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Abstract

This paper presents a processor and memory-hierarchy
prototype based on FPGAs that provides hardware support
for program rollback. We use this prototype to demonstrate
how compiler- or user-controlled speculative execution can
help in debugging production codes. The system is based
on a synthesizable VHDL implementation of a 32-bit pro-
cessor compliant with the SPARC V8 architecture. We con-
duct experiments on applications with real bugs. The ap-
plications run on top of a version of Linux ported to this
hardware. Our experiments show that our system is able to
successfully execute the buggy code sections speculatively.
This allows the thorough characterization of the faulty code
through repeated rollback and re-execution. Moreover, the
hardware extensions we made to the baseline system in-
crease the hardware resource requirements by less than
4.5%.

1. Introduction

Several recently-proposed techniques in computer ar-
chitecture require speculation over long program sections.
Examples of such techniques are thread-level speculation
[5, 7, 19, 21], speculation on synchronization [10, 17],
speculation on the values of invalidated cache lines [6],
speculation on conforming to a memory consistency model
[4], and speculation on the lack of software bugs [12, 24].

In all these cases, when speculation fails, the architecture
has to provide a means to quickly and cleanly roll back the
side effects of the speculative code. Specifically, as a thread
executes speculatively, the processor buffers the register and
memory state that it generates. If and when the speculation
is proven to be correct, the processor commits the specula-
tive state. If, instead, the speculation is incorrect, the state
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is discarded and the program execution is rolled back to the
state prior to the speculative execution.

This paper describes a processor and memory-hierarchy
prototype based on FPGAs that implements hardware for
rollback of very long, misspeculated code sections. The
prototype implements register checkpointing and restora-
tion, buffering in the L1 cache of the state generated by
retired speculative instructions, and instructions for transi-
tioning between speculative and non-speculative execution
modes.

We use the prototype to demonstrate how application
rollback can help debugproduction code. The compiler in-
serts hints into the application to indicate regions of code
that are “at risk”. These suspicious regions are then exe-
cuted speculatively. If an external checker detects a bug,
the suspicious region is rolled back and re-executed. Upon
re-execution, the software can choose to enable more instru-
mentation that will help characterize the buggy code region
thoroughly.

For our prototype, we modify a synthesizable VHDL
implementation of a 32-bit processor compliant with the
SPARC V8 architecture. We map the modified processor
to a Xilinx Virtex-II FPGA chip on a dedicated develop-
ment board. We run several applications on top of a version
of Linux running on this hardware. We choose FPGA as
a target technology because it is ideal for rapid prototyp-
ing and allows us to both validate our design choices and
experiment with realistic workloads.

Our measurements show that the hardware extensions re-
quired to support the rollback of very long, misspeculated
code sections increase the resource requirements of the pro-
cessor, when targeting FPGA technology, by less than 4.5%.

We envision this hardware as part of a larger infrastruc-
ture that includes compiler and operating system assistance
for bug detection and characterization in production code.

1.1 Contributions

We extend an existing processor to include support
for rapid rollback and re-execution of very large, mis-



speculated code sections. The extensions include cache
support for holding speculative data, register checkpoint-
ing, and Instruction Set Architecture (ISA) support for
compiler-directed transitions between speculative and non-
speculative execution.

We prove that, with relatively simple hardware, we can
provide powerful debugging support that the compiler or
programmer can exploit to enable lightweight, on-the-fly
debugging of production code.

We test the system on a real hardware platform based
on FPGA technology. We experiment with several buggy
applications running on top of a version of Linux.

2 An integrated debugging system

The hardware that we present in this work is part of a
larger debugging infrastructure that targets bug detection,
characterization, and recovery for production code. This
system will eventually include hardware, compiler and op-
erating system support. Our work is focused on the hard-
ware support, but for clarity, we give a brief description of
the entire infrastructure.

