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Abstract

The emergence of multicore architectures will lead to an
increase in the use of multithreaded applications that are
prone to synchronization bugs, such as data races. Software
solutions for detecting data races generally incur large
overheads. Hardware support for race detection can sig-
nificantly reduce that overhead. However, all existing hard-
ware proposals for race detection are based on the happens-
before algorithm which is sensitive to thread interleaving
and cannot detect races that are not exposed during the
monitored run. The lockset algorithm addresses this limi-
tation. Unfortunately, due to the challenging issues such
as storing the lockset information and performing complex
set operations, so far it has been implemented only in soft-
ware with 10-30 times performance hit.

This paper proposes the first hardware implementation
(called HARD) of the lockset algorithm to exploit the race
detection capability of this algorithm with minimal over-
head. HARD efficiently stores lock sets in hardware bloom
filters and converts the expensive set operations into fast bit-
wise logic operations with negligible overhead. We evaluate
HARD using six SPLASH-2 applications with 60 randomly
injected bugs. Our results show that HARD can detect
54 out of 60 tested bugs, 20% more than happens-before,
with only 0.1-2.6% of execution overhead. We also show
our hardware design is cost-effective by comparing with the
ideal lockset implementation, which would require a large
amount of hardware resources.

1 Introduction

Multithreading is a common programming technique
used in many server and scientific applications to achieve
good performance. The emergence of multicore architec-
tures will further strengthen the trend of multi-threaded pro-
gramming. Unfortunately, despite the performance benefit,
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multithreading also significantly increases software com-
plexity and is prone to synchronization bugs.

One of the most common synchronization bugs is the
data race, which occurs when at least two threads access
the same shared variable without synchronization, and at
least one access is a write. Data races are notoriously dif-
ficult to expose, reproduce and diagnose due to their non-
determinism and timing sensitivity. Therefore, data races
can easily lurk into extensively tested programs and cause
serious damage in production runs.

With the recent impressive advances in micro-
architecture, interest has risen in the architecture
community in using some of the available hardware
budget to minimize the prohibitive bug detection
overhead and improve the ease of software debug-
ging [15, 27, 34, 18, 35, 17, 38, 37, 13, 26, 12]. A few
studies [15, 27, 26] have proposed hardware support for ef-
ficient dynamic race detection. These systems significantly
reduce the huge performance penalty of software-only ap-
proaches from 10-30 times slowdown [30] to an acceptable
range, and, therefore, are suitable for the on-the-fly race
detection in production runs.

Almost all previous hardware race detection propos-
als [15, 27, 26] are based on the happens-before algo-
rithm [23, 7, 14, 27, 26]. This algorithm is based on Lam-
port’s happens-before relation [11]. It dynamically moni-
tors the program execution and partially orders the memory
accesses based on synchronizations and execution order. A
data race is reported if there is no temporal ordering be-
tween two conflicting accesses. The basic idea of the hard-
ware implementations of this algorithm is to store access
histories or timestamps in the hardware cache. The stored
information is communicated through the underlying cache
coherence protocol and used to check for any access anoma-
lies related to the happens-before ordering.

A major limitation of the happens-before algorithm is
that it can only detect those races that manifest during the
monitored execution. Most races manifest only under some
interleavings. Figure 1 shows such an example. The data
race on z will not be detected in the interleaving shown in
Figure 1, because the accesses to x are ordered by the lock



thread 1 thread 2

X=X+ 1;

lock (1);

y=y+L

unlock (1);
lock (1);
y=y+L
unlock (1);
X=x+1;

Figure 1. Happens-before cannot detect the data
race on x in this execution interleaving.

operations performed for accessing y. It can be detected
by happens-before only if the code fragment in thread 2 is
executed before the code fragment in thread 1. Based on
real world experience, many data races require more than
tens even hundreds of repeated runs to manifest only once.
Therefore, since it is impossible to exhaustively test every
possible thread interleaving, the happens-before algorithm
can easily miss many bugs because they are not exposed
during the monitored run, as we demonstrate in our experi-
mental results (see Section 5).

To overcome this limitation, researchers have proposed
another algorithm called the lockset algorithm [30, 33, 5].
This algorithm is insensitive to thread scheduling and can
catch data races that do not actually manifest during a par-
ticular execution. At run time, the lockset algorithm checks
for violations of the locking discipline. One simple exam-
ple of the locking discipline is that all accesses to the same
shared variable should be protected by at least one common
lock. To perform such checks, the algorithm maintains the
set of locks currently held by a thread (called the thread
Lock Set) for each thread, and the set of locks that have pro-
tected a variable so far (called the Candidate Set) for each
shared variable. A lock is added or removed from a thread
lock set when the thread acquires or releases the lock. The
candidate set is initialized as all possible locks, and updated
upon every access to the corresponding variable by inter-
secting with the thread lock set. An empty candidate set
means no common locks protect the variable and, therefore,
indicates a potential race.

Unfortunately, all existing implementations of the lock-
set algorithm are software-based and, as a result, introduce
significant overheads. For example, Eraser [30] has re-
ported a factor of 10-30 times slowdowns for some applica-
tions. To reduce this overhead, several recent studies have
proposed various solutions for trading off bug detection ac-
curacy for performance or focusing on object-oriented lan-
guages which can increase the monitoring granularity from
variable to object. For example, RaceTrack [36] reduces
the overhead for object-oriented programs to only 2-3 times
slowdowns, but it cannot be applied to legacy code written

in C and its overhead is still not low enough for production
runs.

