4)

H
ostEnclave

Host

Refill

H
ost

XXXXXXXX

Figure 2: Abusing L1 cache next-line prefetcher to bring en-

clave data into LFB in BOOM.

According to most TEE threat models, the malicious OS can
modify the root page table address of the host to point to the en-
clave memory. TEESec verifies all permutations of relevant state
under which this can occur, including different states for the cache,
Miss Status Holding Register (MSHR), and other microarchitectural
components.

In BOOM, when a TLB miss occurs, the processor always initi-
ates a memory request to the root page table to start the address
translation process. While the implicit page table walk request even-
tually raises an Access Fault exception, the access to the invalid
page table is not squashed. Thus, it results in the LFB being filled
with 64 bytes (cache line size) of enclave data. The TEESec Checker
identifies this case as potential leakage. Indeed, by setting the root

TEESec: Pre-Silicon Vulnerability Discovery for Trusted Execution Environments ISCA ’23, June 17–21, 2023, Orlando, FL, USA

page table address to point to enclave memory, an attacker can
speculatively load the entire enclave page into the LFB.

The steps of the attack are shown in Figure 3. 1 The host root
page table address in the Supervisor Address Translation and Pro-
tection (SATP) CSR is modified to point to enclave memory. 2 A
load instruction is issued to an arbitrary page for which the TLB
does not have a translation. 3 A TLB request will be followed by
4 a page table walk request. 5 The PTW hardware initiates a re-
quest to the L1 cache to retrieve the root page table entry (pointing
to enclave memory), leading to a cache miss. 6 Next, a request is
initiated from L1 to L2 to fetch the missing cache line. 7 The L2
responds by refilling the LFB with enclave secrets.

PMP Protected
Enclave/SM Host Supervisor/User

Memory
Host Supervisor/User

Memory

L2 Cache

Enclave
/SM

Main Memory

LFB
Enclave/SM

L1 Cache

Cache Miss

LSU
D-TLB

PTWTLB Req

ExecutedLoad Address

XX
Arb_Addr True
XXXXXXXX XX

XXXXXXXX No Mappings

XXXXXXXX
XXXXXXXX

XXXXXXXX

I

E Miss
Root PT:

PMP Protected
Enclave/SM

LD a5, Arb_Addr

CSRW SATP, Enclave_Mem SATP
CSR

IRe
q

Access L2I

Refill

1

2
3

4

5

6

7

I Implicit Access E Explicit Access

Figure 3: Manipulating host root page table to point to the

enclave/SM memory and forcing a page walk by executing a

load instruction that misses in TLB

Interestingly, the same vulnerability does not exist in XiangShan.
By closely examining the simulation log and investigating the Chisel
source code of XiangShan, we found that the PTW cache refill
signals are not sent over the typical L1D request channel. Instead,
they are sent as TileLink requests directly to L2 over the ‘A’ channel.
Responses are returned as TileLink messages over the ‘D’ channel.
Moreover, before creating a request, the refill address is checked
by PMP CSRs. If the address falls in an inaccessible region, no
request will be created at all. In the simulation log, we observed
that in spite of raising a PTW cache miss, there is no valid request
sent over the ‘A’ channel by the PTW cache. To validate the test
sequence, we experimented with exactly the same steps, but with
the manipulated page table entry pointing to an accessible memory
region rather than enclave memory. In this case we were able to
identify the valid request and response and also the refill values in
the PTW cache. This showed that the test was working as intended
and that indeed XiangShan does not exhibit the PTW vulnerability.

7.1.3 D3: Leakage of LFB Residual Data. Keystone provides a RISC-
V Supervisor Binary Interface (SBI) for the host supervisor to de-
stroy an enclave and free its memory. Destroying an enclave is only
allowed when the enclave is in either ‘stopped’ or ‘exit’ state. One

of the setup gadgets, Destroy_Enclave(), is executed by the host
supervisor to destroy the target enclave. The gadget sets register
a0 to enclave_id and register a7 as the function specifier (in this
case mcall_sm_enclave_destroy), followed by an ECALL instruc-
tion to raise an exception to be handled by the security monitor
(SM) (1 in Figure 4). Next, the control is transferred to the SM
exception handler. Depending on the values in registers a0 and
a7, the appropriate SM function is executed. In addition to a few
checks at the beginning of sm_enclave_destroy, which make sure
the requested enclave can be destroyed, a memset() that zeros-out
the entire enclave physical memory is executed 2 . memset() is
implemented with a set of store (sd) instructions that are executed
in a loop until the entire enclave memory is zeroed out.

In the BOOM processor, when a store instruction is committed,
a cache request is sent to L1D. In case of an L1 cache miss, a fill
request is sent to the L2 cache to fetch the missing line, which will
be serviced through the LFB. According to security principle P1, all
data residues should be cleansed after the CPU leaves the enclave
mode. However, TEESec Checker detects enclave secrets in the
LFB brought in by the memset() stores. These secrets persist in
the LFB even after the context switch from the security monitor
to host supervisor 3 . In the current BOOM microarchitecture the
LFB is not used to directly service load requests, which means LFB
data cannot leak. However, the LFB has been shown to be very
vulnerable to leakage in Intel processors [59]. As a result, we flag
leakage to the LFB as a potential concern.

li a7, DESTROY_ENCLAVE
li a0, ENCLAVE_ID

ECALL

Host
Supervisor

C
o

ntext
Sw

itch

S

sm_destroy_enclave()

C
o

ntext
Sw

itch

ld a2, ENCLAVE_Mem

S

memset((void*)base,0,size)

M
Security
Monitor

Enclave

Enclave

L2 CacheL1 Cache LFB
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

Enclave

Enclave

Enclave

Enclave
M

iss

M
iss

XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

Stores miss in L1D$ result in requests to L2 cache

000000000
000000000
000000000

000000000

L2 responds with
enclave secrets

Enclave L1D$ lines
are zeroed out

Secrets remain in LFB
after cont. switch

S Supervisor Mode M Machine Mode

1

2

3

Enclave

Enclave

Figure 4: Enclave secrets are brought into LFB when SM

cleanse the enclave memory upon enclave destroy.