In our system, a program executes in one of three states:
normal, speculative, andre-execute. In normal mode, only
minimal checking for bugs takes place; in speculative mode,
the program is in a potentially buggy section of code that the
hardware can roll back and re-execute. The program enters
re-execution mode when a rollback has been induced. In
this mode, a bug can be characterized thoroughly, through
repeated rollback and re-execution, by enabling instrumen-
tation within the application.

The transition between execution states is currently done
atObservation Points (OP) inserted in the code by the com-
piler. A transition occurs as a result of a test on the program
state or other external input. When a transition occurs, the
hardware performs the necessary actions to enable/disable
checkpointing and rollback.

2.1 Hardware support

We implemented some of the hardware support needed
for thread-level speculation [5, 7, 19, 21] in a fully synthe-
sizable system. This support includes the ability to roll back
and re-execute instructions long after they have been retired.
This is essential for making our desired type of speculative
execution possible.

When executing in speculative mode, instructions are not
allowed to change the content of main memory. All spec-
ulative data is marked and kept in the cache. It can be in-
validated if necessary. The idea is to use this support as a
primitive for fast and lightweight software debugging. More
details about the hardware support are given in Section 3.

Our system is meant to help characterize buggy sections
of code to facilitate bug detection and correction. We still
need a mechanism to help us determine that a potential
anomaly has occurred. In our experiments, we assume the
existence of a bug detection framework similar to iWatcher
[24] — an architecture proposed for dynamically monitor-
ing memory locations. The main idea of iWatcher is to
associate programmer-specified monitoring functions with
monitored memory objects. When a monitored object is
accessed, the monitoring function associated with this ob-
ject is automatically triggered and executed by the hardware
without generating an exception to the operating system.
The monitoring function can be used to detect a wide range
of memory bugs that are otherwise difficult to catch.

2.2 Compiler support

We use a compiler [8] to detect potential anomalies in
an application, and generate code necessary for the OPs.
An OP consists of a test and actions. The test is used to
determine when the actions should be performed. The ac-
tions include emitting information about the program state
or performing execution mode transitions.

The compiler also uses heuristics to detect regions of
code that should be executed in speculative mode. For a
bug to be characterized, it is important that the regions of
code that can lead to errors be identified.

When a potential bug has been found, the segment of
code containing the error is rolled back and re-executed.
Upon re-execution, instrumentation that was previously in-
serted by the compiler is turned on and used to characterize
that code section. It is the compiler’s job to determine what
information is relevant, and to generate the code needed to
collect it.

2.3 Operating system support

OS support is also important for bug characterization,
state recovery and re-execution. The ability of the hard-
ware to buffer speculative state is limited to instructionsthat
touch data that can be kept in the cache. If an I/O or a non-
cacheable operation is performed, the speculative execution
has to be terminated, because such an instruction cannot be
undone.

We envision the OS to take over in such a case and buffer
the speculative state in software. This would be more costly,
but would extend the speculative code section significantly.
Moreover, to support bug characterization, OS support is
needed to deterministically replay system events such as in-
coming messages. If the speculative execution section is too
long and the cache is about to overflow the speculative data,
the OS can again be invoked to buffer the speculative state
by using a mechanism like copy-on-write.
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3 Implementation

As a base for our implementation, we used a synthesiz-
able VHDL implementation of a 32-bit processor [3] com-
pliant with the SPARC V8 architecture. This implemen-
tation has an in-order, single-issue, five stage pipeline and
one level of instruction and data caches. It has a hard-
ware multiplier and divider, an interrupt controller and two
UART units. The processor implements a windowed reg-
ister file with a variable number of windows. It is part of
a system-on-a-chip infrastructure that includes a synthesiz-
able SDRAM controller, PCI and Ethernet interfaces.

In order to support lightweight rollback an replay over
relatively long code sections, we need to implement two
main extensions to the existing system: (1) a cache that
buffers speculative data and supports rollback and (2) regis-
ter checkpointing and rollback. This allows speculative in-
structions to retire by storing the speculative data they gen-
erate into the cache and ensures that the register state of the
processor before a checkpoint can be restored in case of a
rollback request. We now describe both extensions in some
detail. We also show how the transitions between execution
modes are controlled by software.

