Near-Threshold Computing:
How Close Should We Get?

Alaa R. Alameldeen
Intel Labs

Workshop on Near-Threshold Computing
June 14, 2014

Overview

 High-level talk summarizing my architectural perspective on
near-threshold computing

« Near-threshold computing has gained popularity recently
- Mainly due to the quest for energy efficiency
* |s it really justitied?
+ Reduces static and dynamic power
- Reduces frequency, adds reliability overhead
 The case for selective near-threshold computing
- Use it, but not everywhere
» Case Studies: VVS-ECC and Mixed-Cell Cache Designs

2 Workshop on Near-Threshold Computing ---- June 14, 2014

Why Near-threshold Computing?

« Near-threshold computing has gained popularity recently.

Why?

- Mainly: Energy Efficiency

- Running lots of cores with fixed power budget

- Avoiding /delaying “dark silicon”

- Spanning market segments from ultra-mobile to super computing
* Theory:

- Dynamic power reduces quadratically with operating voltage

- Static power reduces exponentially with operating voltage

- The lower voltage we run, the less power we consume

3 Workshop on Near-Threshold Computing ---- June 14, 2014

But Obviously, It Is Not Free...

 Latency Cost:

Lower voltage leads to lower frequency

- Cores run slower, taking longer to run programs

- Energy = Power x Time. Lower power doesn't always translate to lower
energy

» Reliability Cost:
Individual transistors and storage elements begin
to fail due to smaller margins
- Whole structures may fail

- Lots of redundancy or other fault tolerance mechanisms
needed (i.e., more area, power, complexity)

4 Workshop on Near-Threshold Computing ---- June 14, 2014 b

Latency Cost

* A lower voltage drives lower frequency
 To the first order, at low voltages, VV o f
* [ron Law of processor performance:

Instructions Cycles

Time

Program Runtime = X X
Program Instruction

 Lower frequency increases Time/Cycle, therefore
Increases program runtime

5 Workshop on Near-Threshold Computing ---- June 14, 2014

Cycle

Latency Impact on Energy Efficiency
A program that runs longer consumes more energy
Energy = Power x Time
Program Energy = Average Power x Program Runtime

 Even if average power Is lower, it's possible energy will be
higher

intel)

6 Workshop on Near-Threshold Computing ---- June 14, 2014

And There is Also User Experience...
« Not too many users will be happy with slower execution

 Mobile users like longer battery life, but they absolutely
hate long walit times

- Especially if the system is idle most of the time
- Response time really matters when the system is active

e |[f voltage is too low, significant impact on user experience

intel)

7 Workshop on Near-Threshold Computing ---- June 14, 2014

Reliability Cost

 Getting too close to threshold significantly increases
failures for individual transistors and storage elements

» Getting too close to tail of the distribution

8 Workshop on Near-Threshold Computing ---- June 14, 2014

Example: SRAM Bit and 64B Failures

e BitFail

—@—P(e=1)

—A—P(e=2)

O P(e:3)

O P(e=4)

Workshop on Near-Threshold Computing ---- June 14, 2014

Cost of Lower Reliability

We need to make sure the whole chip works even if
individual components fail

- That is, we need to build reliable systems from unreliable
components

To improve reliability, we either increase redundancy or
add other fault tolerance mechanisms

- More power, area, S cost

10 Workshop on Near-Threshold Computing ---- June 14, 2014

11

Simple Answer: TMR

Basically, include three copies of everything, use majority
vote

Extremely high cost
- More than 3x area increase
- More than 3x power increase

But even that might not be sufficient

- Large structures may always fail, having three copies won't
help

- Need to do at transistor/cell level
- Majority voting gets really expensive at that level

Workshop on Near-Threshold Computing ---- June 14, 2014

Another Answer: Error-Correcting Codes

 Applies only to storage or state elements
At single-bit level, degenerates to TMR, but:

» Mostly area efficient if amortized across more bits

- A small number of bits needed to detect/correct errors in large
state elements

 But latency inefficient
- Error correction requirements increase with larger blocks

- SECDED on a 64B cache line may take a single cycle, but
4EC5ED might use ~ 15 cycles

» For logic elements, RAZOR-style circuits needed to reduce
overhead

12 Workshop on Near-Threshold Computing ---- June 14, 2014

This Seems Too Hard...

« So why not relax our reliability requirements instead?