7.1.4 D4-D7: Leaking Secrets from L1D. All leakage instances in
this category originate in the L1 data cache and are Meltdown-
type [34] vulnerabilities. We discover these vulnerabilities using
extensive testing of the explicit memory access path, using gadget
permutations that exercise a wide range of execution states, includ-
ing secret present or not in the L1D and LFB, MSHRs utilization, etc.
Out tests also include all types of memory instructions, e.g. load
byte, load word, load double word, load half word, missaligned load,
etc. The TEESec Checker finds multiple instances in which a PMP
protected secret can be transiently leaked through the register file
and a dependent instruction, even though an Access Fault exception
is raised.

We categorize the leakage instances based on the presence/ab-
sence of the targeted data in L1D:

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Moein Ghaniyoun, Kristin Barber, Yuan Xiao, Yinqian Zhang, and Radu Teodorescu

TLB
Req

TLB
Resp
Perm
Check
Cache

Req

Cache
Resp
Kill
Req

Frwrd
Secret

Write
Back

Cache
Resp
(Fake
Hit)

Kill
Req

Frwrd
Zero

Write
Backt1 t2

t3

t3

t3ʹ

t4

t4

Verbatim Secret

Zeroed-out

Exp_Acc_Enc()
US

Secret is NOT
in L1D$

Secret is
in L1D$

Figure 5: Accessing PMP protected data on XiangShan. Two

different access paths are shown: the data present and not

present in L1D.

a) PMP-protected data is present in L1D: Simulation log analysis
for both BOOM and XiangShan shows that as soon as the physical
address is resolved from a TLB response, a memory request is
created and sent to the L1 cache. In the same cycle, an Access
Fault exception is raised as a result of the illegal access. However,
because the memory request is sent to the cache at the same time,
the request cannot be squashed. Due to the lazy handling of the
exception, the cache responds with the secret value in the next few
cycles. The dispatcher forwards the secret to the next dependent
instruction and eventually writes it to the physical register file.

b) PMP-protected data is not present in L1D: When the targeted
secret data is not in the L1D we observe different behaviors in
BOOMvs. XiangShan. In BOOM, thememory access is not squashed
after the exception is raised. This means the request goes all the
way to the L2 and eventually results in an LFB fill with 64 bytes of
secret data, which we flag as potential leakage.

In XiangShan, the L1D miss response to the processor’s LSU is
slower than the hit response (𝑡3′ vs. 𝑡3 in Figure 5). This gives the
L1D cache additional time to handle the access exception on a miss.
If an exception occurs, the L1D returns a "fake hit" response with
a 0 data value, and does not generate a fill request to the L2. As a
result, XiangShan is not vulnerable to leakage if the PMP-protected
data is not in the L1D.

To cover all possible combinations of isolation boundary cross-
ing, we tested the following scenarios, which all resulted in secret
leakage on both processors:

• D4: Leaking enclave data/code to host user/supervisor.
• D5: Leaking Keystone Security Monitor data/code to host
user/supervisor.

• D6: Leaking enclave data/code to another enclave.
• D7 : Leaking host user/supervisor data/code to enclave.

7.1.5 D8: Leaking Secrets from the Store Buffer. XiangShan includes
a store buffer that holds the pending writes to the L1D of commit-
ted store instructions. In order to test leakage through the store
buffer, we used the TEESec Gadget Constructor to create instruc-
tion sequences that are executed right before the context switch
from enclave to host. These instructions include multiple stores
to different addresses inside enclave memory that fall in different
cache lines. Next, we generated load instructions to access the same
addresses right after the context switch to host user/supervisor.
To make sure that none of these accesses are resolved by the L1D,
we chose addresses that are not cached. We observed that the load

requests are simultaneously sent to the L1D, store queue, and store
buffer. The TEESec Checker reveals that the store buffer resolves
several loads, transiently supplying enclave data to dependent in-
structions outside the enclave, in spite of an Access Fault exception
being raised.

7.2 Enclave Metadata Leakage

In addition to accessing verbatim enclave data, enclave secrets can
also be leaked through microarchitectural structures containing
potential enclave metadata. Two metadata leakage instances were
identified with TEESec. In the first one, hardware performance
counters (HPC) were exploited to leak enclave secrets. In the second
one, the Branch Target Buffer (BTB) is used to leak the control-flow
of the enclave program.

7.2.1 M1: Exploiting HPCs. Hardware performance counters are
special-purpose registers which track a wide range of microarchi-
tectural events. Both BOOM and XiangShan offer a variety of HPCs
grouped in different event sets, such as memory events and branch
prediction events.

We explored multiple ways an attacker can leak enclave secrets
through HPCs. The TEESec Checker identified multiple instances
of HPC leakage across enclave boundaries in both BOOM and Xi-
angShan. This occurs because none of the performance counters
are reset at context switches and Keystone framework does not
provide a software mechanism to clear these counters after en-
tering or before exiting enclaves. This design shortcoming can be
exploited by a malicious host in a Prime-and-Probe type attack: it
first primes micro-architectural states (e.g, by resetting the HPCs,
flushing cache, TLB, etc.) before entering the enclave and repeatedly
interrupting enclave execution and probing the counter readings.

