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Motivation

• Production software is hard to debug 

• Need lightweight, continuous monitoring 
system

• We propose: hardware/software approach:

• Architectural support for program undo

• Monitoring and recovery from bugs in 
production systems
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Processor with
program undo support

• Rollback/re-play of 
large code sections

• Very low overhead

• Speculation control:

• In software: spec 
control instructions

• In hardware: dynamic 
sliding window
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Contributions

• We implemented an FPGA-based prototype of 
a processor with undo support

• We show that simple hardware can provide 
powerful debugging tools

• We discuss possible applications to software 
debugging 

• Initial assessment using buggy programs
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Debugging Production Code
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p=m[a[*x]]+&y;
...
if(pstate()==REEXEC) 

num++;

num=1;

exit_spec(flag);

Rollback

p=m[a[*x]]+&y;
...
if(pstate()==REEXEC) 
{
 info_collect();
}

Replay

exit_spec(flag);

enter_spec();

Re-execute

Normal

Speculative

Dynamic execution

num=1;
...
p=m[a[*x]]+&y;
...
num++;

Original code Instrumented code

num=1;

p=m[a[*x]]+&y;
...

num++;

if(pstate()==REEXEC) 
{
 info_collect();
}

exit_spec(flag);

enter_spec();
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Implementation
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checkpointed state

CPU

Data Cache

Memory

• Save/restore processor state:

• Register checkpointing and 
restoration

• Data cache that buffers 
speculative data (commit or 
invalidate)

• Instructions enable/disable 
speculation on-the-fly

• Limits: cache size, I/O
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Other uses of program 
rollback support
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Code versioning

• Binary keeps two versions:

• conservative - safer

• aggressively optimized - 
potentially buggy

• Execute aggressive code 
speculatively

• If test fails, fall back on 
conservative version

8

Safe Code

Safe Code

Begin Spec

End Spec

AGGRESSIVE  
code

Checking Code

CONSERVATIVE 
code



Radu Teodorescu - University of Illinois Software Debugging with Architectural 
Support for Program Rollback

Sandboxing OS drivers 

• Buggy drivers - main cause of 
OS crashes

• Kernel survival in the presence 
of faulty drivers

• Execute driver code 
speculatively

• If crash, re-initialize driver
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Failure-oblivious computing

• Enables applications to execute beyond some 
errors [Rinard04]

• Invalid memory accesses are caught

• write: ignore, continue execution

• read: manufacture value, continue

• After invalid access - speculative execution 
for a certain duration
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Evaluation
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Hardware prototype

• LEON2 - SPARC V8 compliant processor

• In-order, single issue, 5-stage pipeline

• Windowed register file 

• L1 instruction and data caches 

• Synthesizable, open source VHDL code

• Fully functional, runs Linux embedded
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System Deployment
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Evaluation
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• Applications with known bugs

• Manually instrument the code

• Detection window contains:

• bug location

• bug manifestation 

• Determine if we can roll back the buggy code 
section

DETECTION WINDOW

bug manifestation

bug location
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Buggy applications
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Application Bug Description
Successful 
rollback

Dynamic 
Instructions

ncompress-4.2.4 Input file name longer than 1024 
bytes corrupts stack Yes 10653

polymorph-0.4.0 Input file name longer than 2048 
bytes corrupts stack No 103838

tar-1.13.25 Unexpected loop bounds causes 
heap object overflow Yes 193

man-1.5h1 Wrong bounds checking causes 
static object corruption Yes 54217

gzip-1.2.4 Input file name longer than 1024 
bytes overflows a global variable Yes 17535
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Conclusions

• Simple hardware can provide powerful 
debugging support

• We built an FPGA-based prototype of a 
processor with program undo support

• We describe a few possible applications to 
software debugging
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Thank you!
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Discussions and demo


