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Abstract

This paper presents a processor and memory-hierarchy
prototype based on FPGAs that provides hardware support
for programrollback. We use this prototype to demonstrate
how compiler- or user-controlled specul ative execution can
help in debugging production codes. The system is based
on a synthesizable VHDL implementation of a 32-bit pro-
cessor compliant with the SPARC V8 architecture. e con-
duct experiments on applications with real bugs. The ap-
plications run on top of a version of Linux ported to this
hardware. Our experiments show that our systemis ableto
successfully execute the buggy code sections speculatively.
Thisallows the thorough characterization of the faulty code
through repeated rollback and re-execution. Moreover, the
hardware extensions we made to the baseline system in-
crease the hardware resource requirements by less than
4.5%.

1. Introduction

Several recently-proposed techniques in computer ar-
chitecture require speculation over long program sections
Examples of such techniques are thread-level speculatio
[5, 7, 19, 21], speculation on synchronization [10, 17],
speculation on the values of invalidated cache lines [6],
speculation on conforming to a memory consistency model
[4], and speculation on the lack of software bugs [12, 24].

In all these cases, when speculation fails, the architectur
has to provide a means to quickly and cleanly roll back the
side effects of the speculative code. Specifically, as athre
executes speculatively, the processor buffers the registe
memory state that it generates. If and when the speculatio

tive state. If, instead, the speculation is incorrect, tiages
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is proven to be correct, the processor commits the specula-

is discarded and the program execution is rolled back to the
state prior to the speculative execution.

This paper describes a processor and memory-hierarchy
prototype based on FPGAs that implements hardware for
rollback of very long, misspeculated code sections. The
prototype implements register checkpointing and restora-
tion, buffering in the L1 cache of the state generated by
retired speculative instructions, and instructions fansi-
tioning between speculative and non-speculative exetutio
modes.

We use the prototype to demonstrate how application
rollback can help debugroduction code. The compiler in-
serts hints into the application to indicate regions of code
that are “at risk”. These suspicious regions are then exe-
cuted speculatively. If an external checker detects a bug,
the suspicious region is rolled back and re-executed. Upon
re-execution, the software can choose to enable more instru
mentation that will help characterize the buggy code region
thoroughly.

For our prototype, we modify a synthesizable VHDL
implementation of a 32-bit processor compliant with the
SPARC V8 architecture. We map the modified processor
to a Xilinx Virtex-Il FPGA chip on a dedicated develop-
ment board. We run several applications on top of a version
of Linux running on this hardware. We choose FPGA as
a target technology because it is ideal for rapid prototyp-
ing and allows us to both validate our design choices and
experiment with realistic workloads.

Our measurements show that the hardware extensionsre-
quired to support the rollback of very long, misspeculated
code sections increase the resource requirements of the pro
cessor, when targeting FPGA technology, by less than 4.5%.

We envision this hardware as part of a larger infrastruc-
ture that includes compiler and operating system assistanc
r bug detection and characterization in production code.

1.1 Contributions

We extend an existing processor to include support
for rapid rollback and re-execution of very large, mis-



speculated code sections. The extensions include cache Our system is meant to help characterize buggy sections
support for holding speculative data, register checkpoint of code to facilitate bug detection and correction. We still
ing, and Instruction Set Architecture (ISA) support for need a mechanism to help us determine that a potential
compiler-directed transitions between speculative amd no anomaly has occurred. In our experiments, we assume the
speculative execution. existence of a bug detection framework similar to iWatcher

We prove that, with relatively simple hardware, we can [24] — an architecture proposed for dynamically monitor-
provide powerful debugging support that the compiler or ing memory locations. The main idea of iWatcher is to
programmer can exploit to enable lightweight, on-the-fly associate programmer-specified monitoring functions with
debugging of production code. monitored memory objects. When a monitored object is

We test the system on a real hardware platform basedaccessed, the monitoring function associated with this ob-
on FPGA technology. We experiment with several buggy jectis automatically triggered and executed by the hardwar
applications running on top of a version of Linux. without generating an exception to the operating system.
The monitoring function can be used to detect a wide range
of memory bugs that are otherwise difficult to catch.