Even if mitigations are added by limiting certain sensitive HPCs
to be only accessible by the security monitor, we demonstrate in
Figure 6 that exploitation is still possible on XiangShan processor
by utilizing a malicious interrupt service routine. Although reading
the CSR is not allowed by the current execution privilege (𝑡2-𝑡4
in Figure 6), the value of the CSR can still be transiently written
back to the register file. If an interrupt arrives after the write-back
(𝑡3) and before the faulting instruction is flushed from ROB (𝑡5),
the current state of the context including the logical register file
will be stored in memory, filling up the store buffer. As previously
mentioned in Section 7.1.5, in XiangShan values in the store buffer
can be leaked to unprivileged users. Using the same technique, an
attacker can retrieve the performance counter data pending at the
store buffer. The BOOM processor is not vulnerable to such attacks
because it waits for the privilege check and writes nothing to the
register file when the check fails.

7.2.2 M2: Abusing Branch Prediction Units. The Branch Target
Buffer (BTB) is one of the CPU internal structures responsible
for resolving the target address of branch instructions. Similar to
the cache, BTBs are set-associative structures with multiple levels.
XiangShan, for example, utilizes a small directly mapped uBTB with
1024 entries in conjunction with a larger 4-way associative FTB
holding a total of 4096 entries. The number of bits used for tags
and set indexes is determined by the BTB size and associativity.
For performance considerations, only a partial set of address bits is

TEESec: Pre-Silicon Vulnerability Discovery for Trusted Execution Environments ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Enclave
Code

Register File

S
read hpmcounter31

USU

Fetch Execute WrtbckDcde

Exception!

Register File Register File

Ext Int ROB Flush

ST Buffer

M

Access ST
Buffer S

Enclave Host

t0 t1 t2

Int Srvc Rtn

Sa
ve

 C
o

nt
ex

t

SM

M

Save Context

SM

t3 t4 t5 t6

Register File

Lazy permissions
check

Enclave Host Perf Counter Interrupt Service Routine

Figure 6: Leaking HPC data through the store buffer.

uBTB
TAG Valid

T

IsCall?

F

IsRet?

F

IsBr?

T

Target

0xXXXXX

10
24

 E
nt

rie
s

0xYYY

0

1023

0xHHXXXXXYYY
Host PC

0xHHXXXXXTTT
Tag Hit

0xXXXXXTTT

Fetch PC

Enclave PC
0xEEXXXXXYYY

Figure 7: Host and enclave branchesmap to same uBTB entry.

used for tag matches. This allows an attacker to induce conflicts
in BTB sets by mapping a shadow branch to a BTB entry with the
same tag but at a different address.

In Figure 7, both Host PC and Enclave PC are mapped to the same
uBTB entry as they only differ in the most significant bits which
are excluded in tag lookups. As a result, the attacker can prime a
BTB entry before entering the enclave, and probe the entry after
exiting the enclave, to determine whether the branch instruction
in the enclave has been taken or not. Such information reveals the
program control flow and can be exploited to reveal enclave secrets
as demonstrated in [28]. Both BOOM and XiangShan are exposed
to these attack primitives because BTB structures are not flushed
on context switches to/from enclave. There are also no software
mechanisms deployed by Keystone to ensure no enclave metadata
is left at enclave context switches.

8 COUNTERMEASURES

Possible countermeasures to the vulnerabilities we identified in-
clude selective flushing of microarchitectural structures on context
switch, serializing permission checks with memory accesses, or
sanitizing returned data. Table 4 summarizes the possible mitiga-
tions for each vulnerability. Some of these countermeasures have
already been implemented in prior work. For example, MI6 [9]
introduced a special flush instruction in the RiscyOO core to clear
microarchitectural buffers and the L1D in enclave context switches.
We note, however, that their design does not mitigate the D1 and D2
vulnerabilities, since they cannot be eliminated through flushing.

Hardware design changes may be needed to mitigate some of the
vulnerabilities we identified. For example, an alternative to flush-
ing is tagging shared microarchitectural structures with enclave
IDs, and enforcing ID checks on every access. This can be done

by extending tagged BTBs such as Intel eIBRS [26] to more CPU
structures.

The PMP module can also be modified to serialize the permis-
sions check and the memory access, thus mitigating cases D4-D9.
XiangShan already performs PMP checks before the memory ac-
cess to the PTW caches, which is why it is not vulnerable to D2.
Alternatively, a lower-overhead solution is to allow the data access
and permissions check in parallel, but zero-out returned data in
case of a permission check failure (Table 4 column 4).

The PMP module could also be extended to initiate the flushing
of all/select microarchitectural buffers at every PMP reconfigura-
tion (performed on enclave context switch). We note that not all
mitigations need to be deployed in all systems depending on threat
models and other factors. While effective, some of the proposed
countermeasures can have a significant performance penalty. We
leave it to future work to evaluate the performance impact and
examine possible optimizations.

Flush

L1D$

Flush

ST

Buffer

Clear

Illegal

Data

Returns

Flush

LFB

Flush/Tag

BPU/HPC

Flush

Every-

thing

D1 - - - - - -
D2 - - ✓ - - -
D3 - - - ✓ - ✓
D4 ✓* - ✓ - - ✓
D5 ✓* - ✓ - - ✓
D6 ✓* - ✓ - - ✓
D7 ✓* - ✓ - - ✓
D8 - ✓ ✓ - - ✓

M1 - - - - ✓ ✓
M2 - - - - ✓ ✓

Table 4: Possible mitigations for the identified leakage cases.