3.1 Data cache with rollback support

In order to allow the rollback of speculative instructions,
we need to make sure that the data they generate can be
invalidated if necessary. To this end, we keep the specula-
tive data (the data generated by the system while executing
in speculative mode) in the cache, and do not allow it to
change the memory state. To avoid a costly cache flush
when transitioning between execution modes, the cache
must be able to hold both speculative and non-speculative
data at the same time. For this, we use a cache designed
to store multiple versions of data. This is done by adding
a version identifier to each cache line. Two versions (rep-
resented by one version bit per cache line) are sufficient.
Version0 corresponds to non-speculative, and version1 to
speculative state.

In addition to the version bit, we extended the cache con-
troller with a Cache Walk State Machine (CWSM) that is re-
sponsible for traversing the cache and clearing the version
bit (in the case of a successful commit) or invalidating the
speculative lines (in case of rollback).

The version bit is stored at line granularity. Therefore,
one cache line can hold only one version of data at a time.
For this reason, while the processor is in speculative mode,
for every write hit we check if the line we are writing to
contains non-speculative, dirty data. If it does, we write-
back the dirty data, update the line, and then set the version
bit to speculative. From this point on, the line is speculative
and will be invalidated in case of a rollback.

I D L EW A L K R E S T O R E
Figure 1. Cache Walk State Machine. In IDLE,
the state machine is inactive. WALK is the
main working state. The RESTORE state is
used to restore the controller to the initial
state and release the pipeline.

While in speculative mode, if a line is about to be
evicted, we first check if it is speculative. If it is, we choose
a non-speculative line in the same set for eviction. If one
does not exist, we must end the speculative section and
commit.

3.1.1 The Cache Walk State Machine

The Cache Walk State Machine (CWSM) is used to tra-
verse the entire data cache and either commit or invalidate
the speculative data. The state machine is activated when a
commit or rollback instruction reaches the Memory stage of
the pipeline. The pipeline is stalled and the cache controller
transfers control to the CWSM. The CWSM has three states
as shown in Figure 1.

In case of commit, the CWSM uses the Walk state to tra-
verse the cache and clear the version bits, effectively merg-
ing the speculative and non-speculative data. The traversal
takes one cycle for each line in the cache. In the case of
rollback, the CWSM is called to invalidate all the specula-
tive lines in the cache. This means traversing the cache and
checking the version bit for each line. If the line contains
speculative data, the verion and valid bits are cleared.

3.1.2 Technology constraints

Some of the design decisions we made were influenced by
the target technology chosen for our implementation (Xilinx
Virtex II family of FPGAs). The cache is implemented with
synchronous RAM blocks present in the FPGA chip. This
allows the cache to be quite fast, with a single-cycle access
time.

On the other hand, a disadvantage of using these mem-
ory structures is that they cannot be modified to incorporate
additional control signals. For instance we would have liked
to use aclear all signal for the version bit. This would have
allowed a single-cycle “one-shot” clear of all version bits

3



and thus a single-cycle transition from speculative to non-
speculative execution in the commit scenario.

3.2 Register checkpointing and rollback

Before transitioning to speculative state, we must ensure
that the processor can be rolled back to the current, non-
speculative state. The current state includes the processor
status registers, global registers, register file and the data
cache. The data cache rollback is accomplished through
versioning as described in the previous section. For the reg-
ister file, we checkpoint it when we enter the speculative
section and restore it if we need to roll back. Register file
checkpointing and rollback can be performed either in soft-
ware or in hardware. In the software approach, the com-
piler inserts explicit store instructions to save to memoryall
the variables that are currently in registers. This software
checkpoint would have to be included in all OPs that can
cause a transition to speculative mode. This can be costly
in terms of performance and can lead to significant code
expansion.

The problem is worse in the case of a SPARC V8 proces-
sor because it implements a windowed register file (WRF).
At any one time during execution, a program sees 8 global
registers plus a 24-register window within a larger register
file. On a procedure call, instead of saving local registers
on the stack, the current window is simply shifted. A new
set of registers is available to the callee. Upon return from
the procedure call, the window is shifted back and the old
registers become available.