2 Anintegrated debugging system

2.2 Compiler support
The hardware that we present in this work is part of a

larger debugging infrastructure that targets bug detegtio We use a compiler [8] to detect potential anomalies in

characterization, and recovery for production code. This ;. application, and generate code necessary for the OPs.
system will eventually include hardware, compiler and op- An Op consists of a test and actions. The test is used to
erating system support. Our work is focused on the hard-yetermine when the actions should be performed. The ac-
ware support, but for clarity, we give a brief description of jqns include emitting information about the program state
the entire infrastructure. . or performing execution mode transitions.

In our system, a program executes in one of three states:  The compiler also uses heuristics to detect regions of
normal, speculative, andre-execute. In normal mode, only  ¢ode that should be executed in speculative mode. For a
minimal checking for bugs takes place; in speculative mode, g to e characterized, it is important that the regions of
the programis in a potentially buggy section of code that the q4e that can lead to errors be identified.
hardware can roll back and re-execute. The program enters \ynen a potential bug has been found, the segment of
re-execution mode when a rollback has been induced. Ingoge containing the error is rolled back and re-executed.
this mode, a bug can be characterized thoroughly, throughypon, re-execution, instrumentation that was previously in
repeated rollback and re-execution, by enabling instrumen geteq by the compiler is turned on and used to characterize
tation within the application. that code section. It is the compiler’s job to determine what

atObservation Points (OP) inserted in the code by the com-  gjiect it.

piler. A transition occurs as a result of a test on the program
state or other external input. When a transition occurs, the2 3 Operating system support
hardware performs the necessary actions to enable/disable”’

checkpointing and rollback. OS support is also important for bug characterization,

state recovery and re-execution. The ability of the hard-
ware to buffer speculative state is limited to instructitve
touch data that can be kept in the cache. If an I/O or a non-

We implemented some of the hardware support neededcacheable operation is performed, the speculative exatuti
for thread-level speculation [5, 7, 19, 21] in a fully synthe has to be terminated, because such an instruction cannot be
sizable system. This supportincludes the ability to rotkba undone.

2.1 Hardwaresupport

and re-execute instructions long after they have beercetir We envision the OS to take over in such a case and buffer
This is essential for making our desired type of speculative the speculative state in software. This would be more costly
execution possible. but would extend the speculative code section significantly

When executing in speculative mode, instructions are notMoreover, to support bug characterization, OS support is
allowed to change the content of main memory. All spec- needed to deterministically replay system events suchas in
ulative data is marked and kept in the cache. It can be in-coming messages. If the speculative execution sectionis to
validated if necessary. The idea is to use this support as dong and the cache is about to overflow the speculative data,
primitive for fast and lightweight software debugging. Mor the OS can again be invoked to buffer the speculative state
details about the hardware support are given in Section 3. by using a mechanism like copy-on-write.



3 Implementation

As a base for our implementation, we used a synthesiz-
able VHDL implementation of a 32-bit processor [3] com-
pliant with the SPARC V8 architecture. This implemen-
tation has an in-order, single-issue, five stage pipelire an
one level of instruction and data caches. It has a hard-
ware multiplier and divider, an interrupt controller andbtw
UART units. The processor implements a windowed reg-  Figure 1. Cache Walk State Machine. In IDLE,
ister file with a variable number of windows. It is part of the state machine is inactive. WALK is the
a system-on-a-chip infrastructure that includes a syithes main working state. The RESTORE state is
able SDRAM controller, PCI and Ethernet interfaces. used to restore the controller to the initial

In order to support lightweight rollback an replay over state and release the pipeline.
relatively long code sections, we need to implement two
main extensions to the existing system: (1) a cache that
buffers speculative data and supports rollback and (2%fegi
ter checkpointing and rollback. This allows speculative in

strutctl_o?s ttr? retlreh by stgrmg the Stﬁefﬁia“ve Q?ta tft\ety g? thevicted, we first check if it is speculative. If it is, we cheos
erate into the cache and ensures that the register state ot th, non-speculative line in the same set for eviction. If one

processor before a checkpoint can be restored in case of oes not exist we must end the speculative section and
rollback request. We now describe both extensions in some, ’
detail. We also show how the transitions between execution
modes are controlled by software.