13 Workshop on Near-Threshold Computing ---- June 14, 2014

Approximate Computing to the Rescue

- If reliability is not absolutely required, then we can take a
best-effort approach

* |[n other words
- If something works correctly, great
- If it doesn't, the incorrect outcome might be good enough

 Background:
- Some applications don't care for 100% accurate computations

- Example: Individual pixels on a large screen
- We could take advantage by using NTC for them

14 Workshop on Near-Threshold Computing ---- June 14, 2014

But It Sounds Too Good To Be True...

In reality, too many applications care about reliability
And even applications that could tolerate errors need
some code to be reliable

- A pixel error on a bitmap Is no big deal, but a pixel error in a
compressed image (e.g., Jpeg) causes too much noise

- In a long sequence of computations, early computations need
accuracy while later can tolerate errors

Too much overhead to allow NTC selectively
- Definitely needs programmer input
- Could lead to too fine-grain control of reliability

i3 Workshop on Near-Threshold Computing ---- June 14, 2014

My Architectural Perspective

 Near-threshold computing Is great if power savings
outweigh latency and reliability cost

 But in many cases, cost Is too great

« So we shouldn't give up on NTC, but only use it in places
where it helps

» Or alternatively, we shouldn’t get too close to threshold
to the point where costs outweigh benefits

» Selective NTC requires architectural support

16 Workshop on Near-Threshold Computing ---- June 14, 2014

Case Study: Mixed-Cell Cache Design

 Optimize only part of cache for low (or near-threshold)
voltage, using more reliable (bigger) cells

 Rest of cache uses normal cells

 During normal mode, all cache is active

At low voltage, could only turn on reliable part
« Causes significant performance drawbacks

Workshop on Near-Threshold Computing ---- June 14, 2014

Speedup of Multi-Core over Single Core

2-core
4-core

9J02- | JONn0 dnpaads

3
5
2
5
1
e B B BB R EEEEEEEEEEEEEEEEER EEER B

o

ueawn A 2
kel
AWqiue|ex’egy ==

EXUIYds'Z8Y ~
18t
Jeise's/y
ddisuwo’ |/t
waqrosy
01U0)'S9Y
1317924 v9P
wniuenbql'zot
buals'gsy

d1dd4swsn'gsy
JBWwwygsy
XlnJ|ex'y St
Aeinod est
x9|dos QS
Jwqob sy
lllesp’/vv
pweuyvt
PESISSI'LEY
IWNAVSN1erget,
soewolb'gey
dwsnaz'y ey
JIWEEY
PWely
ssawebg|
SsanemqQ Ly

22601
2dizq' Loy
youaqad' ooy

June 14, 2014

Workshop on Near-Threshold Computing ----

Compared to 1P, 2P is 31% better, 4P is 37% better

18

4P has Much Better Performance than 1P,
But...

Design is TDP-limited
- To activate 4 cores, need to run at Vmin

- Without separate power supplies, only robust cache lines will
be active

- 4P is where we really need the extra cache capacity for
performance

Mixed caches include robust cells that could run at low
voltage, and regular cells that only work at high voltage

Our Mixed-Cell Architecture:
- All cache lines are active at Vmin
- Architectural changes to ensure error-free execution

19 Workshop on Near-Threshold Computing ---- June 14, 2014

Mixed-Cell Cache Design

Parlty

Robust/iX ormal Bit
rd

Cache tag array . Cache dafa array

1]
et
)]
iy
]
L
Q
b
Q

&Way Set Associative Cache Two Robust Ways Six Non-Robust Ways

 Each cache set has two robust ways
« Modified data only stored in robust ways
 Clean data protected by parity

20 Workshop on Near-Threshold Computing ---- June 14, 2014 L_/

Mixed-Cell Architectural Changes

« Change cache insertion/replacement policy to allocate
modified data only to robust ways
 \What to do for Writes to a Clean Line?

- Writeback (MC_WB): Convert dirty line to clean by writing back
Its data to the next cache level (all the way to memory)

- Swap (MC_SWP): Swap newly-written line with the LRU robust
line, and write back the data for victim line to next cache level

- Duplication (MC_DUP): Duplicate modified line to another non-
robust line by victimizing line in its partner way

21 Workshop on Near-Threshold Computing ---- June 14, 2014

Changes to Cache Insertion/Replacement
Policies

Choose Victim
from All Lines in
Set

Robust

22

Choose Victim from
Non-Robust Lines

Choose Victim_2
from Robust Lines

;

v

Writeback
Victim_2’'s Data

Allocate New Line
in Victim’s Place

v

Copy Victim_2 to
Victim’s Place

v

Allocate New Line

in Victim_2's Place

Workshop on Near-Threshold Computing ---- June 14, 2014

Cache Vmin for Mixed-Cell Caches
1.€+00

1.€-03

100%)