Despite many hardware implementations of the happens-
before algorithm, no study has explored the possibility of
implementing the lockset algorithm in hardware to take ad-
vantage of the unique bug detection power of this algorithm
with low overhead. This is because implementing lockset
in hardware is challenging and needs to address two main
issues. The first issue is how to efficiently store and main-
tain candidate sets for variables in hardware. Unlike the
happens-before algorithm whose access history and times-
tamps have fixed format and length, the candidate sets in the
lockset algorithm have variable sizes, and each element in a
setis alock ID or address (2-4 bytes). Therefore, we need to
derive a solution to represent a candidate set using a small
and fixed-size structure in hardware without requiring ap-
plications to change their source code to use different lock
primitives or limit the number of locks. The second issue is
how to efficiently perform the set operations in the lockset
algorithm. Such operations include adding or removing a
lock from the thread lock set upon a lock acquire or release,
and intersecting the lock set and the candidate set at every
shared access. These expensive and frequently performed
set operations are the main source of the huge performance
penalty in exiting software implementations . To minimize
the overhead, it is critically important to perform these set
operations efficiently.

1.1 Our Contributions

This paper proposes the first hardware implementation
(called HARD) of the lockset algorithm. The goal of HARD
is to detect data races, including those that do not manifest
during the monitored run, with little overhead. Essentially,
HARD exploits the lockset algorithm’s full bug detection
capability with a very small overhead. This makes it suit-
able for production runs. It is also sufficiently general that it
can be applied to applications written in most programming
languages (C/C++, Java, etc).

HARD efficiently stores the candidate sets with variable
sizes in hardware bloom filters [2] using only 16-bit long
vectors. The expensive set operations can then be converted
to fast bitwise logic operations, which can be performed
very efficiently in hardware with negligible overhead. The
candidate sets are communicated among processors by pig-
gybacking on cache coherence protocol messages to mini-
mize inter-processor traffic.

Additionally, to reduce false positives, HARD goes one
step further than previous lockset work by proposing a tech-
nique to handle barriers, which are widely used in many par-
allel applications. Our technique resets the bloom filter vec-
tors of all variables after exiting a barrier. This effectively
reduces the number of false positives caused by barriers.



We evaluated HARD using six SPLASH-2 benchmarks
with 60 randomly injected data races. We also compare our
lockset implementation with a happens-before implementa-
tion. Our results show that during the monitored runs (with-
out selecting inputs and interleavings), HARD detects 54
out of 60 tested bugs, 20% more than happens-before, with
only 0.1-2.6% of execution overhead. We also show our
default hardware design is cost-effective by comparing with
the ideal lockset hardware implementation which would re-
quire a large amount of hardware resource.

This paper is organized as follows. Section 2 describes
the lockset algorithm. Section 3 presents the design details
of HARD. Sections 4 and 5 present the evaluation method-
ology and experimental results. Section 6 discusses related
work, followed by Section 7 which concludes this paper.

2 Background: The Lockset Algorithm
2.1 Basic Lockset Algorithm

The lockset algorithm was first proposed in [30]. It de-
tects data races by dynamically checking that all shared-
memory accesses follow a locking discipline. The simplest
discipline is that accesses to every shared variable should be
protected by some common lock. By monitoring all shared
reads, writes and lock acquire and release primitives as the
program executes, it can detect any violations of the locking
discipline that occur when accessing shared objects.

For each shared variable v, the lockset algorithm main-
tains a set of locks that have protected v so far in a candidate
set associated with v, or C'(v). For each thread ¢, the lock-
set algorithm also maintains a set of locks currently held
by thread ¢ in the lock set of t, or L(t). A lock [ is added
to or removed from the thread lock set L(t) when thread ¢
acquires or releases the lock I. When a new variable v is
initialized, its candidate set C'(v) holds all possible locks.
When the variable is accessed by thread ¢, C'(v) is updated
with the intersection of C'(v) and the thread’s current lock
set L(t). This will ensure that any lock that always protects
v will be contained in C(v). If C(v) is empty, there is no
single lock protecting v, and this indicates a potential race.

Implementing lockset entirely in software is expensive.
It needs to instrument the lock acquire and release primi-
tives to update the lock set for each thread. It also needs
to maintain a candidate set table which stores the candi-
date set for each variable. More specifically, every access
is instrumented such that when a variable v is accessed, its
candidate set C'(v) will be found by searching the table.
Then C(v) will be updated by intersecting C(v) and the
running thread’s lock set L(¢). Finally, the new C(v) will
be checked and if it is empty, a potential race is indicated.
Such heavy-weight monitoring at such fine granularity (ev-
ery access to a shared variable) introduces a severe perfor-
mance hit in software-only implementations, slowing down
applications by up to 30 times [30].

2.2 Existing False Alarm Pruning Techniques for
Lockset

The above basic lockset algorithm can result in many
false positives. This is because sometimes the programmer
will intentionally access certain shared memory locations
without using locks, if he knows that races cannot occur.
One such case is the initialization of shared variables. Itis a
common programming practice that accessing shared vari-
ables in initialization phase without lock protection. This is
generally safe because only the initializing thread has a ref-
erence to that data. Another case is when shared variables
are written during initialization and are read-only afterward.
These variables can be safely accessed without holding any
locks.