While in speculative mode, if a line is about to be

mmit.

3.1.1 The CacheWalk State Machine

31 Datacachewith rollback support The Cache Walk State Machine (CWSM) is used to tra-
verse the entire data cache and either commit or invalidate

In order to allow the rollback of speculative instructions, the speculative data. The state machine is activated when a
we need to make sure that the data they generate can beommit or rollback instruction reaches the Memory stage of
invalidated if necessary. To this end, we keep the specula-the pipeline. The pipeline is stalled and the cache comtroll
tive data (the data generated by the system while executingransfers control to the CWSM. The CWSM has three states
in speculative mode) in the cache, and do not allow it to as shown in Figure 1.
change the memory state. To avoid a costly cache flush In case of commit, the CWSM uses the Walk state to tra-
when transitioning between execution modes, the cacheverse the cache and clear the version bits, effectively merg
must be able to hold both speculative and non-speculativeing the speculative and non-speculative data. The tralversa
data at the same time. For this, we use a cache designethkes one cycle for each line in the cache. In the case of
to store multiple versions of data. This is done by adding rollback, the CWSM is called to invalidate all the specula-

a version identifier to each cache line. Two versions (rep- tive lines in the cache. This means traversing the cache and
resented by one version bit per cache line) are sufficient.checking the version bit for each line. If the line contains
Version0 corresponds to non-speculative, and verdido speculative data, the verion and valid bits are cleared.
speculative state.

In addition to the version bit, we extended the cache con-
troller with a Cache Walk State Machine (CWSM) that is re-
sponsible for traversing the cache and clearing the versionSome of the design decisions we made were influenced by
bit (in the case of a successful commit) or invalidating the the targettechnology chosen for our implementation (Xilin
speculative lines (in case of rollback). Virtex Il family of FPGAS). The cache is implemented with

The version bit is stored at line granularity. Therefore, synchronous RAM blocks present in the FPGA chip. This
one cache line can hold only one version of data at a time.allows the cache to be quite fast, with a single-cycle access
For this reason, while the processor is in speculative mode time.
for every write hit we check if the line we are writing to On the other hand, a disadvantage of using these mem-
contains non-speculative, dirty data. If it does, we write- ory structures is that they cannot be modified to incorporate
back the dirty data, update the line, and then set the versioradditional control signals. For instance we would havedike
bit to speculative. From this point on, the line is specutati  to use alear_all signal for the version bit. This would have
and will be invalidated in case of a rollback. allowed a single-cycle “one-shot” clear of all version bits

3.1.2 Technology constraints



and thus a single-cycle transition from speculative to non-
speculative execution in the commit scenario.

3.2 Register checkpointing and rollback

CHECKPOINT ROLLBACK

Before transitioning to speculative state, we must ensure
that the processor can be rolled back to the current, non-
speculative state. The current state includes the processo
status registers, global registers, register file and the da
cache. The data cache rollback is accomplished through
versioning as described in the previous section. For the reg
ister file, we checkpoint it when we enter the speculative
section and restore it if we need to roll back. Register file
checkpointing and rollback can be performed either in soft-
ware or in hardware. In the software approach, the com-
piler inserts explicit store instructions to save to menaly
the variables that are currently in registers. This softwar
checkpoint would have to be included in all OPs that can
cause a transition to speculative mode. This can be costly . . : '
in terms of performance and can lead to significant code egisters in the feg'SteT file plus one cycle fo_r allthe S?at“
expansion. control and global registers (these are no'F mt_:luded in the