1.€-06

BASE ROBUST
= « MC_DISABLE -=®#-=MC_DUP/SWP

Prob. of Failure (1

1.E'09 | |
0.55 0.6 Vmin(v) 0.65 0.7 0.75

New MC_DUP and MC_SWP mechanisms are very close to
building the cache with only robust cells (but much larger

cache capacity) =D

23 Workshop on Near-Threshold Computing ---- June 14, 2014

Evaluation

» Used CMPSim
 Cache configuration based on current Intel mainline cores

» Compared our mechanisms to baseline and prior MC
proposals

— ROBUST: Cache only uses robust cells, much smaller capacity
ISO-area

— MC_Disable: Only 1/4 of cache is operational at \Vmin
 Used 4-program mixes from SPEC workloads

24 Workshop on Near-Threshold Computing ---- June 14, 2014

Speedup vs. MC_DISABLE

25

14

1.3

1.2

1.1

0.9

0.8

Multi-core (4P) Performance

MC_wB =MCSwP mMC_DUP

\—Nmﬁ'mLDI\(DOﬁO\—Nmﬁ'LnLDI\CDOUO

-— e — — — — — — —

Gmean

Geomean 17/% speedup for MC_SWP over MC_DISABLE

Workshop on Near-Threshold Computing ----

June 14, 2014

(intelm

Mixed-Cell Cache Summary

» Philosophy: Only part of cache is reliable enough to operate
at near-threshold

A multi-core system (at \/min) needs larger cache capacity

« Our mixed-cell architecture preserves cache capacity at
Vinlly
- Improves performance
- Reduces dynamic energy

 Could be extended to other parts of the memory hierarchy,
and newer memory technologies

intel)

26 Workshop on Near-Threshold Computing ---- June 14, 2014

Case Study: VS-ECC

= Large caches and memories limit voltage scaling
- Many cells fail at low voltages

- Need to account for weakest cell

= Error-Correcting Codes (ECC) allow lower voltages by
recovering from (multiple) failures

= Uniform ECC increases latency, power & area
< Our Proposal: Variable-Strength ECC (VS-ECC)

- Better performance, power and area vs. uniform ECC
- Allocates ECC budget to lines that need it
- Online testing identifies lines needing more protection

27 Workshop on Near-Threshold Computing ---- June 14, 2014

V/S-ECC Motivation

64B lines

Vcc
05 055 06 065 0.7 0.75

e BitFail
—@—P(e=1)

—— P(e=2)

—0—P{(e=3)

O P(e=4)

Most cache lines have 0-1 failures if we don't get too close to threshold
But some lines (especially for large caches) have more failures

Workshop on Near-Threshold Computing ---- June 14, 2014 28

VVS-ECC Motivation

64B lines

e BitFall

—e—P(e=1)

——P(e=2)

—o—P(e=3)

O P(e=4)

Need a strong ECC code to protect worst lines
Uniform ECC for all lines is expensive AND unnecessary

Workshop on Near-Threshold Computing ---- June 14, 2014 29 b

Prior Low Voltage Solutions

= Uniform-Strength Error Correction Codes

- SECDED (Single Error Correction, Double Error Detection)
- DECTED (Double Error Correction, Triple Error Detection)
- Two-dimensional ECC: Kim et al., MICRO Q7

- Multi-bit segmented ECC (MS-€CC): Chishti et al., MICRO 09

= Architectural solutions for persistent failures

- Word Disable: Wilkerson et al., ISCA 08, Roberts et al., DSD 07/
- Bit Fix; Wilkerson et al., ISCA 08

= Circuit Solutions: Larger cells, alternative cell designs

< All use same level of protection for all cache lines

30 Workshop on Near-Threshold Computing ---- June 14, 2014

Variable-Strength ECC (VS-ECC)

 Key idea: Provide strong ECC protection only for lines that
need It

- But still provide single-error correction for soft errors
« \/S-ECC achieves lower voltage at minimum cost
 Three variations are explored
» Need to identify which lines need stronger protection

31 Workshop on Near-Threshold Computing ---- June 14, 2014

Design 1: VS-ECC-Fixed
Cache fne fag "B Zoc bis

-

Extended
ECC array

Extended ECC
16-way set-associative cache

» Fixed number of regular and extended ECC lines
» Regular lines protected by SECDED
» Extended ECC lines use 4-bit correction

