
Empowering Software Debugging
Through Architectural Support

for Program Rollback

Radu Teodorescu and Josep Torrellas
University of Illinois at Urbana-Champaign

http://iacoma.cs.uiuc.edu

Radu Teodorescu - University of Illinois Software Debugging with Architectural
Support for Program Rollback

Motivation

• Production software is hard to debug

• Need lightweight, continuous monitoring
system

• We propose: hardware/software approach:

• Architectural support for program undo

• Monitoring and recovery from bugs in
production systems

2

Radu Teodorescu - University of Illinois Software Debugging with Architectural
Support for Program Rollback

Processor with
program undo support

• Rollback/re-play of
large code sections

• Very low overhead

• Speculation control:

• In software: spec
control instructions

• In hardware: dynamic
sliding window

3

Safe Code

Begin Spec

Safe Code

End Spec

Speculative
code

Safe

Speculative

Software control Hardware control

Speculative
codeSpeculative
codeSpeculative
codeSpeculative
codeSpeculative
codeSpeculative
codeSpeculative
code

Radu Teodorescu - University of Illinois Software Debugging with Architectural
Support for Program Rollback

Contributions

• We implemented an FPGA-based prototype of
a processor with undo support

• We show that simple hardware can provide
powerful debugging tools

• We discuss possible applications to software
debugging

• Initial assessment using buggy programs

4

Radu Teodorescu - University of Illinois Software Debugging with Architectural
Support for Program Rollback

Debugging Production Code

5

p=m[a[*x]]+&y;
...
if(pstate()==REEXEC)

num++;

num=1;

exit_spec(flag);

Rollback

p=m[a[*x]]+&y;
...
if(pstate()==REEXEC)
{
 info_collect();
}

Replay

exit_spec(flag);

enter_spec();

Re-execute

Normal

Speculative

Dynamic execution

num=1;
...
p=m[a[*x]]+&y;
...
num++;

Original code Instrumented code

num=1;

p=m[a[*x]]+&y;
...

num++;

if(pstate()==REEXEC)
{
 info_collect();
}

exit_spec(flag);

enter_spec();

Radu Teodorescu - University of Illinois Software Debugging with Architectural
Support for Program Rollback

Implementation

6

checkpointed state

CPU

Data Cache

Memory

• Save/restore processor state:

• Register checkpointing and
restoration

• Data cache that buffers
speculative data (commit or
invalidate)

• Instructions enable/disable
speculation on-the-fly

• Limits: cache size, I/O

Radu Teodorescu - University of Illinois Software Debugging with Architectural
Support for Program Rollback

Other uses of program
rollback support

7

Radu Teodorescu - University of Illinois Software Debugging with Architectural
Support for Program Rollback

Code versioning

• Binary keeps two versions:

• conservative - safer

• aggressively optimized -
potentially buggy

• Execute aggressive code
speculatively

• If test fails, fall back on
conservative version

8

Safe Code

Safe Code

Begin Spec

End Spec

AGGRESSIVE
code

Checking Code

CONSERVATIVE
code

Radu Teodorescu - University of Illinois Software Debugging with Architectural
Support for Program Rollback

Sandboxing OS drivers

• Buggy drivers - main cause of
OS crashes

• Kernel survival in the presence
of faulty drivers

• Execute driver code
speculatively

• If crash, re-initialize driver

9

Kernel code

Driver code
BUG!

CLEANUP
code

Radu Teodorescu - University of Illinois Software Debugging with Architectural
Support for Program Rollback

Failure-oblivious computing

• Enables applications to execute beyond some
errors [Rinard04]

• Invalid memory accesses are caught

• write: ignore, continue execution

• read: manufacture value, continue

• After invalid access - speculative execution
for a certain duration

10

Radu Teodorescu - University of Illinois Software Debugging with Architectural
Support for Program Rollback

Evaluation

11

Radu Teodorescu - University of Illinois Software Debugging with Architectural
Support for Program Rollback

Hardware prototype

• LEON2 - SPARC V8 compliant processor

• In-order, single issue, 5-stage pipeline

• Windowed register file

• L1 instruction and data caches

• Synthesizable, open source VHDL code

• Fully functional, runs Linux embedded

12

Radu Teodorescu - University of Illinois Software Debugging with Architectural
Support for Program Rollback

System Deployment

13

Processor
Image

Control
App.

I/O
Terminal

Binaries

PCI

C
O
M

J
T
A
G

Radu Teodorescu - University of Illinois Software Debugging with Architectural
Support for Program Rollback

Evaluation

14

• Applications with known bugs

• Manually instrument the code

• Detection window contains:

• bug location

• bug manifestation

• Determine if we can roll back the buggy code
section

DETECTION WINDOW

bug manifestation

bug location

Radu Teodorescu - University of Illinois Software Debugging with Architectural
Support for Program Rollback

Buggy applications

15

Application Bug Description
Successful
rollback

Dynamic
Instructions

ncompress-4.2.4 Input file name longer than 1024
bytes corrupts stack Yes 10653

polymorph-0.4.0 Input file name longer than 2048
bytes corrupts stack No 103838

tar-1.13.25 Unexpected loop bounds causes
heap object overflow Yes 193

man-1.5h1 Wrong bounds checking causes
static object corruption Yes 54217

gzip-1.2.4 Input file name longer than 1024
bytes overflows a global variable Yes 17535

Radu Teodorescu - University of Illinois Software Debugging with Architectural
Support for Program Rollback

Conclusions

• Simple hardware can provide powerful
debugging support

• We built an FPGA-based prototype of a
processor with program undo support

• We describe a few possible applications to
software debugging

16

Radu Teodorescu - University of Illinois Software Debugging with Architectural
Support for Program Rollback

Thank you!

17

Discussions and demo