The problemis worse in the case of a SPARC V8 proces- same memory structure_ and can all be copied In one cycle).
sor because it implements a windowed register file (WRF). .The Rollback stgte IS acuyatgd when the pipeline re-
At any one time during execution, a program sees 8 globalce'ves a r_oIIbac_k s_|gnal. While in this state, the_ contents
registers plus a 24-register window within a larger registe Of. the register file is restored_ from th_e c_:heckpo_mt, along
file. On a procedure call, instead of saving local registers with the status and global reg|ster_s. Similarly, this takes
on the stack, the current window is simply shifted. A new many cycles as there are valid registers.
set of registers is available to the callee. Upon return from
the procedure call, the window is shifted back and the old
registers become available.

At any time, a large number of variables can be in the
register file. In order to checkpoint the state of the proces-The transition to speculative execution is triggered by a
sor, the entire valid content of the WRF must be saved, notL DA (Load Word from Alternate Space) instruction with
just the current window (in the worst case, the entire regist a dedicated ASI (Address Space Identifier). These are in-
file). If performed in software, this can be very expensive, structions introduced in the SPARC architecture to give spe
since the SPARC V8 architecture specifies a limit of up to cial access to memory (for instance, access to the tag mem-
520 registers for its WRF! ory of the cache). We extended the address space of these

For this reason, we perform the register checkpointing in instructions to give us software control over the specugati
hardware. This is done using a Shadow Register File (SRF),execution.

a memory structure identical to the main register file. Be-  The special load is allowed to reach the Memory stage
fore entering speculative execution, the pipeline is redifi  of the pipeline. The cache controller detects, initialiaad

that a checkpoint needs to be taken. The pipeline stalls anctoordinates the transition to speculative execution. Ehis
control is passed to the Register Checkpointing State Ma-done at this stage rather than at Decode because, at this
chine (RCSM). The RCSM has four states and is responsi-point, all non-speculative instructions have been commit-
ble for coordinating the checkpoint as shown in Figure 2.  ted or are about to finish the Write Back stage. This means

The RCSM is in the Idle state while the pipeline is ex- that, from this point on, any data written to registers or to
ecuting normally. A transition to the Checkpoint state oc- the data cache is speculative and can be marked as such.
curs before the processor moves to speculative mode. While The cache controller signals the pipeline to start register
in this state, the valid registers in the main register file checkpointing. Interrupts are disabled to prevent any OS
are copied to the SRF. The register file is implemented in intervention while checkpointing is in progress. Contsol i
SRAM and has two read ports and one write port. This transferred to the RCSM, which is responsible for saving
means that we can only copy one register per cycle. Thusthe processor status registers, the global registers,hand t
the checkpoint stage takes as many cycles as there are validsed part of register file.

RESTORE

Figure 2. Register Checkpointing State Ma-
chine. In CHECKPOINT, the pipeline is on
hold, and the checkpoint is created. In ROLL-
BACK, the pipeline is on hold, and the register
file is restored from the checkpoint.

3.3 Changing the execution mode

3.3.1 Enabling speculative execution



When this is finished, the pipeline sendshackpointing I/O operations are a major concern in rollback/replay
completesignal to the cache controller. The cache controller systems because they cannot be undone. They are identi-
sets its state to speculative. Next, the pipeline is retbase fied by the cache controller which conservatively considers
and execution resumes. From this point on, any new dataall non-cacheable memory accesses as I/0O accesses.
written to the cache is marked as speculative. In both situations the OS is informed about the excep-
tional condition by rasing an exception. The exception han-
dler can take a variety of actions. For instance it could
save the speculative data in memory or record 1/O opera-

Speculative execution can be ended either explicitly by an tions. For simplicity, our prototype currently triggers an

instruction or implicitly by an event that cannot be rolled early commit of t_he speculative section.
back. Overall, the size of the code that can be executed spec-

ulatively is dependent on a variety of factors. Some are

Normally, speculative execution ends with commit, .7 ]
: . . application-related, such as: frequency of the I/O acsgsse
which merges the speculative and non-speculative states,

On the other hand, if a bug is detected, speculation enddnemory footprint size and access pattern or interactiom wit

i . the OS. Other factors are strictly related to hardware re-
by triggering a rollback.

