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The Value of Operating at NTV

Near Threshold Voltage operation potentially enables
5-10x power-performance efficiency
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NTV Operation? Logic (V)
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NTV Operation? Cache (X)
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SRAM bit-cells susceptible to errors at NTV
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NTV Approaches for On-chip Memory

» High voltage, High frequency
» High performance
* Low energy efficiency
* No faults

* Low voltage, Low frequency
« Low performance
« Highest energy efficiency
« No faults

. [Low voltage, High frequency] Our Approach!
« High performance
« High energy efficiency
 Permanent faults
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NTV Approaches for Permanent Faults

* Circuit level (8T, 10T SRAM bit-cell)

« High area overhead
* Higher leakage current

. ECC based (SECDED, MS-ECC)

« Constant latency overhead

* Disabling based (e.g., cache line disabling)

» Lower available capacity
Our Approach!

» (Hybrid of ECC and Disabling|(e.g., VS-ECC)

* Trades off available capacity and latency overhead
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The NTV Challenge in Multicores

 Future multicores will have
100s of cores

 LLC managementis key to
optimizing performance
and energy

« Last-level cache (LLC) data
locality and off-chip miss
rates 18t order constraints
and often show opposing
trends

 Lower available LLC
capacity at NTV presents
new challenges
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Static-NUCA

(LLC Data Placement)

« Statically address interleaves data across all
physically distributed LLC slices

* No replication of data in the LLC slices
» High cache utilization since all data evenly distributed

« Data resides in a remote LLC slice with high
probability

« High remote LLC slice access rate results in higher on-
chip network traffic and high average LLC access
latency/energy
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Reactive-NUCA

(LLC Data Placement, Limited Replication)

« Classifies data as private or shared on page
granularity using the existing virtual memory system

« Maps private pages to requesting core’s local LLC slice

 Maps shared pages across the chip based on static
address interleaving (similar to Static-NUCA)

* Replication of data not allowed

 |nstructions replicated in LLC slice per cluster of 4,
using rotational interleaving

 Low LLC access latency/energy for correctly
classified private data and instructions

No locality optimizations for shared data
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Victim Replication
(LLC Data Placement and Replication)

o Starts with S-NUCA and uses the local LLC slice of
a core as a victim cache for the cache lines evicted
from its L1 cache

* Inserts replica only if there exists:

e an invalid cache line,
 a home cache line with zero sharers, or
« another replica

* Improves locality and reduces on-chip traffic

* Replication strategy causes LLC pollution, resulting
In higher evictions of home cache lines with zero
sharers and other replicas
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Evaluation Methodology

« Evaluation using Graphite multicore simulator for
64 cores

« McPAT/CACTI cache energy models and DSENT
network energy models at 11 nm

 Evaluated 21 benchmarks from the
SPLASH-2 (11), PARSEC (8), Parallel MI-
bench (1) and UHPC (1) suites

« LLC managements schemes compared:
« Static-NUCA (S-NUCA)
« Reactive-NUCA (R-NUCA)
 Victim Replication (VR)
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NTV Fault Model for LLC

 Normal distribution of error bits in a cache line
with random occurrence probabilities
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« LLC tag arrays extended to record “disable bits”
* Oe — 2e: ECC correction with additional 1-cycle latency
« >2e: Cache line disabling
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Average Results — Completion Time
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 R-NUCA and VR perform consistently better than S-
NUCA

* VR'’s replication helps at low fault rates

« Lower replication opportunities for VR at higher fault
rates result in completion time on-par with R-NUCA
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Average Results — Energy
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« Static energy dominates the overall energy
* Energy consumption tracks completion time
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Benchmark Results — Barnes
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* Replication helps significantly at lower fault rates

« Lower replication opportunity at higher fault rates
diminishes advantage over R-NUCA
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Benchmark Results — Ocean NC
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Benchmark Results — Dedup
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* High number of LLC accesses to thread-private data

 R-NUCA's local placement of private data is
effective in improving completion time over VR
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Observations

* No one-fits-all data management scheme at the
lower LLC capacity when operating at NTV

¢« A

scheme that works optimally at higher LLC

capacity might not be effective at the lower usable
capacity

* Optimizing locality ends up putting extra stress on
the LLC, increasing the off-chip miss rate

There is a need for a data management scheme that
not only utilizes LLC capacity more intelligently but
also possess the ability to handle the random
distribution of faults
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