Shared
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new thread

Exclusive

rd/wr

wr

rd,
new thread

Shared

rd/wr,
initial thread

Figure 2. State diagram for pruning false posi-
tives introduced due to variable initialization. All
variables are initially in Virgin state. The state of
the variables changes depending on the rd/wr ac-
cesses by different threads as shown in the dia-
gram. A race is reported for a variable only if it is
currently in the Shared-Modified state.

In order to filter out these cases, lockset defines multiple
states for each memory location. Figure 2 shows the four
states a variable can be in and the actions that can trigger
transitions. A newly allocated variable v is set to the Virgin
state. When it is first accessed, it transitions to the Exclu-
sive state. As long as v continues to be accessed by the
same thread, it will remain Exclusive. While in Exclusive
state, its candidate set C'(v) will not be updated, therefore
no races will be reported. This will ensure that variables ini-
tialized by a single thread will not trigger false alarms, even
if accessed without holding locks.

If v is later accessed by a different thread, its state will
change either to Shared if it is a read access, or to Shared-
Modified if it is a write access. The Shared state indicates
that the variable v was initialized and then has only been
read by threads. Accessing v without a lock at this point
is safe. Therefore, to avoid false positives, its candidate set
C'(v) will be updated, but no races will be reported. In con-
trast, the Shared-Modified state indicates that v has been
written and read by multiple threads, therefore its candidate



set C'(v) will be updated and potential races will be reported
if any.

3 Hardware Implementation of Lockset De-
tector

To implement the lockset algorithm in hardware, the fol-
lowing two major issues need to be addressed. First, how to
efficiently store and maintain candidate sets for variables in
hardware? Second, how to efficiently perform the set oper-
ations required by the lockset algorithm, including addition,
deletion and intersection?

3.1 Overview

To efficiently represent candidate sets with variable sizes
and provide fast set operations, HARD uses bloom filters
for the candidate sets of all variables and the current lock
sets of all threads.

Figure 3 gives an overview of the HARD design for a
CMP architecture using a snoopy-based coherence protocol.
Each L1 cache line is augmented with two bits called LState
to record the states used in the lockset algorithm for false
positive pruning (see Section 2), and a bloom filter vector
(BFVector) to store the candidate set of this line. Each L2
cache line also records the candidate sets and LStates for
the corresponding L1 lines. Note that, the LState is differ-
ent from the coherence state (CState) used in the coherence
protocol. The size of the BFVector is 16 bits, which intro-
duces 1/16 overhead for a cache with 32 Byte cache lines.

[C———Counter Register [ ]
CPU CPU
[— Lock Register 1
LState BITVector LState BITVector

i L1 cache ! L1 cache

17 17

L2 cache

Figure 3. Design Overview of HARD. The L2 line
size is twice of the L1 line size.

Fetching a line from memory will initialize its candidate
set to all possible locks by setting all bits of the BFVec-
tor to 1, and initialize its LState to Exclusive. The BFVec-
tor for the candidate set and the LState will be updated on
each access according to the lockset algorithm (Section 2).
The BFVector and LState for each line are kept consistent
among processors by the underlying coherence protocol, as

they are part of the data content of the corresponding line
(Section 3.4).

Inside each processor, we add two special registers, a
Lock Register and a Counter Register for storing the lock
set of the running thread. The 16-bit Lock Register stores
the union of the bloom filter vectors of all the lock addresses
currently held by the processor. Representing both the can-
didate set and lock set using bloom filter vectors makes
adding and removing locks from the set simple and fast. The
32-bit Counter Register stores a set of 2-bit counters where
each counter is associated with one bit in the Lock Register.
It is used to support removing a lock from the Lock Register
in case of possible hash collisions (Section 3.3).

Because the lockset algorithm only handles lock-based
synchronization, it generates spurious race reports if the
program uses other synchronization primitives, such as
fork/join, barriers etc. Previous studies proposed some par-
tial solutions to handle fork (or start) by using the ownership
model [33] and to handle join by using dummy locks [4].
These solutions can be incorporated into HARD as well.
For barriers which are commonly used in scientific appli-
cations, we propose a technique to prune the false positives
by resetting the BFVectors of all variables after exiting the
barrier (details see Section 3.5).

3.2 Candidate Sets and Lock Sets with Bloom Fil-
ter

The bloom filter was first proposed by Bloom [2] to sup-
port fast membership testing of a set. It uses multiple hash
functions to map an element into a bit vector. For each
member element, its corresponding bits in the vector are
set to 1. To test whether an element is a member or not,
its corresponding bits based on the hash function are tested.
If one of the bits is 0, the element does not belong to the
set. Otherwise, the element belongs to the set (assuming no
hash collisions).

We use bloom filters to represent both the candidate set
and the lock set for two main reasons. First, BFVectors use
a small fixed number of bits to store sets with variable sizes
(each element of a set is a 2-4Byte lock ID or address). Sec-
ond, it provides very fast set operations, such as set mem-
bership, intersection, addition and deletion, which are key
operations frequently performed by the lockset algorithm.
For instance, computing the intersection of the candidate
set and lock set is as simple as performing a bitwise logic
AND of the corresponding BFVectors.