. . . . sources such as cache size and associativity.

Both cases are triggered by a LDA instruction with a y
dedicated ASI. The distinction between the two is made 5 Perf itori
through the value stored in the address register of the Ioa03' erformancemonitoring
instruction. N ) .

An LDA from address) causes a commit. In this case In addition to exposing control over the speculative ex-
the pipeline allows the load to reach the Memory stage. At ecut|onftcr)] the software, me prowde SIO”_‘e feeddbaclfrrc:_n t_he
that point, the cache controller takes over, stalls thelipipe state 0 the processor w ie In Specu a_tlve mode. 1his in-
and passes control to the CWSM. The CWSM is responsi_formatlon can be used to fine-tune the instrumentation and
ble for traversing the cache and resetting the version bit. can help with debugging.

When the cache walk is complete, the pipeline is released Ve introduce an LDA instruction that can be used to
and execution can continue non-speculatively probe the state of the processor. Based on its return value,
' we determine if the processor is in normal, speculative, or

An LDA from any other address triggers a rollback. )
When the load reaches the Memory stage, the cache COI,][e-execute mode (after a rollback). This can be very useful

troller stalls the pipeline and control goes to the RCSM if we want to execute code selectively, based on the state of

The register file, global and status registers are restored.the processor. L . : . .
The end-speculation instruction provides additional in-

The nextPC is set to the saved PC. A signal is sent to the]c i h lati ¢ It retumi th
cache controller when rollback is done. At the same time, ormallotn on the ?pecu ?j'%n ou colrlne. 'thre u . N I
the cache controller uses the CWSM to traverse the cache>PEcUlatve execution ended normaily (with commit or roll-

invalidating speculative lines and resetting the versids b back), and a non-zero value if some event forced an early

When both the register restore and cache invalidation areCOMMit. The value returned in this case represents the event

done, the execution can resuime. tha\jv((:aaglssec))dirt: elgigtce%mamclgunter that keeps track of how
The value passed to the LDA instruction can be set dy- P P

namically, based on some event that can help determind ™Y dynamic instructions are executed speculatively. The

. counter is stopped when speculative execution ends, and can
whether a problem might have occurred. ; . . .
be read with a special LDA instruction.

3.3.2 Exiting speculative execution

3.4 Speculative window size 3.6 Using program rollback for debugging

The number of instructions that are successfully rolled  Finding bugs in software requires gathering as much
back is ideally given by the distance between a begin spec-information as possible about the circumstances in which
ulation and an end speculation instruction. We call this a bugs occur. We provide a mechanism for the compiler or
speculative window. There are, however, two events thatthe programmer to execute sections of code speculatively.
can force the premature end of a speculative section: cach&Ve rely on an external detection mechanism to identify a
overflow and I/O access. possible problem and trigger a rollback. Upon re-execution

A cache overflow occurs when a line needs to be dis- more instrumentation can be turned on to characterize that
placed form a cache set and all the lines in the set are specsection of code.
ulative. This means that speculative data can no longer be We define two functions, namelgnt er _spec()
held in the cache. used to begin speculative execution, ad t _spec()



to end speculative execution with commit or rollback. of instructions, that section of code can be executed specu-

exi t _spec() takes one argumerit| ag, which indicates
whether speculation ends with commit or rollback. If a bug
has been detected by some external mechanisni,lthg
variable is set to some non-zero value, and a rollback is trig
gered aexi t _spec() . The following code shows the im-

plementation.

/= Begin specul ation */
enter_spec(){
asnm(" stbar [+ fence */
mov 0, %0
| da [%©0] 0x8, %1
nop ");
}

[+ End specul ation */
[+« if flag=0 commit =«/
[+ else roll back */
exit_spec(int flag){
asm(" stbar [+ fence =/
nmov flag, %0
| da [%©0] 0x9, %1
nop ");
}

We define a functiopr oc _st at e() to probe the state
of the processor as detailed in Section 3.5. The return valu
0 means normal modé,speculative mode artirepresents
the re-execute mode. The following code shows how these
functions can be used to characterize a section of bugg

code.