At any time, a large number of variables can be in the
register file. In order to checkpoint the state of the proces-
sor, the entire valid content of the WRF must be saved, not
just the current window (in the worst case, the entire register
file). If performed in software, this can be very expensive,
since the SPARC V8 architecture specifies a limit of up to
520 registers for its WRF!

For this reason, we perform the register checkpointing in
hardware. This is done using a Shadow Register File (SRF),
a memory structure identical to the main register file. Be-
fore entering speculative execution, the pipeline is notified
that a checkpoint needs to be taken. The pipeline stalls and
control is passed to the Register Checkpointing State Ma-
chine (RCSM). The RCSM has four states and is responsi-
ble for coordinating the checkpoint as shown in Figure 2.

The RCSM is in the Idle state while the pipeline is ex-
ecuting normally. A transition to the Checkpoint state oc-
curs before the processor moves to speculative mode. While
in this state, the valid registers in the main register file
are copied to the SRF. The register file is implemented in
SRAM and has two read ports and one write port. This
means that we can only copy one register per cycle. Thus
the checkpoint stage takes as many cycles as there are valid

I D L EC H E C K P O I N T R O L L B A C KR E S T O R E
Figure 2. Register Checkpointing State Ma-
chine. In CHECKPOINT, the pipeline is on
hold, and the checkpoint is created. In ROLL-
BACK, the pipeline is on hold, and the register
file is restored from the checkpoint.

registers in the register file plus one cycle for all the status,
control and global registers (these are not included in the
same memory structure and can all be copied in one cycle).

The Rollback state is activated when the pipeline re-
ceives a rollback signal. While in this state, the contents
of the register file is restored from the checkpoint, along
with the status and global registers. Similarly, this takesas
many cycles as there are valid registers.

3.3 Changing the execution mode

3.3.1 Enabling speculative execution

The transition to speculative execution is triggered by a
LDA (Load Word from Alternate Space) instruction with
a dedicated ASI (Address Space Identifier). These are in-
structions introduced in the SPARC architecture to give spe-
cial access to memory (for instance, access to the tag mem-
ory of the cache). We extended the address space of these
instructions to give us software control over the speculative
execution.

The special load is allowed to reach the Memory stage
of the pipeline. The cache controller detects, initializesand
coordinates the transition to speculative execution. Thisis
done at this stage rather than at Decode because, at this
point, all non-speculative instructions have been commit-
ted or are about to finish the Write Back stage. This means
that, from this point on, any data written to registers or to
the data cache is speculative and can be marked as such.

The cache controller signals the pipeline to start register
checkpointing. Interrupts are disabled to prevent any OS
intervention while checkpointing is in progress. Control is
transferred to the RCSM, which is responsible for saving
the processor status registers, the global registers, and the
used part of register file.
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When this is finished, the pipeline sends acheckpointing
complete signal to the cache controller. The cache controller
sets its state to speculative. Next, the pipeline is released
and execution resumes. From this point on, any new data
written to the cache is marked as speculative.

3.3.2 Exiting speculative execution

Speculative execution can be ended either explicitly by an
instruction or implicitly by an event that cannot be rolled
back.

Normally, speculative execution ends with commit,
which merges the speculative and non-speculative states.
On the other hand, if a bug is detected, speculation ends
by triggering a rollback.

Both cases are triggered by a LDA instruction with a
dedicated ASI. The distinction between the two is made
through the value stored in the address register of the load
instruction.

An LDA from address0 causes a commit. In this case,
the pipeline allows the load to reach the Memory stage. At
that point, the cache controller takes over, stalls the pipeline,
and passes control to the CWSM. The CWSM is responsi-
ble for traversing the cache and resetting the version bit.
When the cache walk is complete, the pipeline is released
and execution can continue non-speculatively.