Figure 4 shows how we map a lock address to a bloom
filter vector. The size of the BFVector is 16 bits. For each
lock address in the set, 8 bits (bit 2 to bit 9, starting from
the least significant bit) are used to map this address to a
bloom filter vector. The 8 bits are broken into 4 parts, with
2 bits each. Each part is used to directly index 4 bits in the
bloom filter vector. All indexed bits are set to 1. This partial



address indexing idea was also used in [22, 37]. We use
a direct index instead of a more complex hash function to
simplify the hardware logic as much as possible.

Lock Address
31 1098 76 5432 10
--------- 11loof1olo1]oo
VI — —_— Y —Y
BFVector 10! 0:0/0/0}0:1 0! 1!0!0[ 00! 10

4bits  4bits  4bits  4bits
Figure 4. Map a Lock Address to a bloom filter.

For a set, if there is at least one bit having value 1 in each
of its four bloom filter vector parts, the set is not empty. Oth-
erwise the set is empty. The bloom filter always correctly
identifies an empty set. However, due to the hash colli-
sions, it could mistakenly identify a set as not empty. Recall
that an empty candidate set means a data race. Therefore,
the use of the bloom filter could potentially cause missing
some data races as we show in Figure 5. Figure 5(a) shows
the candidate set for variable v, C'(v) = L1, L2, and the
corresponding BFVector. When v is accessed by thread ¢,
the lock set held by ¢ is L(t) = L3. L(t) and its BFVec-
tor are shown in Figure 5(b). Now the new C(v) should
be C(v) N L(t) = ¢, however, due to the hash collision,
the BFVector for the new C'(v) is not empty (Figure 5(c)),
which will hide this data race.

Of course, if the vector is long enough, the probability
of collision and thus missing races will be very low. How-
ever, we also have to minimize the vector length to reduce
the hardware cost. Therefore, choosing an appropriate size
for the bloom filter is critical. The guideline is to use the
smallest vector size with acceptable missing race probabil-
ity (e.g., <1%).

Now, the question becomes how to estimate the miss-
ing race probability. Assuming the vector is divided into 4
parts, the length of each part is n (n > 1), the size of the
candidate set size is m, and the lock addresses are randomly
distributed. For each element in the lock set, the probability
that it collides with one part of the BFVector of the C(v)
is CRpare = 1 — ("T’l)m, and the probability of colliding
with all four parts of the BFVector is C Ry poie = C’Rfmrt.
C Ryhole gives the false positive probability in membership
testing (missing race probability in our case). For the set
size m = 1,2, 3 and the vector size of 16 (i.e., n = 4 for 4
parts), CRpote = 0.0039,0.037,0.111, respectively. Be-
cause the sizes of candidate sets and lock sets are usually
small in programs, we choose the vector size of 16. Our
experiments show that no races were missed as a result of
having a bloom filter vector of size 16.

3.3 Counters for Thread Lock Sets

In addition to using a bloom filter (Lock Register) to rep-
resent the current lock set of a thread, we also maintain a
Counter Register consisting of 2-bit counters for each bit in
the Lock Register.

The lock set of a thread is updated when a lock or un-
lock operation is performed during execution. When a lock
is acquired, the new lock needs to be added to the lock
set. The addition is a bitwise logic OR of the original lock
set BFVector (Lock Register) and the new lock BFVector.
When a lock is released, it needs to be removed from the
lock set. Updating the BFVector of the lock set becomes
a problem, because we cannot just reset all the bits corre-
sponding to the lock to O because of possible hash colli-
sions. Otherwise, we may remove some bits belonging to
other locks.

We solve this problem by using the Counter Register,
consisting of 16 2-bit counters associated to the lock set.
Whenever adding a lock, the corresponding bits in the
BFVector are set to 1, and the corresponding counters are
increased by 1 until they are saturated. When removing a
lock, the corresponding counters from the counter register
are decreased by 1, and the corresponding bits in the BFVec-
tor are only reset if the counters reach 0. 2-bit counters are
sufficient because the size of lock set is small, and the con-
flicts will be rare.

3.4 Candidate Set and LState Communication

In our design, we assume a snoopy-based coherence pro-
tocol, thus we store the candidate set and LState at each
cache line. Along with the cache data, the candidate set and
LState are communicated among the processors through the
cache coherence protocol. When a cache line is transferred
as a result of a coherence request, the associated candidate
set and LState are also sent to the requesting processor. The
requesting processor performs the intersection of its lock set
with the received candidate set to generate the new candi-
date set, and update the LState based on the state transition
(Figure 2).