[+ non-specul ative code */
numrl;

[+ begin specul ation */
enter_spec();

[+ pointer arithnetic */
p=nfa[ *x] ] +&;

i f (bug_suspected)
flag=1;

/+ info collection /

[+ only in re-execute node */
if (proc_state()==2) {
info_collect();

}

[+ end specul ation */
exit_spec(flag);

[+ non-specul ative code */
numt+;

latively. If a bug is suspected, the program ddtag, and
whenexi t spec() is executed, a rollback is triggered.
The execution resumes from teat er _spec() instruc-
tion and the code is re-executed.

The compiler can also insert code in the speculative sec-
tion to collect relevant information about the program ex-
ecution that can help characterize a potential bug. This
code is only executed if the processor is in re-execute mode,
when a potential problem has been found, so it does not in-
troduce significant overhead on correct runs.

Figure 3 shows the three possible execution scenarios
for the example given above. Case (a) represents normal
execution: no error is found, thiel ag variable remains
clear and wherexi t _spec(fl ag) is reached, specula-
tion ends with commit.

In case (b), an abnormal behavior that can lead to a bug is
encounteredFl ag is set by the program and when execu-
tion reachegxi t _spec(fl ag) the execution rolls back
to the beginning of the speculative region. This can be re-
peated until the bug is fully characterizéd.ag can be set
as a result of a failed assertion or data integrity test.

Finally, in case (c) the speculative state can no longer fit
in the cache. The overflow is detected by the cache con-
troller and an exception is raised. The exception handler

decides to commit the current speculative data and con-

tinue executing normally. When the execution reaches the

exi t _spec(fl ag) instruction, the state of the processor

Yis first checked. Since the processor is no longer specelativ
(due to the early commit), the instruction is simply ignored
and execution continues normally.

4 Evaluation
4.1 Experimental infrastructure

411 FPGA system

As a platform for our experiments, we used LEON2 [3], a
synthesizable VHDL implementation of a 32-bit processor
compliant with the SPARC V8 architecture.

The processor has an in-order, single-issue, five stage
pipeline (Fetch, Decode, Execute, Memory and Write
Back). Most instructions take 5 cycles to complete if no
stalls occur. The Decode and Execute stages are multi-cycle
and can take up to 3 cycles each.

The data cache can be configured as direct mapped or as
multi-set with associativity of up to 4, implementing least
recently used (LRU) replacement policy. The set size is
configurable to 1-64 KBytes and divided into cache lines
of 16-32 bytes. Each line has a tag field, and valid and dirty

The compiler or the programmer identifies regions of bits for each 4-byte sub-block. The per-word valid bits al-
code that are “at risk”. Using the begin/end speculation pai low partially valid lines to exist in the cache. On a data



num=1; num =1; num =1;
enter_spec():; enter_spec(); enter_spec(); cache
overflow
p = m[a[*x]]+&y; p = ma*x]]+&y; |roll p = ma*x][+&y; | <q——
bac
exit_spec(flag); exit_spec(flag); exit_spec(flag);
num-++; num-++; num-++;
(a) No error (flag = 0) (b) Error (flag=1) (c) Cache overflow
Commit Rollback Early commit
D Speculative execution D Non-speculative execution

Figure 3. (a) Speculative execution ends with commit. (b) Sp eculative execution ends with rollback.
(c) Speculative execution ends with early commit due to cach e overflow.

cache read miss, only 4 bytes of data are loaded into thethe bug and the location where the bug is caught by a mech-

cache from main memory. This reduces the number of portsanism like iWatcher [24] (see Section 2.1).