* items are only effective on XiangShan

9 CONCLUSION

We designed and implemented TEESec, the first pre-silicon frame-
work for the joint verification of TEE software and microarchitec-
tural implementation, with the goal of discovering complex security
vulnerabilities in trusted execution environments. We evaluated
TEESec on the BOOM and XiangShan RISC-V cores and identi-
fied 10 distinct instances of security violations. We believe TEESec
demonstrates the importance of joint verification of TEE software
and hardware, and the effectiveness of integrating security verifi-
cation into pre-silicon RTL simulation.

ACKNOWLEDGMENTS

This work was supported in part by ACE, one of the seven centers
in JUMP 2.0, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA. This work was also supported in part by
the Intel Corp. under the Side Channel Academic Program, the Air
Force Research Laboratory under the Assured and Trusted Micro-
electronics Solutions award FA8650-20-C-1719, and the National
Science Foundation under award 2018627.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Moein Ghaniyoun, Kristin Barber, Yuan Xiao, Yinqian Zhang, and Radu Teodorescu

REFERENCES

[1] Onur Aciiçmez. 2007. Yet another microarchitectural attack: exploiting I-cache. In
Proceedings of the 2007 ACM workshop on Computer security architecture. 11–18.

[2] AMD 2014. AMD64 architecture programmer’s manual volume 2: System program-
ming. Technical Report. https://www.amd.com/system/files/TechDocs/24593.pdf,
[Online; accessed 16-April-2022].

[3] AMD 2021. SEV-ES Guest-Hypervisor Communication Block Standardization.
Technical Report. https://developer.amd.com/wp-content/resources/56421.pdf,
[Online; accessed 21-April-2022].

[4] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar,
Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton,
Paul Rigge, Colin Schmidt, John Wright, Jerry Zhao, Yakun Sophia Shao, Krste
Asanović, and Borivoje Nikolić. 2020. Chipyard: Integrated Design, Simulation,
and Implementation Framework for Custom SoCs. IEEE Micro 40, 4 (2020), 10–21.

[5] ARM 2009. Building a Secure System Using TrustZone Technology. Technical
Report. https://arm.com, Technical Report No. PRD29-GENC-009492C[Online;
accessed 16-April-2022].

[6] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias
Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. 2021. CURE: A Security
Architecture with CUstomizable and Resilient Enclaves. In 30th USENIX Security
Symposium (USENIX Security 21). 1073–1090.

[7] Kristin Barber, Moein Ghaniyoun, Yinqian Zhang, and Radu Teodorescu. 2022.
A Pre-Silicon Approach to Discovering Microarchitectural Vulnerabilities in
Security Critical Applications. IEEE Computer Architecture Letters 21, 1 (2022),
9–12.

[8] Naomi Benger, Joop Van de Pol, Nigel P Smart, and Yuval Yarom. 2014. “Ooh
Aah... Just a Little Bit”: a small amount of side channel can go a long way. In
Cryptographic Hardware and Embedded Systems–CHES 2014: 16th International
Workshop, Busan, South Korea, September 23-26, 2014. Proceedings 16. Springer,
75–92.

[9] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, and Srinivas
Devadas. 2019. MI6: Secure enclaves in a speculative out-of-order processor. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture. 42–56.

[10] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical.. In WOOT. 11–11.

[11] Robert Buhren, Hans-Niklas Jacob, Thilo Krachenfels, and Jean-Pierre Seifert.
2021. One glitch to rule them all: Fault injection attacks against AMD’s secure
encrypted virtualization. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. 2875–2889.

[12] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. 2017. Telling Your Secrets without Page Faults: Stealthy Page Table-Based
Attacks on Enclaved Execution. In 26th USENIX Security Symposium (USENIX
Security 17). Vancouver, BC, 1041–1056.

[13] Christopher Celio, Pi-Feng Chiu, Borivoje Nikolic, David A. Patterson, and Krste
Asanović. 2017. BOOM v2: an open-source out-of-order RISC-V core. Technical Re-
port UCB/EECS-2017-157. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-157.html

[14] David Champagne and Ruby B Lee. 2010. Scalable architectural support for
trusted software. In HPCA-16 2010 The Sixteenth International Symposium on
High-Performance Computer Architecture. IEEE, 1–12.

[15] Kevin Cheang, Cameron Rasmussen, Dayeol Lee, David W Kohlbrenner, Krste
Asanović, and Sanjit A Seshia. 2022. Verifying RISC-V physical memory protec-
tion. arXiv preprint arXiv:2211.02179 (2022).

[16] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H. Lai. 2019. SgxPectre: Stealing Intel Secrets from SGX Enclaves Via Spec-
ulative Execution. In 2019 IEEE European Symposium on Security and Privacy
(EuroS P). 142–157.

[17] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
Hardware Extensions for Strong Software Isolation. In 25th USENIX Security
Symposium (USENIX Security 16). Austin, TX, 857–874.

[18] Dmitry Evtyushkin, Jesse Elwell, Meltem Ozsoy, Dmitry Ponomarev, Nael Abu
Ghazaleh, and Ryan Riley. 2014. Iso-x: A flexible architecture for hardware-
managed isolated execution. In 2014 47th Annual IEEE/ACM International Sympo-
sium on Microarchitecture. IEEE, 190–202.