An LDA from any other address triggers a rollback.
When the load reaches the Memory stage, the cache con-
troller stalls the pipeline and control goes to the RCSM.
The register file, global and status registers are restored.
The nextPC is set to the saved PC. A signal is sent to the
cache controller when rollback is done. At the same time,
the cache controller uses the CWSM to traverse the cache,
invalidating speculative lines and resetting the version bits.
When both the register restore and cache invalidation are
done, the execution can resume.

The value passed to the LDA instruction can be set dy-
namically, based on some event that can help determine
whether a problem might have occurred.

3.4 Speculative window size

The number of instructions that are successfully rolled
back is ideally given by the distance between a begin spec-
ulation and an end speculation instruction. We call this a
speculative window. There are, however, two events that
can force the premature end of a speculative section: cache
overflow and I/O access.

A cache overflow occurs when a line needs to be dis-
placed form a cache set and all the lines in the set are spec-
ulative. This means that speculative data can no longer be
held in the cache.

I/O operations are a major concern in rollback/replay
systems because they cannot be undone. They are identi-
fied by the cache controller which conservatively considers
all non-cacheable memory accesses as I/O accesses.

In both situations the OS is informed about the excep-
tional condition by rasing an exception. The exception han-
dler can take a variety of actions. For instance it could
save the speculative data in memory or record I/O opera-
tions. For simplicity, our prototype currently triggers an
early commit of the speculative section.

Overall, the size of the code that can be executed spec-
ulatively is dependent on a variety of factors. Some are
application-related, such as: frequency of the I/O accesses,
memory footprint size and access pattern or interaction with
the OS. Other factors are strictly related to hardware re-
sources such as cache size and associativity.

3.5 Performance monitoring

In addition to exposing control over the speculative ex-
ecution to the software, we provide some feedback on the
state of the processor while in speculative mode. This in-
formation can be used to fine-tune the instrumentation and
can help with debugging.

We introduce an LDA instruction that can be used to
probe the state of the processor. Based on its return value,
we determine if the processor is in normal, speculative, or
re-execute mode (after a rollback). This can be very useful
if we want to execute code selectively, based on the state of
the processor.

The end-speculation instruction provides additional in-
formation on the speculation outcome. It returns0 if the
speculative execution ended normally (with commit or roll-
back), and a non-zero value if some event forced an early
commit. The value returned in this case represents the event
that caused the early commit.

We also implemented a counter that keeps track of how
many dynamic instructions are executed speculatively. The
counter is stopped when speculative execution ends, and can
be read with a special LDA instruction.

3.6 Using program rollback for debugging

Finding bugs in software requires gathering as much
information as possible about the circumstances in which
bugs occur. We provide a mechanism for the compiler or
the programmer to execute sections of code speculatively.
We rely on an external detection mechanism to identify a
possible problem and trigger a rollback. Upon re-execution,
more instrumentation can be turned on to characterize that
section of code.

We define two functions, namelyenter spec()
used to begin speculative execution, andexit spec()
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to end speculative execution with commit or rollback.
exit spec() takes one argument,flag, which indicates
whether speculation ends with commit or rollback. If a bug
has been detected by some external mechanism, theflag
variable is set to some non-zero value, and a rollback is trig-
gered atexit spec(). The following code shows the im-
plementation.

/* Begin speculation */
enter_spec(){
asm(" stbar /* fence */

mov 0, %o0
lda [%o0] 0x8, %o1
nop ");

}

/* End speculation */
/* if flag=0 commit */
/* else rollback */
exit_spec(int flag){
asm(" stbar /* fence */

mov flag, %o0
lda [%o0] 0x9, %o1
nop ");

}

We define a functionproc state() to probe the state
of the processor as detailed in Section 3.5. The return value
0 means normal mode,1 speculative mode and2 represents
the re-execute mode. The following code shows how these
functions can be used to characterize a section of buggy
code.

/* non-speculative code */
num=1;
...
/* begin speculation */
enter_spec();
...
/* pointer arithmetic */
p=m[a[*x]]+&y;
...
if (bug_suspected)
flag=1;

...
/* info collection */
/* only in re-execute mode */
if (proc_state()==2) {
info_collect();

}
...
/* end speculation */
exit_spec(flag);
/* non-speculative code */
num++;
...