(because no additional write ports are needed for lineyefill  We use five buggy programs from the open-source com-

and eliminates the need for refill logic. We implemented munity. The bugs were introduced by the original pro-

a write-back cache controller since the initial system had agrammers. They represent a broad spectrum of memory-

write-through data cache. The data cache needs to be writerelated bugs. The programs argzip, man, polymorph,

back to make holding speculative data possible. ncompress and tar. Gzp is the popular compression utility,
This processor is part of a system-on-a-chip infrastruc- man is a utility used to format and display on-line manual

ture that includes a synthesizable SDRAM controller, PCI pagespolymorph is a tool used to convert Windows style

and Ethernet interfaces. The system is synthesized usindile names to something more portable for UNIX systems,

Xilinx ISE v6.1.03. The target FPGA chipis a Xilinx Virtex ncompressis a compression and decompression utility, and

[l XC2V3000 running on a GR-PCI-XC2V development tar is a tool to create and manipulate archives.

board [14]. The board has 8MB of FLASH PROM and 64 In the tests, we use the bug-exhibiting inputs to gener-

MB SDRAM. Communication with the device, loading of ate the abnormal runs. All the experiments are done under

programs in memory, and control of the development boardrealistic conditions with the applications running on tdp o

are all done through the PCl interface from a host computer.Linux.

Console output is sent on the serial interface.

4.2 Results

412 Operating system 421 Hardwareoverhead

On this hardware we run a special version of the SnapGeal
Embedded Linux distribution [2]. SnapGear Linux is a full
source package, containing kernel, libraries and apmicat
code for rapid development of embedded Linux systems. A
cross-compilation tool-chain for the SPARC architectgre i
used for the compilation of the kernel and applications.

o get a sense of the hardware overhead imposed by our
program rollback support, we synthesize just the proces-
sor core (including the cache but not the memory, PCI or
serial controllers). We look at the utilization of two main
resources: Configurable Logic Blocks (CLBs) and Selec-
tRAM memory blocks.

The Virtex || CLBs are organized in an array and are
413 Applications used to build the combinational and synchronous logic com-

ponents of the design. Each CLB element is tied to a switch

We run experiments using standard Linux applications thatmatrix to access the general routing matrix. A CLB ele-
have known, reported bugs. For these applications, we wantment comprises 4 similar slices. Each slice includes two
to determine whether we can speculatively execute a sectiom-input function generators, carry logic, arithmetic logi
of dynamic instructions that is large enough to contath gates, wide-function multiplexers and two storage element
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Each 4-input function generator is programmable as a 4-e can notice is that the hardware overhead introduced by
input lookup table (LUT), 16 bits of distributed SelectRAM  the register checkpointing additions is very small comgare
memory, or a 16-bit variable-tap shift register element. to the cache overhead. This is most likely due to a simpler
The SelectRAM memory blocks are 18 Kbit, dual-port gesign and smaller number of control signals necessary for
RAMs with two independently-clocked and independently- {ne RCSM.
controlled synchronous ports that access a common stor- Figure 5 shows a comparison between the same config-
age area. Both ports are functionally identical. The Se- ations, but looking at the number of SelectRAM blocks
lectRAM block supports various configurations, including ilized. Again, the amount of extra storage space neces-

single- and dual-port RAM and various data/address aspectyy for our system is small across the five configurations
ratios. These devices are used to implement the large memg, ot we evaluated.

ory structures in our system (data and instruction caches,

the register file, shadow register file, etc).
4.2.2 Speculative execution of buggy applications

We run experiments on the buggy programs to evaluate the

Table 1. Main parameters of the experimental behavior of the system in the presence of a few types of

system. memory related bugs. Details about the experimental setup
are given in Table 1.