[19] Mohammad Rahmani Fadiheh, Johannes Muller, Raik Brinkmann, Subhasish Mi-
tra, Dominik Stoffel, and Wolfgang Kunz. 2020. A Formal Approach for Detecting
Vulnerabilities to Transient Execution Attacks in Out-of-Order Processors. In
2020 57th ACM/IEEE Design Automation Conference (DAC). 1–6.

[20] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu
Zang, and Haibo Chen. 2021. Scalable Memory Protection in the PENGLAI
Enclave. In 15th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 21). 275–294.

[21] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. 2017.
Komodo: Using Verification to Disentangle Secure-Enclave Hardware from Soft-
ware. Association for Computing Machinery, New York, NY, USA.

[22] Moein Ghaniyoun, Kristin Barber, Yinqian Zhang, and Radu Teodorescu. 2021.
INTROSPECTRE: A pre-silicon framework for discovery and analysis of transient
execution vulnerabilities. In 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 874–887.

[23] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.
Cache Attacks on Intel SGX. Association for Computing Machinery, New York,
NY, USA.

[24] Marcus Hähnel, Weidong Cui, and Marcus Peinado. 2017. High-Resolution Side
Channels for Untrusted Operating Systems. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17). Santa Clara, CA, 299–312.

[25] Intel 2014. Intel Software Guard Extensions Programming Reference. Technical
Report. https://www.intel.com/content/dam/develop/external/us/en/documents/
329298-002-629101.pdf, [Online; accessed 16-April-2022].

[26] Intel 2018. Intel. Indirect Branch Restricted Speculation. Technical Report.
https://www.intel.com/content/www/us/en/developer/articles/technical/software-
security-guidance/technical-documentation/indirect-branch-restricted-
speculation.html, [Online; accessed 18-Feb-2023].

[27] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, and Dawn
Song. 2020. Keystone: An Open Framework for Architecting Trusted Execution
Environments. In Proceedings of the Fifteenth European Conference on Computer
Systems (EuroSys ’20).

[28] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing. In 26th USENIX Security Symposium (USENIX Security 17).
Vancouver, BC, 557–574.

[29] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas Eisenbarth, Radu Teodor-
escu, and Yinqian Zhang. 2022. A Systematic Look at Ciphertext Side Channels
on AMD SEV-SNP. In 2022 IEEE Symposium on Security and Privacy (SP). 337–351.

[30] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan Solihin. 2019. Exploiting
Unprotected I/O Operations in AMD’s Secure Encrypted Virtualization. In 28th
USENIX Security Symposium (USENIX Security 19). Santa Clara, CA, 1257–1272.

[31] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. 2021.
CIPHERLEAKS: Breaking Constant-time Cryptography on AMD SEV via the
Ciphertext Side Channel. In 30th USENIX Security Symposium (USENIX Security
21). 717–732.

[32] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. 2021.
TLB Poisoning Attacks on AMD Secure Encrypted Virtualization. In Annual
Computer Security Applications Conference. 609–619.

[33] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,
John Mitchell, and Mark Horowitz. 2000. Architectural support for copy and
tamper resistant software. Acm Sigplan Notices 35, 11 (2000), 168–177.

[34] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In 27th USENIX Security Symposium (USENIX Security 18). 973–990.

[35] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,
and Ruby B. Lee. 2016. CATalyst: Defeating last-level cache side channel attacks
in cloud computing. In 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 406–418.

[36] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
Level Cache Side-Channel Attacks are Practical. In 2015 IEEE Symposium on
Security and Privacy. 605–622.

[37] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. Cachezoom:
How SGX amplifies the power of cache attacks. In Cryptographic Hardware and
Embedded Systems–CHES 2017: 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings. Springer, 69–90.

[38] Mathias Morbitzer, Manuel Huber, and Julian Horsch. 2019. Extracting secrets
from encrypted virtual machines. In Proceedings of the Ninth ACM Conference on
Data and Application Security and Privacy. 221–230.

[39] Mathias Morbitzer, Manuel Huber, Julian Horsch, and Sascha Wessel. 2018. Sev-
ered: Subverting amd’s virtual machine encryption. In Proceedings of the 11th
European Workshop on Systems Security. 1–6.

[40] Michael Neve and Jean-Pierre Seifert. 2006. Advances on Access-Driven Cache
Attacks on AES. In Proceedings of the 13th International Conference on Selected
Areas in Cryptography (Montreal, Canada) (SAC’06). Springer-Verlag, Berlin,
Heidelberg, 147–162.

[41] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and counter-
measures: the case of AES. The Cryptographers’ Track at the RSA Conference on
Topics in Cryptology (CT-RSA) (2006), 1–20.

[42] Colin Percival. 2005. Cache missing for fun and profit.
[43] Ivan Puddu, Moritz Schneider, Miro Haller, and Srdjan Capkun. 2021. Frontal

Attack: Leaking Control-Flow in SGX via the CPU Frontend. In 30th USENIX
Security Symposium (USENIX Security 21). 663–680.

[44] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In CCS ’19 Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security. 753–768.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-157.html

TEESec: Pre-Silicon Vulnerability Discovery for Trusted Execution Environments ISCA ’23, June 17–21, 2023, Orlando, FL, USA

[45] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. 2017. Malware guard extension: Using SGX to conceal cache attacks.
In Detection of Intrusions and Malware, and Vulnerability Assessment: 14th Inter-
national Conference, DIMVA 2017, Bonn, Germany, July 6-7, 2017, Proceedings 14.
Springer, 3–24.