In addition to the above extension, the coherence proto-
col also needs to support the following requirement. When
a processor reads a cache line that is in Shared CState af-
ter this read, if the newly computed candidate set is dif-
ferent from the old one, the new candidate set and the
LState should be broadcast to other processors and the L2
cache. Other L1 caches that hold this line and the L2 cache
should snoop this message to update their candidate sets and
LStates for this line. This is used to keep the candidate sets
and LStates in all valid L1 cache lines and L2 cache lines
consistently up-to-date. Figure 6 graphically represents this
process. In our experiments, such broadcast happens not
very often because the candidate set of a variable usually
does not change after a few accesses to this variable.
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Figure 5. A False Negative Caused by the Bloom Filter.
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Figure 6. Processor P1 responds to a read request
for line v by processor P2 by sending the line, the
candidate set C(v) and the LState. Processor P2
will use C(v) and its Lock set for current thread
t2 — L(t2) to compute the new C(v), and get the
new LState (should be Shared here) based on the
transition graph. The new C(v) and LState will be
broadcast to other L1 caches and L2 cache, if C(v)
changes.

Sending the candidate set and LState on the bus or
through the network can increase the coherence traffic,
which introduces some performance overhead as shown in
our experimental results. However, since we store the can-
didate set and LState in only 18 bits, the amount of extra
traffic and its performance impact is small.

For a directory-based protocol, the candidate set and the
LState are stored in the directory instead of together with

each cache line. Every shared access gets the candidate set
and LState information from the directory, and then puts
the new information back. The management of the candi-
date set and LState is simpler in a directory-based protocol.
However, even for a local cache access, the processor needs
to get the lockset related information from the directory, in-
stead of from the cache directly. This can be done on the
background, but may delay the detection of races.

3.5 False Positive Pruning for Barriers

Barriers are commonly used in scientific applications
(e.g., Splash-2 applications). They cause many false pos-
itives in the lockset algorithm, because the accesses from
different threads to a variable can be ordered by barriers,
then there is no need to guard such variable using locks. Fig-
ure 7 shows an example. Before the barrier, array A[0..7] is
read and written by thread tl only. After the barrier, only
thread t2 reads and writes array A. Even though during the
execution, array A is accessed by both threads t1 and t2, all
these accesses are not protected by locks. The code is race
free because there are no concurrent accesses to array A (the
access order is enforced by the barrier), but the lockset al-
gorithm will normally report races among these accesses.

To eliminate the false alarms caused by barriers, we set
the candidate set BFVectors of all variables (representing all
possible locks) after exiting a barrier. This way, the accesses
and their lock information before the barrier are discarded,
because these accesses and the accesses after the barrier to
the same variable have the happens-before relation. This
approach is only an approximation. It would be accurate
if all threads went through the same barrier. Fortunately,
this is indeed the common case. In our experiments, all the
benchmarks that use barriers follow this pattern. If differ-
ent groups of threads go through different barriers, or some
threads do not go through the barrier, this approach may
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Figure 7. A False Positive Caused by the Barrier.

cause false negatives because not all discarded accesses can
be ordered by the same barrier. To handle this situation, we
can combine HARD with the happens-before algorithm as
in [36, 21, 25], which remains as our future work.

3.6 Other Design Issues

Cache Displacement: = HARD stores the candidate set
at each cache line. In our current implementation, when
a shared line is displaced from the L2 cache, its candidate
set information is lost. Since the L2 cache is typically a few
megabytes large, keeping the candidate set only in the cache
provides a detection window that is hundreds of thousand of
instructions large, before lines have to be evicted back to the
memory. This detection window is usually enough because
most races occur within a short window of execution.

False Sharing:  Candidate sets are stored at L1 cache
line granularity. If an L1 line contains multiple shared vari-
ables, the algorithm requires these variables to be protected
by common locks, which is unnecessary. Thus, the false
sharing of the candidate sets can lead to false positives, an
issue also faced by previous work [12, 27]. This problem
can be mitigated by using a smarter parallelizing compiler
that will not allocate multiple shared variables to the same
line. This can also has important performance benefits.

4 Experimental Methodology

Our experiments are conducted using SESC [28], a
cycle-accurate execution-driven simulator, that models a 4-
core CMP augmented with the HARD functionality. Our
simulator provides a detailed model of a CMP with out-of-
order processor cores, detailed memory system and bus traf-
fic. The parameters of the architecture are shown in Table 1.

We run six lock-based SPLASH-2 applications with ran-
domly and dynamically injected data race bugs'. For each
application, we randomly inject a single dynamic instance
of a data race into each run of the application. This is done

I'Since almost all the remaining SPLASH-2 applications hardly use
locks for synchronizations, we do not select them in our evaluation.

| Core Parameters

CPU frequency 2.4GHz
Int, Mem, FP FUs 3,2,2
BTB 2K, 2 way
ROB, I-window sizes [128, 64

Fetch, Issue, Retire widths |6, 4, 4
LD, ST queue entries |64, 48

L1 cache 16KB, 4-way, 32B/line,
3 cycle latency, 16b BFVector/line

| Memory System Parameters |

L2 cache 1MB, 8-way, 32B/line,
10 cycles latency, 16b BFVector/line
Memory 200 cycles latency

Table 1. Parameters of the simulated architecture.

by omitting a randomly selected dynamic instance of a lock
primitive and the corresponding unlock primitive. For each
application, we use the test input set and perform 10 runs,
each time injecting different data races.

To demonstrate the advantages of lockset over happens-
before, we also implement the happens-before algorithm in
our simulator, and compare the functionality of these two
algorithms. For the happens-before implementation, we
store the timestamps at cache-line granularity, very similar
to storing the candidate sets and LStates in HARD. Note
that, for some shared variables, not all injected bugs mani-
fest in the underlying thread interleaving as an actual race.