Processor LEONZ2, SPARC V8 complian We manually instrument the code with the instructions
Clock frequency 40MHz that enable and disable speculative execution. Normally,
Instruction cache 8KB this would be done by the compiler using profiling infor-
Data cache 32KB mation or other heuristics to determine which sections of
Main memory 64MB code should be monitored. We assume the existence of an
Windowed register filgl 8 windowsx 24 registers anomaly-detection mechanism such as iWatcher [24]. We
Global registers 8 registers want to determine if we can speculatively execute the sec-

tion of dynamic code that contains both the bug and the
detection location. This will allow the rollback and re-

Figure 4 shows a comparison between the number ofexecution of the buggy code section in order to characterize
CLBs used for three configurations of the processor corethe bug thoroughly by enabling additional instrumentation
and five different sizes of the data cache. THase rep- Table 2 shows that the buggy sections were successfully
resents the original processor core, basetreg_ckpt rep- rolled back in most cases, as shown in column four. That
resents the original processor plus the register checkpoin means that the system speculatively executed the entire sec
ing mechanism and finally, tHease+reg_ckpt+spec_cache tion from when the bug occurs to when the bug is detected,
represents the system with both register checkpointing ancdthen reached the end-speculation instruction, and rolled
data cache support for speculation. As we can see, the CLBoack. On the other hand, a failed rollback means that, before
overhead of adding program rollback support in hardware reaching the end-speculation instruction, a cache overflow
is small (less than 4.5% on average) and relatively constantoccurs, which forces the early commit of the speculative
across the range of cache sizes that we tested. One thingection. Rollback is no longer possible in this case.



Table 2. Speculative execution in the presence of bugs.

Application Bug location Bug description Successfull Instructions execute
rollback speculatively
ncompress-4.2.4, compress42.c: | Input file name longer than 1024 Yes 10653
line 886 bytes corrupts stack return address
polymorph-0.4.0| polymorph.c: Input file name longer than 2044 No 103838
lines 193 and 20Q bytes corrupts stack return address
tar-1.13.25 prepargs.c: Unexpected loop bounds Yes 193
line 92 causes heap object overflow
man-1.5h1 man.c: Wrong bounds checking Yes 54217
line 998 causes static object corruption
gzip-1.2.4 gzip.c: Input file name longer than 1024 Yes 17535
line 1009 bytes overflows a global variable

The fifth column shows the number of dynamic instruc- 6 Conclusions and future work
tions that are executed speculatively within a single specu
lative window that contains both the bug and detection lo-
cation. Notice that in the case pélymorph the large num- This work shows that with relatively simple hardware

ber of dynamic instructions cause the cache to overflow thewe can provide powerful support for debugging production
speculative data, and force an early commit. codes. We build a hardware prototype of the envisioned

system, using FPGA technology. Finally, we run our exper-

iments on top of a version of Linux running on this system.
The hardware presented in this work is part of a com-
Some of the hardware presented in this work builds on prehensive debugging ipfrastructure. 'I_'he compiler identi

extensive work on thread-level speculation (TLS) (e.g., [5 f|¢s vuInerabI_e code regions as yveII as instruments the code

7,19, 20, 21]). We employ some of the techniques first pro- With speculation control instructions.

posed for TLS to provide lightweight rollback/replay capa- We are working toward a tighter integration with the OS

bilities. TLS hardware has also been proposed as a mechato determine how it can assist in extending the speculative

nism to detect data races online [16]. window beyond the limits of the cache. We now have an
Previous work has also focused on various methodsinfrastructure that facilitates this integration becaitse-

for collecting information about bugs. The “Flight Data cludes the hardware prototype, a cross-compilation system

Recorder” [22] enables off-line deterministic replay of ap and the Linux OS.

plications and can be used for postmortem analysis of abug. We are currently investigating other applications of pro-
There is other extensive work in the field of software- cessor execution rollback. We are looking at ways in which

based dynamic execution monitoring. Well-known exam- our architecture can improve techniques like N-version pro

ples include Eraser [18], Valgrind [11] and others [1, 13, 15 gramming for reliability and performance, non-intrusive,

9]. Eraser targets detection of data races in multi-thréade |ow-overhead fault injection into long-running applicats,
programs. Valgrind is a dynamic checker to detect generaland resilience to transient faults.

memory-related bugs such as memory leaks, memory cor-
ruption and buffer overflow. These systems have overheads
that are typically too large to make them acceptable in pro- Acknowledgments
duction code.
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