[46] Sanjit A. Seshia and Pramod Subramanyan. 2018. UCLID5: integrating model-
ing, verification, synthesis and learning. In Proceedings of the 16th ACM-IEEE
International Conference on Formal Methods and Models for System Design. 1–10.

[47] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena.
2016. Preventing page faults from telling your secrets. In Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security. 317–328.

[48] Rohit Sinha, Sriram Rajamani, Sanjit Seshia, and Kapil Vaswani. 2015. Moat:
Verifying confidentiality of enclave programs. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. 1169–1184.

[49] Flavien Solt, Ben Gras, and Kaveh Razavi. 2022. {CellIFT}: Leveraging Cells
for Scalable and Precise Dynamic Information Flow Tracking in {RTL}. In 31st
USENIX Security Symposium (USENIX Security 22). 2549–2566.

[50] Pramod Subramanyan, Rohit Sinha, Ilia Lebedev, Srinivas Devadas, and Sanjit A
Seshia. 2017. A formal foundation for secure remote execution of enclaves. In
Proceedings of the 2017 ACM SIGSAC conference on computer and communications
security. 2435–2450.

[51] G Edward Suh, Charles W O’Donnell, Ishan Sachdev, and Srinivas Devadas.
2005. Design and implementation of the AEGIS single-chip secure processor
using physical random functions. In 32nd International Symposium on Computer
Architecture (ISCA’05). IEEE, 25–36.

[52] Haiyong Sun and Hang Lei. 2020. A design and verification methodology for a
trustzone trusted execution environment. IEEE Access 8 (2020), 33870–33883.

[53] Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore, Frederic T.
Chong, and Timothy Sherwood. 2009. Complete information flow tracking from
the gates up. In Proceedings of the 14th international conference on Architectural
support for programming languages and operating systems, Vol. 44. 109–120.

[54] Timothy Trippel, Kang G Shin, Alex Chernyakhovsky, Garret Kelly, Dominic
Rizzo, and Matthew Hicks. 2022. Fuzzing hardware like software. In 31st USENIX
Security Symposium (USENIX Security 22). 3237–3254.

[55] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient cache attacks on
AES, and countermeasures. Journal of Cryptology 23 (2010), 37–71.

[56] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the keys to the Intel SGX kingdom with transient
out-of-order execution. In Proceedings for the 27th USENIX Security Symposium.
USENIX Association, 991–1008.

[57] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Nemesis: Studying mi-
croarchitectural timing leaks in rudimentary CPU interrupt logic. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
178–195.

[58] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom. 2020.
SGAxe: How SGX Fails in Practice. https://sgaxeattack.com/.

[59] Stephan Van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue in-flight data load. In 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 88–105.

[60] Jan Werner, Joshua Mason, Manos Antonakakis, Michalis Polychronakis, and
Fabian Monrose. 2019. The severest of them all: Inference attacks against secure
virtual enclaves. In Proceedings of the 2019 ACM Asia Conference on Computer
and Communications Security. 73–85.

[61] Clifford Wolf. [n. d.]. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/.
[62] XiangShan 2021. XiangShan Official Documentation. Technical Report.

https://xiangshan-doc.readthedocs.io, [Online; accessed 21-April-2022].
[63] Yuan Xiao, Yinqian Zhang, and Radu Teodorescu. 2020. SPEECHMINER: A

Framework for Investigating and Measuring Speculative Execution Vulnerabili-
ties. Network and Distributed System Security Symposium (NDSS) (2020).

[64] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems. In 2015
IEEE Symposium on Security and Privacy. 640–656.

[65] Yinan Xu, Zihao Yu, Dan Tang, Guokai Chen, Lu Chen, Lingrui Gou, Yue Jin,
Qianruo Li, Xin Li, Zuojun Li, et al. 2022. Towards Developing High Performance
RISC-V Processors Using Agile Methodology. In 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 1178–1199.

[66] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. 2015. A
Hardware Design Language for Timing-Sensitive Information-Flow Security. In
Proceedings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, Vol. 43. 503–516.

[67] Sizhuo Zhang, Andrew Wright, Thomas Bourgeat, and Arvind Arvind. 2018.
Composable building blocks to open up processor design. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 68–81.

[68] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. 2012. Cross-
VM side channels and their use to extract private keys. In Proceedings of the 2012
ACM conference on Computer and communications security. 305–316.

[69] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. 2014. Cross-
tenant side-channel attacks in PaaS clouds. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. 990–1003.

[70] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020. Sonic-
BOOM: The 3rd Generation Berkeley Out-of-Order Machine. (May 2020).

[71] Jiuqin Zhou, Yuan Xiao, Radu Teodorescu, and Yinqian Zhang. 2022. ENCLYZER:
Automated Analysis of Transient Data Leaks on Intel SGX. In 2022 IEEE Interna-
tional Symposium on Secure and Private Execution Environment Design (SEED).
145–156.

https://sgaxeattack.com/
http://www.clifford.at/yosys/

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Moein Ghaniyoun, Kristin Barber, Yuan Xiao, Yinqian Zhang, and Radu Teodorescu

A ARTIFACT APPENDIX

A.1 Abstract

The TEESec framework consists of three main components: a Veri-
fication Plan, a Test Gadget Constructor, and TEESec Checker. The
verification plan systematically profiles the processor design and
enumerates all microarchitectural structures which may contain
enclave metadata or data. The verification plan enumerates all mem-
ory access modalities covering all possible paths through which
the enclave data/metadata can be accessed. This artifact includes
BOOM and XiangShan RISC-V cores instrumented according to the
verification plan to cover all memory access paths.