As described in Section 3, due to the space limitations
for maintaining the candidate sets, HARD does not provide
an exact implementation of the lockset algorithm. Instead, it
makes three approximations: (1) maintaining candidate sets
at cache-line granularity instead of variable granularity; (2)
using a bloom filter vector instead of a complete set rep-
resentation; (3) only maintaining candidate sets for data in
the cache. To show that these three approximations do not
significantly affect its races detection capabilities, we also
compare HARD with an ideal implementation of lockset. In
this ideal implementation, we maintain the candidate set at
variable granularity for all variables using complete set rep-
resentation, as in software implementations of the lockset
algorithm [30]. Similarly, our happens-before implementa-
tion makes two of the three approximations (1 and 3), and
we also build the ideal one that maintains the timestamps at
variable granularity for all variables.

To study the effects of different cache and bloom filter
configurations for HARD, we vary the granularity of storing
candidate sets and LStates from 4B to 32B, the L2 cache
size from 128KB to 1MB, and the bloom filter vector size
from 16 bits to 32 bits.

5 Experimental Results
5.1 Opverall Results

Table 2 compares the effectiveness of HARD with that of
a happens-before implementation. For each application, we



Application HARD Happens-before
default ideal default ideal
#of Bug | # of False | # of Bug | #of False | # of Bug | # of False | # of Bug | # of False
Detected Alarms Detected | Alarms Detected | Alarms | Detected Alarms
cholesky 9/10 91 10/10 38 6/10 37 10/10 13
barnes 10/10 54 10/10 20 10/10 41 10/10 18
fmm 8/10 73 10/10 40 7/10 70 8/10 36
ocean 8/10 62 10/10 1 8/10 62 10/10 1
water-nsquared 9/10 5 10/10 0 5/10 0 6/10 0
raytrace 10/10 48 10/10 2 8/10 36 8/10 0

Table 2. Overall results: the effectiveness of HARD and a happens-before implementation. “Ideal” means the
ideal lockset and happens-before implementations described in Section 4.

inject 10 races (10 dynamic instances of missing locks) in
10 runs, one for each run (see Section 4). We compare the
race detection effectiveness of HARD with that of happens-
before using identical executions. We use the race-free exe-
cution (without injected any bugs) to measure the false pos-
itive rate.

As shown in Table 2, with the default configuration,
HARD can detect more races than happens-before. All
missed races are caused by losing the candidate set infor-
mation due to L2 cache displacement. The 16-bit BFVec-
tors do not cause missing races, as shown later in Table 6.
Columns 4 and 8 of Table 2 show that with more hardware
resources, all these races can be detected by HARD, while
some are still missed by happens-before.

Happens-before suffers from its sensitivity to thread in-
terleaving. It requires special thread interleavings in order
to detect a race, so it detects 20% fewer bugs than HARD
in the default setup. For example, it misses 3, 5 and 2 bugs
in fmm, water-nsquared and raytrace, respectively. In con-
trast, HARD is insensitive to thread interleaving and can de-
tect more bugs (actually all of them with the ideal hardware
resources).

To estimate the number of false positives, we map the
reported races back to the source code, and the number of
false positives is counted at source code level. Therefore,
each false alarm could contain many dynamic instances of
false races. Our results show the false alarm rate of HARD
with the default setup is noticeably higher than happens-
before for three applications. This is because the lockset
algorithm only handles lock-based synchronization. Even
with our false alarm pruning for barriers, other synchro-
nizations beyond locks and barriers can still introduce false
alarms in HARD. Since happens-before can handle all kinds
of synchronizations, it does not have this problem. For both
HARD and happens-before, the common sources of false
alarms in the ideal setup are mainly hand-crafted synchro-
nizations and benign races. In the default setup, another
major source of false alarms in both HARD and happens-
before is the false sharing of the candidate set, LState
and timestamps within a cache line. For applications like

cholesky, barnes, fmm, ocean, raytrace, the number of false
alarms caused by false sharing is significant.

3

25

Performance overhead (%)

cholesky
barnes
fmm
ocean
water-
nsquared
raytrace
average

Figure 8. The performance overhead of HARD as
percentages of the original execution time without
HARD.

Figure 8 shows the performance overhead of HARD. We
can see that HARD’s overhead is relatively small and ranges
from 0.1% to 2.6% for all applications. This overhead
comes from three main sources. The first is the increased
bus traffic caused by communicating the candidate set and
LState information. The second one is the longer access
time to the shared variables due to computing and checking
the new candidate set for each shared access. The third is
the overhead of updating the thread lockset upon lock and
unlock primitives. Of the three, the bus traffic increase is the
main contributor to the performance degradation observed.
We believe the overhead is still very low and would allow
the deployment of HARD in production systems.

5.2 Sensitivity Analysis

This section measures the effects of candidate set and
LState granularity, L2 cache size and Bloom filter vector
size on HARD’s functionality in terms of both the num-
ber of detected bugs and false alarms. We then compare
each configuration with the ideal case (4B granularity, co



Application # of Bug Detected # of False Alarms

HARD | Happens-before HARD Happens-before
4-32B 4-32B 4B [ 8B ]| 16B [ 32B [ 4B | 8B [ 16B | 32B
cholesky 9 6 25 |1 36 | 74 91 3 |10 17 37
barnes 10 10 20 | 25 | 43 54 |18 | 25| 25 41
fmm 8 7 40 | 40 | 53 73 | 36 | 39 | 49 70
ocean 8 8 1 1 2 62 1 2 50 62
water-nsquared 9 5 0 0 2 5 0 0 0 0
raytrace 10 8 2 9 31 48 0 5 18 36

Table 3. Effectiveness of HARD and happens-before with different monitoring granularities.