The compiler or the programmer identifies regions of
code that are “at risk”. Using the begin/end speculation pair

of instructions, that section of code can be executed specu-
latively. If a bug is suspected, the program setsflag, and
whenexit spec() is executed, a rollback is triggered.
The execution resumes from theenter spec() instruc-
tion and the code is re-executed.

The compiler can also insert code in the speculative sec-
tion to collect relevant information about the program ex-
ecution that can help characterize a potential bug. This
code is only executed if the processor is in re-execute mode,
when a potential problem has been found, so it does not in-
troduce significant overhead on correct runs.

Figure 3 shows the three possible execution scenarios
for the example given above. Case (a) represents normal
execution: no error is found, theflag variable remains
clear and whenexit spec(flag) is reached, specula-
tion ends with commit.

In case (b), an abnormal behavior that can lead to a bug is
encountered.Flag is set by the program and when execu-
tion reachesexit spec(flag) the execution rolls back
to the beginning of the speculative region. This can be re-
peated until the bug is fully characterized.Flag can be set
as a result of a failed assertion or data integrity test.

Finally, in case (c) the speculative state can no longer fit
in the cache. The overflow is detected by the cache con-
troller and an exception is raised. The exception handler
decides to commit the current speculative data and con-
tinue executing normally. When the execution reaches the
exit spec(flag) instruction, the state of the processor
is first checked. Since the processor is no longer speculative
(due to the early commit), the instruction is simply ignored
and execution continues normally.

4 Evaluation

4.1 Experimental infrastructure

4.1.1 FPGA system

As a platform for our experiments, we used LEON2 [3], a
synthesizable VHDL implementation of a 32-bit processor
compliant with the SPARC V8 architecture.

The processor has an in-order, single-issue, five stage
pipeline (Fetch, Decode, Execute, Memory and Write
Back). Most instructions take 5 cycles to complete if no
stalls occur. The Decode and Execute stages are multi-cycle
and can take up to 3 cycles each.

The data cache can be configured as direct mapped or as
multi-set with associativity of up to 4, implementing least-
recently used (LRU) replacement policy. The set size is
configurable to 1-64 KBytes and divided into cache lines
of 16-32 bytes. Each line has a tag field, and valid and dirty
bits for each 4-byte sub-block. The per-word valid bits al-
low partially valid lines to exist in the cache. On a data
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(c) Cache overflow

...

...

...

...

...

p = m[a[*x]]+&y;

...

...

...
p = m[a[*x]]+&y;

...

roll
back

overflow
cache

p = m[a[*x]]+&y;

(b)
RollbackCommit Early commit

enter_spec();

exit_spec(flag);

enter_spec();

exit_spec(flag);

enter_spec();

exit_spec(flag);

Non−speculative executionSpeculative execution

num = 1; num = 1; num = 1;

num++; num++; num++;

Error (flag=1)

... ... ...

(a) No error (flag = 0) 

Figure 3. (a) Speculative execution ends with commit. (b) Sp eculative execution ends with rollback.
(c) Speculative execution ends with early commit due to cach e overflow.

cache read miss, only 4 bytes of data are loaded into the
cache from main memory. This reduces the number of ports
(because no additional write ports are needed for line refill)
and eliminates the need for refill logic. We implemented
a write-back cache controller since the initial system had a
write-through data cache. The data cache needs to be write-
back to make holding speculative data possible.

This processor is part of a system-on-a-chip infrastruc-
ture that includes a synthesizable SDRAM controller, PCI
and Ethernet interfaces. The system is synthesized using
Xilinx ISE v6.1.03. The target FPGA chip is a Xilinx Virtex
II XC2V3000 running on a GR-PCI-XC2V development
board [14]. The board has 8MB of FLASH PROM and 64
MB SDRAM. Communication with the device, loading of
programs in memory, and control of the development board
are all done through the PCI interface from a host computer.
Console output is sent on the serial interface.

