Main Memory Specification: Example 1

- Provide inputs and outputs of 128MByte memory with 8-bit read/write operations and byte addressability.

Main Memory Specification: Example 2

- Provide inputs and outputs of 128MByte memory with 32-bit read/write operations and byte addressability.
Main Memory Specification: Example 3

- Provide inputs and outputs of 128MByte memory with 32-bit read/write operations and 32-bit addressability.

![Memory Specification Diagram]

Steps in Memory Design

1. Determine inputs and outputs for the memory to be designed and for the memory chips used;
2. Determine number of memory chips needed;
3. Determine number of memory chips in each set; a number of Dout and/or Din lines in the set should be identical to number of Dout and/or Din lines in the memory;
4. Determine number of sets;
5. Allocate sufficient number of memory address lines to select each of sets; those are the most significant address lines;
6. Allocate next set of memory address lines as inputs to all memory chip address lines;
7. If the number of bits in read/write operations equals the number of bits in addressability, then all memory address lines are used up in steps 5 and 6.
8. When condition in 7 is not satisfied → go to slide 24
9. Connect Din and Dout lines of memory and chips.
Memory Design: Example 1

- Design 128MByte memory using 32M×8 chips, with 8-bit read/write operations and byte addressability.

Number of chips needed: 4
Number of chips per set: 1
Number of sets: 4

For the complete design see Design A.
Memory Design: Example 2

- Design 512MByte memory using 64M*4 chips, with 8-bit read/write operations and byte addressability.

Number of chips needed: 16
Number of chips per set: 2
Number of sets: 8

For the complete design see Design B.
Memory Design: Example 3

- Design 128MByte memory using 128M×1 chips, with 8-bit read/write operations and byte addressability.

Number of chips needed: 8
Number of chips per set: 8
Number of sets: 1

For the complete design see Design C.
Memory Design: Example 4

- Design 128MByte memory using 8M*8 chips, with 32-bit read/write operations and 32-bit addressability.

Number of chips needed: 16
Number of chips per set: 4
Number of sets: 4

For the complete design see Design D.
Steps in Memory Design (continued)

- This is the second part of step 7 in “Steps in Memory Design” slide:
 - when the number of bits in read/write operations is greater than the number of bits in addressability, then some lowest order memory address lines are not used
 - if the width of read/write operations is twice that of addressability then the least significant memory line is unused,
 - if the width of read/write operations is 4 times greater than the number of bits in addressability then the two least significant memory lines are unused, etc.
- Note, it doesn’t make sense to have the width of read/write operations smaller than addressability.

Memory Design: Example 5

- Design 128MByte memory using 8M*8 chips, with 32-bit read/write operations and 8-bit (byte) addressability.

Number of chips needed: 16
Number of chips per set: 4
Number of sets: 4

For the complete design see Design E.