Application # of Bug Detected # of Bug Detected
in HARD in Happens-before
128KB | 256KB | 512KB | IMB | 128KB | 256KB | 512KB | IMB
cholesky 6 8 9 9 5 6 6 6
barnes 9 10 10 10 10 10 10 10
fmm 7 7 8 8 6 7 7 7
ocean 7 8 8 8 8 8 8 8
water-nsquared 8 9 9 9 5 5 5 5
raytrace 8 9 10 10 7 8 8 8

Table 4. Number of

bugs detected by HARD and happens-before, for different L2 cache sizes.

Application # of False Alarms # of False Alarms
in Lockset in Happens-before
128KB | 256KB | 512KB | IMB | 128KB | 256KB | 512KB | IMB
cholesky 49 78 81 91 31 31 35 37
barnes 52 54 54 54 39 39 41 41
fmm 73 73 73 73 68 70 70 70
ocean 60 62 62 62 52 58 60 62
water-nsquared 5 5 5 5 0 0 0 0
raytrace 48 48 48 48 34 34 34 36

Table 5. Number of false alarms of HARD and happens-before for different L2 cache sizes.

L2 cache, and storing accurate information instead of using
a bloom filter hash).

5.2.1 Varying the Granularity of Candidate Sets and
LStates

In the first experiment, we vary the granularity of the
candidate set and LState for HARD and the timestamps for
happens-before from 4B to 32B, while keeping the other
parameters identical to the default setup. The number of de-
tected bugs and false alarms of HARD and happens-before
for different granularities are shown in Table 3. For both
HARD and happens-before, since the granularity will only
affect the number of false alarms caused by false sharing,
the number of detected bugs remains the same across all
configurations. Also, for both HARD and happens-before,
the number of false alarms is increasing as the granular-
ity increases, because the false sharing increases when the
granularity going from 4B to 32B.

5.2.2 Varying L2 Cache Size

In the second experiment, we vary the size of the L2
cache from 128KB to 1MB, while keeping the other set-
tings just like the default setup. The number of detected
bugs and the number of false alarms are shown in Tables 4
and 5, respectively.

As shown in Table 4, the number of detected bugs in-
creases slightly with the L2 cache size. This is because the
number of L2 displacements decreases, and thus the possi-
bility of missing bugs is lower. However, because the foot-
print of the applications is fairly small, the effect of different
L2 sizes is not very significant. Moreover, in order to detect
a race, we do not need to catch all access violations. Miss-
ing some violations (e.g., due to L2 displacement) is fine
as long as we can catch at least one violation. This further
weakens the effect of the L2 size.

The trend for the number of false alarms is also increas-
ing for L2 sizes from 128KB to 1MB (Table 5). For the ideal



setup, although it has an infinite L2 size, its false alarm rate
is the least, since it keeps candidate sets at a granularity of
4B instead of 32B. The small granularity significantly re-
duces the number of false alarms.

5.2.3 Varying Bloom Filter Size

In the third set of experiments, we vary the size of the
bloom filter vector from 16 bits to 32 bits, while keeping the
other configurations the same as the default. We only show
the number of detected bugs and false alarms for HARD in
Table 6, because happens-before does not use a bloom filter.

Application # of Bug Detected | # of False Alarms
16/32b 16b | 32b
cholesky 9 91 91
barnes 10 54 54
fmm 8 73 73
ocean 8 61 62
water-nsquared 9 5 5
raytrace 10 48 48

Table 6. Effectiveness of HARD with different
BFVector sizes.

As we can see, using 16-bit and 32-bit bloom filters can
detect the same number of bugs for all tested applications.
This is because the applications’ candidate sets and lock
sets are usually small. For all test applications, the maxi-
mum sizes of candidate sets and lock sets are 1, except radix
which has maximum candidate set size and lock set size of
3. Therefore, the conflict probability in the 16-bit bloom
filter is very small based on our analysis (Section 3). The
ideal setup can detect more races, but not because of bloom
filter sizes, but because of the infinite .2 cache.

In terms of false alarms, the 32-bit and 16-bit bloom fil-
ters are almost the same except for ocean in which the 16-bit
bloom filter has one less false alarm. This is because a hash
conflict hides this false alarm. Similar to the L2 size, the
larger bloom filter will not only catch more races, but can
also generate more false alarms.

6 Related Work
6.1 Race Detection

Data race detection has been intensively studied. Previ-
ous work in this area can be classified into four main cate-
gories: dynamic analysis, post-mortem analysis, static anal-
ysis, and model checking.

Dynamic data race detection tools rely on program in-
strumentation or hardware support to monitor memory ac-
cesses and synchronization operations. Some of the most
widely used dynamic detection algorithms include lockset,
happens-before, and a combination of the two.