4.1.2 Operating system

On this hardware we run a special version of the SnapGear
Embedded Linux distribution [2]. SnapGear Linux is a full
source package, containing kernel, libraries and application
code for rapid development of embedded Linux systems. A
cross-compilation tool-chain for the SPARC architecture is
used for the compilation of the kernel and applications.

4.1.3 Applications

We run experiments using standard Linux applications that
have known, reported bugs. For these applications, we want
to determine whether we can speculatively execute a section
of dynamic instructions that is large enough to containboth

the bug and the location where the bug is caught by a mech-
anism like iWatcher [24] (see Section 2.1).

We use five buggy programs from the open-source com-
munity. The bugs were introduced by the original pro-
grammers. They represent a broad spectrum of memory-
related bugs. The programs are:gzip, man, polymorph,
ncompress and tar. Gzip is the popular compression utility,
man is a utility used to format and display on-line manual
pages,polymorph is a tool used to convert Windows style
file names to something more portable for UNIX systems,
ncompress is a compression and decompression utility, and
tar is a tool to create and manipulate archives.

In the tests, we use the bug-exhibiting inputs to gener-
ate the abnormal runs. All the experiments are done under
realistic conditions with the applications running on top of
Linux.

4.2 Results

4.2.1 Hardware overhead

To get a sense of the hardware overhead imposed by our
program rollback support, we synthesize just the proces-
sor core (including the cache but not the memory, PCI or
serial controllers). We look at the utilization of two main
resources: Configurable Logic Blocks (CLBs) and Selec-
tRAM memory blocks.

The Virtex II CLBs are organized in an array and are
used to build the combinational and synchronous logic com-
ponents of the design. Each CLB element is tied to a switch
matrix to access the general routing matrix. A CLB ele-
ment comprises 4 similar slices. Each slice includes two
4-input function generators, carry logic, arithmetic logic
gates, wide-function multiplexers and two storage elements.
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Each 4-input function generator is programmable as a 4-
input lookup table (LUT), 16 bits of distributed SelectRAM
memory, or a 16-bit variable-tap shift register element.

The SelectRAM memory blocks are 18 Kbit, dual-port
RAMs with two independently-clocked and independently-
controlled synchronous ports that access a common stor-
age area. Both ports are functionally identical. The Se-
lectRAM block supports various configurations, including
single- and dual-port RAM and various data/address aspect
ratios. These devices are used to implement the large mem-
ory structures in our system (data and instruction caches,
the register file, shadow register file, etc).

Table 1. Main parameters of the experimental
system.

Processor LEON2, SPARC V8 compliant
Clock frequency 40MHz
Instruction cache 8KB
Data cache 32KB
Main memory 64MB
Windowed register file 8 windows× 24 registers
Global registers 8 registers

Figure 4 shows a comparison between the number of
CLBs used for three configurations of the processor core
and five different sizes of the data cache. Thebase rep-
resents the original processor core, thebase+reg ckpt rep-
resents the original processor plus the register checkpoint-
ing mechanism and finally, thebase+reg ckpt+spec cache
represents the system with both register checkpointing and
data cache support for speculation. As we can see, the CLB
overhead of adding program rollback support in hardware
is small (less than 4.5% on average) and relatively constant
across the range of cache sizes that we tested. One thing
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Figure 5. RAM utilization.

we can notice is that the hardware overhead introduced by
the register checkpointing additions is very small compared
to the cache overhead. This is most likely due to a simpler
design and smaller number of control signals necessary for
the RCSM.

Figure 5 shows a comparison between the same config-
urations, but looking at the number of SelectRAM blocks
utilized. Again, the amount of extra storage space neces-
sary for our system is small across the five configurations
that we evaluated.

4.2.2 Speculative execution of buggy applications

We run experiments on the buggy programs to evaluate the
behavior of the system in the presence of a few types of
memory related bugs. Details about the experimental setup
are given in Table 1.