In the next phase, TEESec aims to exercise all the memory access
modalities by crafting and assembling test gadgets. This artifact
includes an automatic Test Gadget Constructor to generate RISC-V
assembly test cases that are used by TEESec to identify leakage in
the two processors we evaluate.

In the final phase, the automatically assembled test sequences are
run through a cycle-accurate register transfer level (RTL) simulation
of the design-under-test which emits a comprehensive simulation
log containing the state of all microarchitectural structures identi-
fied in the verification plan. The TEESec Checker is also included
in this artifact to analyze the execution logs and report potential
secret leakage instances.

A.2 Artifact Checklist

• Program: Python scripts, RISC-V binary compilation, RTL simula-
tion

• Compilation:

– RISC-V GNU Compiler Toolchain (riscv64-unknown-elf-gcc)
– GCC v8.5.0

• Run-time environment: Chipyard 1.3.0 framework
• Hardware: Compatible with x86 systems
• Output: Parsed execution log
• Experiments: Leak Keystone enclave data/metadata to host
• How much disk space required (approximately)?: Less than
100 GB

• How much time is needed to prepare workflow (approxi-

mately)?: Few hours including setting up dependencies
• How much time is needed to complete experiments (approxi-

mately)?: Less than an hour
• Publicly available?:

– https://github.com/MoeinGhaniyoun/TEESec
– https://doi.org/10.5281/zenodo.7796474

A.3 Description

This artifact consists of three components:

(1) Instrumented BOOM and XiangShan Chisel source code with
printf statements to print-out microarchitectural state in
RTL simulation log.

(2) Customized Berkeley-Bootloader (BBL) and riscv-pk to
populate host page table entries and provide an interface to
setup enclaves.

(3) Test Gadget Constructor and Checker Python files to gener-
ate RISC-V assembly test cases to evaluate each data/meta-
data access path and analyze the simulation log for enclave
secret leakage.

A.3.1 How to access.
The entire framework is packaged as a single repository on

GitHub at https://github.com/MoeinGhaniyoun/TEESec which
includes all three parts above as submodules.

A.3.2 Hardware dependencies.

• x86 compatible system
• 16 GB+ of RAM
• 100 GB of free disk space

A.3.3 Software dependencies.

• Linux system
• Chipyard 1.3.0 framework
• Verilator 4.034
• RISC-V GNU Compiler (can be installed as part of Chipyard)
• Python 3.9+
• GCC 8.5.0

A.4 Building the Simulation Environment

In this section, we build the simulator executables for our test tar-
gets, the BOOM and XiangShan cores. Based on the access paths
identified in Section 4.1, the source code of these processors is
instrumented with printf statements to capture the microarchitec-
tural state in a simulation log. If the verification plan is updated and
adding a new access path is needed, the logging can be extended to
cover the new microarchitectural structures. This is accomplished
by updating the instrumentation of the processor’s source code.

A.4.1 RISC-V BOOM.

(1) Clone Chipyard 1.3.0:
$ git clone https://github.com/ucb-bar/chipyard.g
it
$ cd chipyard
$ git checkout 1.3.0

(2) Modify .gitmodules and update the url field of [submodule
"generators/boom"] to point to the instrumented BOOM. The
new submodule path should look like this:
[submodule "generators/boom"]
path = generators/boom
url=https://github.com/MoeinGhaniyoun/BOOMv3-TEE
Sec.git

(3) Run:
$ git config –global url."https://github.com/".
insteadOf git://github.com

(4) Follow Chipyard docs at https://chipyard.readthedocs.io/
en/1.3.0/Chipyard-Basics/Initial-Repo-Setup.html#initial-
repository-setup and install all the required dependencies.

(5) Initialize the submodules, build for a normal riscv-tools setup
and set the appropriate environment variables:
$./scripts/init-submodules-no-riscv-tools.sh
$./scripts/build-toolchains.sh riscv-tools
$ source env.sh

(6) Compile the customized BOOM simulator executable:
$ cd ./sims/verilator
$ make CONFIG=SmallBoomConfig

(7) The simulator executable can be found at the same directory
by the name simulator-chipyard-SmallBoomConfig.

https://github.com/MoeinGhaniyoun/TEESec
https://doi.org/10.5281/zenodo.7796474
https://github.com/MoeinGhaniyoun/TEESec
https://chipyard.readthedocs.io/en/1.3.0/Chipyard-Basics/Initial-Repo-Setup.html#initial-repository-setup
https://chipyard.readthedocs.io/en/1.3.0/Chipyard-Basics/Initial-Repo-Setup.html#initial-repository-setup
https://chipyard.readthedocs.io/en/1.3.0/Chipyard-Basics/Initial-Repo-Setup.html#initial-repository-setup

TEESec: Pre-Silicon Vulnerability Discovery for Trusted Execution Environments ISCA ’23, June 17–21, 2023, Orlando, FL, USA

(8) The verification framework can be extended by updating the
instrumentation of the BOOM source at ./generators/-
boom/src and re-building the simulator as in step 6.

A.4.2 RISC-V XiangShan.

(1) Follow README instructions at https://github.com/Moein
Ghaniyoun/XiangShan-TEESec to prepare the environment

(2) Install mill from https://com-lihaoyi.github.io/mill/mill/Inst
allation.html

(3) Install Verilator 4.034 from https://github.com/verilator/ver
ilator/tree/v4.034

(4) Initialize submodules and create the simulator executable
for XiangShan:
$ make init
$ make emu CONFIG=MinimalConfig -j10

(5) The simulator executable can be found at XiangShan-TEESec
/build/emu.

