
The Design Complexity of Program 
Undo Support in a General Purpose 

Processor

Radu Teodorescu and Josep Torrellas

University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu



Radu Teodorescu - University of Illinois Design Complexity of Program Undo

Speculative execution over large code 
sections

Rollback/re-play of program execution

Very low overhead

Speculation exposed to the software

Safe Code

Begin Spec

Safe Code

End Spec

Processor with
program undo support

2

Safe Code

Safe Code

Speculative code

Begin Spec

End SpecEnd Spec

Safe

Speculative

Some Code



Radu Teodorescu - University of Illinois Design Complexity of Program Undo

Applications of program undo

Safety net for speculating over:

correctness of aggressive optimizations:

thread level speculation, value prediction, 
speculative synchronization 

system reliability:

software - primitive for software debugging

3



Radu Teodorescu - University of Illinois Design Complexity of Program Undo

How complex is 
program undo support?

Determined the hardware needed

Implemented it in a simple processor

Prototyped it using FPGA technology

Estimated complexity using three metrics:

Hardware overhead, development time, VHDL 
code size

4



Radu Teodorescu - University of Illinois Design Complexity of Program Undo

Implementation of 
program undo support

5

CPU

RF CKPT

Data Cache

Save/restore processor state, 
buffer speculative data, control 
transitions:

Memory

1. Register checkpointing and 
restoration

2. Data cache that buffers 
speculative data

3. Instructions enable/disable 
speculation on-the-fly

Safe

Speculative



Radu Teodorescu - University of Illinois Design Complexity of Program Undo

Register checkpointing

Beginning of the speculative section

RF saved into a Shadow RF

PC, state registers are saved

End of speculative section

Commit: discard checkpoint

Rollback: restore RF & PC

6

IDLE

CHECKPOINT ROLLBACK

RESTORE



Radu Teodorescu - University of Illinois Design Complexity of Program Undo

Data cache extensions

Holds both speculative and non-
speculative data

 Speculative lines will not be 
evicted to memory

Cache walk state machine:

Commit: merge lines

Rollback: invalidate speculative 
lines

7

Data Cache

0 1

0 1

Memory

IDLE

WALK RESTORE

Safe

Speculative



Radu Teodorescu - University of Illinois Design Complexity of Program Undo

Software control

Give the compiler control over speculative 
execution

Added control instructions:

Begin speculation

End speculation (commit or rollback)

We use SPARC’s special access load

 LDA [r0] code, r1

8



Radu Teodorescu - University of Illinois Design Complexity of Program Undo

Hardware prototype

LEON2 - SPARC V8 compliant processor

In-order, single issue, 5-stage pipeline

Windowed register file 

L1 instruction and data caches 

Synthesizable, open source VHDL code

Fully functional, runs Linux embedded

9



Radu Teodorescu - University of Illinois Design Complexity of Program Undo

System deployment

10

Processor 
Image

Control 
App.

I/O 
Terminal

Binaries

PCI

C
O
M

J
T
A
G



Radu Teodorescu - University of Illinois Design Complexity of Program Undo

Evaluating design complexity

Hardware overhead, development time, VHDL 
code size

Major components:

register checkpointing

speculative cache

software control

Comparison: write-back cache controller

11



Radu Teodorescu - University of Illinois Design Complexity of Program Undo

Hardware overhead

12

Avg. 4.5% overhead

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

4KB 8KB 16KB 32KB 64KB
Data cache size

CL
Bs

software
control
speculative
cache
register
checkpointing
write back
extensions
baseline
processor



Radu Teodorescu - University of Illinois Design Complexity of Program Undo

Development time

13

0

100

200

300

400

500

600

700

800

900

WB Cache
Controller

Speculative
Cache

Register
Checkpointing

Software
Control

Ti
m

e 
(m

an
-h

ou
rs

)

Testing

Implementation

Design



Radu Teodorescu - University of Illinois Design Complexity of Program Undo

Lines of code

14

0

500

1000

1500

2000

2500

3000

3500

Data Cache
Controller

Pipeline

L
in

e
s

 o
f 

V
H

D
L

 c
o

d
e

Software control
Speculative cache
Register checkpointing
Write back extensions
Baseline unit

14.5%

7.5%



Radu Teodorescu - University of Illinois Design Complexity of Program Undo

Conclusions

Program undo support is reasonably easy to 
implement

Complexity similar to adding write-back support 
to a write-through cache controller

Qualifying factor:

Relatively simple processor

15



Radu Teodorescu - University of Illinois Design Complexity of Program Undo

Thank you!

16

Short demo and questions...