The lockset algorithm was first introduced in Eraser [30]
and it verifies that every shared variable is protected by at

least one lock. If not, it means there exists the potential for
a data race to occur. More details on the algorithm are given
in Section 2. In [33], the checker detects races at object
granularity rather than at the level of individual variables for
Java programs, which gives better performance than Eraser.
However, the coarser granularity leads to many false pos-
itives. Choi et al. [5] proposed a weaker-than relation to
identify redundant accesses from the viewpoint of data race
detection to reduce overhead.

The happens-before algorithm is based on Lamport’s
happens-before relation [11] which combines program or-
der and synchronization events to establish a partial tempo-
ral ordering of instructions. A data race occurs when a tem-
poral ordering between two conflicting memory accesses
cannot be established. Several previous studies [23, 7, 14]
are based on happens-before. Task Recycling [7] maintains
long memory access histories to verify that the happens-
before relation holds. This results in very significant space
overheads. Although abbreviated histories can be used for
approximations, this results in a higher rate of false nega-
tives. In contrast, the technique proposed in [14] for pro-
grams with nested fork-join parallelism limits the length of
each variable’s history list to a small constant, yet ensures a
manifested race will always be detected.

Other studies [21, 25, 36] have proposed combinations
of lockset and happens-before. The hybrid algorithm in [21]
uses happens-before to reduce the false positives generated
by using lockset alone, but still preserves the coverage of the
lockset technique. MultiRace proposed in [25] also com-
bines lockset and happens-before and detects races at the
granularity of variables and objects. RaceTrack [36] also
uses a hybrid approach in addition to being able to dynami-
cally adjust monitoring granularity to improve performance.

Post-mortem methods [20, 19, 1] collect an execution log
and analyze it to find races. The advantage of this approach
is that it can be performed offline and has less impact on
execution time. If the log contains sufficient information,
both real and potential races can be found. However, the
log is usually huge for a long execution.

Static race detection methods [32, 4, 9, 8] are based on
compile-time analysis of the source code to find all possible
data races in any possible execution of the program. Be-
cause static tools have access to the entire source code, they
can perform a global analysis to try to prove the program is
race-free. In general this technique conservatively reports
all potential races, even some that can never occur in real
executions. As a result, static techniques usually produce a
large number of false positives.

Model checking is a formal verification technique. It ex-
haustively tests the model or code on all inputs by exploring
state spaces. However, the requirement of a model or speci-
fication, and the large state spaces in most programs make it



hard to use. Both [6] and [10] use software model checking
to detect data races.

6.2 Hardware Support for Debugging

The high performance cost of software-only debugging
tools has prompted increased interest recently into hardware
support for debugging. Several general frameworks aimed
at dynamically detecting a wide range of bugs have been
proposed, such as iWatcher [38], AccMon [37], and PathEx-
pander [13]. Other researchers have proposed architectures
that assist in low-overhead collection of execution traces to
be used for postmortem bug detection [34, 18, 35, 17].

A few studies [15, 24, 29, 27, 26] have looked at hard-
ware support for race detection. Interestingly, all propos-
als focused on variations of the happens-before algorithm.
Min and Choi [15] use cache coherence protocol events to
filter the number of calls to software monitors that check
for races. Perkovic and Keleher [24] target race detection
for distributed shared memory systems that use release con-
sistency. Also in the context of distributed shared memory
machines, Richards and Larus [29] propose extending the
coherence protocol for on-the-fly race detection. ReEnact
[27] extends the hardware support proposed for thread-level
speculation to implement race detection based on happens-
before. CORD [26] uses scalar clocks and timestamps for
cost-effective order recording and data race detection. Be-
sides the race detection work, AVIO [12] uses hardware sup-
port for detecting atomicity violations which also belong to
synchronization bugs.

6.3 Other Related Work

Bloom filters [2] are frequently used in hardware to im-
prove space and time efficiency. They are used to min-
imize load/store queue (LSQ) searches [31], to identify
cache misses early in the pipeline [22], and to filter cache-
coherence traffic in snoopy bus-based SMP systems to re-
duce energy consumption [16]. Bloom filters have also been
employed for efficient disambiguation of memory accesses
in speculative threads [3].

7 Conclusions and Future Work

This paper has presented HARD, an efficient hardware
implementation of lockset-based race detection to detect
more data races (compared to other hardware race detec-
tors) with minimal overhead. It efficiently stores the candi-
date sets and speeds up the expensive and frequent set op-
erations by using bloom filters. It also proposes a technique
to prune the false alarms caused by barriers. We have eval-
uated HARD using six Splash-2 applications with 60 ran-
domly injected races. HARD detects 54 out of 60 test bugs,
20% more than happens-before, with only 0.1-2.6% of exe-
cution overhead. Our hardware design is also cost-effective,
because its bug detection capability is very close to the ideal

lockset implementation, which would require large amount
of hardware resource.

We are in the process of extending this work in two ways.
First, we plan to evaluate HARD for more applications es-
pecially server programs, such as apache and mysql, and
Java benchmarks like SPECjbb and SPECWeb. Second, we
will combine with the happens-before algorithm to prune
false alarms caused by other synchronizations. The combi-
nation is fairly straightforward, but requires more hardware
resource. It will be challenging to minimize the hardware
cost without losing any functionality.
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