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Speculative execution over large code 
sections

Rollback/re-play of program execution

Very low overhead

Speculation exposed to the software
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Processor with
program undo support

2

Safe Code

Safe Code

Speculative code

Begin Spec

End SpecEnd Spec

Safe

Speculative

Some Code



Radu Teodorescu - University of Illinois Design Complexity of Program Undo

Applications of program undo

Safety net for speculating over:

correctness of aggressive optimizations:

thread level speculation, value prediction, 
speculative synchronization 

system reliability:

software - primitive for software debugging
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How complex is 
program undo support?

Determined the hardware needed

Implemented it in a simple processor

Prototyped it using FPGA technology

Estimated complexity using three metrics:

Hardware overhead, development time, VHDL 
code size

4



Radu Teodorescu - University of Illinois Design Complexity of Program Undo

Implementation of 
program undo support
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Save/restore processor state, 
buffer speculative data, control 
transitions:

Memory

1. Register checkpointing and 
restoration

2. Data cache that buffers 
speculative data

3. Instructions enable/disable 
speculation on-the-fly
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Register checkpointing

Beginning of the speculative section

RF saved into a Shadow RF

PC, state registers are saved

End of speculative section

Commit: discard checkpoint

Rollback: restore RF & PC
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Data cache extensions

Holds both speculative and non-
speculative data

 Speculative lines will not be 
evicted to memory

Cache walk state machine:

Commit: merge lines

Rollback: invalidate speculative 
lines
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Software control

Give the compiler control over speculative 
execution

Added control instructions:

Begin speculation

End speculation (commit or rollback)

We use SPARC’s special access load

 LDA [r0] code, r1
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Hardware prototype

LEON2 - SPARC V8 compliant processor

In-order, single issue, 5-stage pipeline

Windowed register file 

L1 instruction and data caches 

Synthesizable, open source VHDL code

Fully functional, runs Linux embedded
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System deployment

10

Processor 
Image

Control 
App.

I/O 
Terminal

Binaries

PCI

C
O
M

J
T
A
G



Radu Teodorescu - University of Illinois Design Complexity of Program Undo

Evaluating design complexity

Hardware overhead, development time, VHDL 
code size

Major components:

register checkpointing

speculative cache

software control

Comparison: write-back cache controller
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Hardware overhead
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Avg. 4.5% overhead
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Development time
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Lines of code
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Conclusions

Program undo support is reasonably easy to 
implement

Complexity similar to adding write-back support 
to a write-through cache controller

Qualifying factor:

Relatively simple processor
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Thank you!
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Short demo and questions...