We manually instrument the code with the instructions
that enable and disable speculative execution. Normally,
this would be done by the compiler using profiling infor-
mation or other heuristics to determine which sections of
code should be monitored. We assume the existence of an
anomaly-detection mechanism such as iWatcher [24]. We
want to determine if we can speculatively execute the sec-
tion of dynamic code that contains both the bug and the
detection location. This will allow the rollback and re-
execution of the buggy code section in order to characterize
the bug thoroughly by enabling additional instrumentation.

Table 2 shows that the buggy sections were successfully
rolled back in most cases, as shown in column four. That
means that the system speculatively executed the entire sec-
tion from when the bug occurs to when the bug is detected,
then reached the end-speculation instruction, and rolled
back. On the other hand, a failed rollback means that, before
reaching the end-speculation instruction, a cache overflow
occurs, which forces the early commit of the speculative
section. Rollback is no longer possible in this case.
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Table 2. Speculative execution in the presence of bugs.

Application Bug location Bug description Successful Instructions executed
rollback speculatively

ncompress-4.2.4 compress42.c: Input file name longer than 1024 Yes 10653
line 886 bytes corrupts stack return address

polymorph-0.4.0 polymorph.c: Input file name longer than 2048 No 103838
lines 193 and 200 bytes corrupts stack return address

tar-1.13.25 prepargs.c: Unexpected loop bounds Yes 193
line 92 causes heap object overflow

man-1.5h1 man.c: Wrong bounds checking Yes 54217
line 998 causes static object corruption

gzip-1.2.4 gzip.c: Input file name longer than 1024 Yes 17535
line 1009 bytes overflows a global variable

The fifth column shows the number of dynamic instruc-
tions that are executed speculatively within a single specu-
lative window that contains both the bug and detection lo-
cation. Notice that in the case ofpolymorph the large num-
ber of dynamic instructions cause the cache to overflow the
speculative data, and force an early commit.

5 Related work

Some of the hardware presented in this work builds on
extensive work on thread-level speculation (TLS) (e.g., [5,
7, 19, 20, 21]). We employ some of the techniques first pro-
posed for TLS to provide lightweight rollback/replay capa-
bilities. TLS hardware has also been proposed as a mecha-
nism to detect data races online [16].

Previous work has also focused on various methods
for collecting information about bugs. The “Flight Data
Recorder” [22] enables off-line deterministic replay of ap-
plications and can be used for postmortem analysis of a bug.

There is other extensive work in the field of software-
based dynamic execution monitoring. Well-known exam-
ples include Eraser [18], Valgrind [11] and others [1, 13, 15,
9]. Eraser targets detection of data races in multi-threaded
programs. Valgrind is a dynamic checker to detect general
memory-related bugs such as memory leaks, memory cor-
ruption and buffer overflow. These systems have overheads
that are typically too large to make them acceptable in pro-
duction code.

There have also been proposals for hardware support for
debugging such as iWatcher [24] and AccMon [23]. These
systems offer dynamic monitoring and bug detection capa-
bilities that are sufficiently lightweight to allow their use on
production software. This work is mostly complementary to
ours. In fact, we assume some of the detection capabilities
of iWatcher when evaluating our system.

6 Conclusions and future work

This work shows that with relatively simple hardware
we can provide powerful support for debugging production
codes. We build a hardware prototype of the envisioned
system, using FPGA technology. Finally, we run our exper-
iments on top of a version of Linux running on this system.

The hardware presented in this work is part of a com-
prehensive debugging infrastructure. The compiler identi-
fies vulnerable code regions as well as instruments the code
with speculation control instructions.

We are working toward a tighter integration with the OS
to determine how it can assist in extending the speculative
window beyond the limits of the cache. We now have an
infrastructure that facilitates this integration becauseit in-
cludes the hardware prototype, a cross-compilation system
and the Linux OS.

We are currently investigating other applications of pro-
cessor execution rollback. We are looking at ways in which
our architecture can improve techniques like N-version pro-
gramming for reliability and performance, non-intrusive,
low-overhead fault injection into long-running applications,
and resilience to transient faults.
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