A.5 Using Pre-Built Simulators

As an alternative to setting up the Chipyard 1.3.0 framework, we
provide the simulator executable in the TEESec main repository,
named "BOOM_simulator". This executable is pre-compiled and can
accept RISC-V ELF files as its input. Similarly, for XiangShan the
simulator executable provided in the TEESec main repository ("Xi-
angShan_simulator") can be used. This executable is pre-compiled
and can accept RISC-V bin files as input. In order to use the pre-
built simulators, the RISC-V GNU Compiler should be installed, as
follows:

A.5.1 Installing RISC-V GNU Compiler.

(1) $ git clone https://github.com/riscv-collab/riscv
-gnu-toolchain.git

(2) $ cd riscv-gnu-toolchain
(3) $./configure –prefix=/installation/path
(4) $ make -j10
(5) Add /installation/path/bin to your PATH.

A.6 Setting up the Test Gadget Constructor

The Test Gadget Constructor and TEESec Checker are bundled into
a single repository named TestGadgetConstructor-TEESec.

(1) To run the Constructor:
$ python3 TestGadgetConstructor.py [Access_Gad-
get] [Secret]
The first argument specifies which memory access path
should be checked for potential vulnerability and the second
argument specifies a secret value to be seeded in enclave
memory. A full list of available Access Gadgets is included
in TestGadgetConstructor-TEESec/access_gadgets.tx
t.

(2) To run the Checker:
$ python3 Checker.py [Sim_Log] [Secret]
Here the first arguments points to the location of the gen-
erated simulation log and the second argument points to
the secret value. In case a secret is found, a snapshot of the
processor’s state at the exact simulation cycle is generated
with the name "CheckerLog.txt".

A.7 Experiment workflow

Next, wewalk through leakage caseD4, described in Section 7.1.4, to
illustrate the TEESec experimental workflow. CaseD4 demonstrates
that enclave secrets can be leaked to the host user/supervisor. Other
leakage scenarios can be reproduced with a similar flow. Here,
leakage is defined as ability to access enclave data while executing
in host. The secrets can be found in cache response data and, later,
in the register file.

A.7.1 Test Case D4: Explicit enclave data leakage.

(1) $ cd TEESec
(2) $ python3 TestGadgetConstructor-TEESec/TestGadg-

etConstructor.py Exp_Enc_L1 0xdeadbeef
This will modify the dummy_entry.S file at riscv-pk-TEE
Sec/dummy_payload/dummy_entry.S and populate it with
generated assembly instruction for both enclave and host
based on the provided secret and access path. It also starts
the simulation with the BOOM_simulator and creates a sim-
ulation log file named SimLog.txt in the current directory.

(3) In order to run the Gadget Constructor with a custom version
of the instrumented simulator, a third argument needs to
be provided to the Constructor to point to the path of the
custom simulator.

(4) $ python3 TestGadgetConstructor-TEESec/Checker.py
./SimLog.txt deadbeef
This will start the Checker that analyzes the simulation log
to locate where the enclave secret is illegally accessed by the
host.

(5) Examine CheckerLog.txt and see whether the seeded secret
was illegally accessed by the host. Output should look like
this:

Enclave secret leakage detected!
Secret value: 0xdeadbeef
Microarchitecture structure: Register-file
Sim Cycle No.: 234785
PC of Last Committed Inst.: 0x80004808

A.7.2 Pre-Generated Test Cases. The TEESec distribution also in-
cludes all the test cases that identified the secret leakage we report
in the paper. These can be accessed as assembly code at riscv-pk
-TEESec/pre-generated/dummy_entry.S. This file also contains
all the required test cases to reproduce all access paths discussed
in the paper. To use this file as a test case, the dummy_entry.S at
riscv-pk-TEESec/dummy_payload/ should be replaced with the
pre-generated test case file. Next, the TestGadgetConstructor.p
y should be run with "NO-FUZZING" as the first argument.

A.8 Evaluation and Expected Results

For each testing round in which a test case is generated and simu-
lated on the BOOM or XiangShan processors, if a potential leakage
case is found, a CheckerLog.txt is generated. It includes informa-
tion about the secret value, where it was accessed, a comprehensive
snapshot of the state of processor when the secret was accessed
and the microarchitectural structure where the secret was found.

https://github.com/MoeinGhaniyoun/XiangShan-TEESec
https://github.com/MoeinGhaniyoun/XiangShan-TEESec
https://com-lihaoyi.github.io/mill/mill/Installation.html
https://com-lihaoyi.github.io/mill/mill/Installation.html
https://github.com/verilator/verilator/tree/v4.034
https://github.com/verilator/verilator/tree/v4.034

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Trusted Execution Environments
	2.2 TEE Attacks Exploiting Microarchitectural Channels
	2.3 Existing Pre-Silicon Verification Approaches

	3 TEE Security Principles
	3.1 Threat Model
	3.2 Security Principles

	4 The TEESec Framework
	4.1 Constructing a Verification Plan
	4.2 Test Gadget Construction
	4.3 TEESec Checker

	5 TEESec Implementation
	6 Evaluation Methodology
	7 Results and Case Studies
	7.1 Enclave Data Leakage
	7.2 Enclave Metadata Leakage

	8 Countermeasures
	9 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Checklist
	A.3 Description
	A.4 Building the Simulation Environment
	A.5 Using Pre-Built Simulators
	A.6 Setting up the Test Gadget Constructor
	A.7 Experiment workflow
	A.8 Evaluation and Expected Results