32 Workshop on Near-Threshold Computing ---- June 14, 2014 32 b

Design 2: VS-ECC-Disable

SECDED
ECC bits

WW M ...illl

Extendled

Cache tag array . Cache data array . ECC array

I VI e CI CD s CDIII

Extended ECC

16-way set-associative cache

> Add a disable bit to each line
> Lines with 3 or more errors are disabled
> Lines with zero errors use SECDED, 1-2 errors use 4-bit

correction - i@

33 Workshop on Near-Threshold Computing ---- June 14, 2014

Cache Characterization

 We need to classify cache lines based on their number of
IEHNEES

« Manufacturing-time testing expensive & needs non-
volatile on-die storage for fault map

 Proposal: Online testing on 15t transition to low voltage

34 Workshop on Near-Threshold Computing ---- June 14, 2014 4

Online Testing at Low Voltage

 Cache is still functional during testing, but with reduced
capacity

» Divide cache to working part (protected by 4-bit ECC) and
part under test, then switch roles
 Use standard testing patterns, store error locations in tag

« Note: Not all VS-ECC designs require the same testing
accuracy

- Optimizing test time is an opportunity for future work

35 Workshop on Near-Threshold Computing ---- June 14, 2014

Simulated Configurations

ENEIE

- 2MB 16-way L2 (12 cycles), SECDED ECC to recover from non-
persistent errors (1 cycle)

Uniform-strength ECC

- DECTED: 1 cycle, corrects one persistent error per line

- 4€EC5ED: 15 cycles, corrects up to three persistent errors per line

- MS-ECC: 64-bit segments, 4 corrections/segment, corrects up to
three persistent errors per segment, cache becomes 1MB 8-way

Variable-strength ECC

- V/S-ECC-Fixed: 12 lines with SECDED (1 cycle), 4 with 4EC5ED (15
cycles)

- \/S-ECC-Disable: VS-ECC-Fixed+disable lines with 2 3 errors

36 Workshop on Near-Threshold Computing ---- June 14, 2014 36 b

1.e+00

1.e-03

—
m
o
o)

Probability
2

1.6-12

1.6-15

37

Results Rellablllty

Vmin set at
1/1000 cache
failure probability

—+-2MB SECDED
DECTED

——4ECSED
V/S-ECC-Fixed Ca
MS-ECC X
V/S-ECC-Disable

04 0.5 0.6 0.7 0.8
Supply Voltage (V)

Workshop on Near-Threshold Computing ---- June 14, 2014

VS-ECC has similar voltage scaling to 4EC5ED
VS-ECC-Disable achieves lowest voltage

(intelw

Normalized IPC

Results: Performance at Low Voltage

1.02

1_

0.98 -
0.96 -
0.94 -
0.92 -
0.9 -
0.88 -
0.86 -
0.84 -
0.82 -

L
O

> Similar [PC

38

~—

[[i
i 1T 11Ul 1L
[iIppipipigl
] y 1TUHUL
TUHHL THUL
T L
T uL
IRARARERIRERERERE
O O ==uwuono0>0nm2z=22
DE0SE0ESE
0 U a 9 Y oS
L = O

o baseline, better than uniform ECC

Workshop on Near-Threshold Computing ---- June 14, 2014

m2MB Base
VS-ECC-Dis

4ECSED
BMS-ECC

VS-eCC Summary

 Near-threshold computing needs strong ECC capability in
large caches

 Uniform ECC techniques are expensive (performance,
power, area)

» \/ariable-Strength ECC provides strong protection only to
lines that need it

« \/S-ECC + Line Disable is the most cost-effective
mechanism

» But it really needs practical online testing mechanisms

39 Workshop on Near-Threshold Computing ---- June 14, 2014

Key Messages

 Near-threshold computing : Sometimes benefits outweigh
costs, and some other times they don't

» |t's better to use near-threshold computing selectively
rather than for everything

» Alternatively, we should not get too close to threshold,
only as long as benefits outweigh costs

40 Workshop on Near-Threshold Computing ---- June 14, 2014

Acknowledgments

 Samira Khan (Intel/CMU)

» Chris Wilkerson (Intel)

* [lya Wagner (Intel)
 Zeshan Chishti (Intel)

» Jaydeep Kulkarni (Intel)
 Wei Wu (Intel)

e Shih-Lien Lu (Intel)

« Daniel iménez (Texas A&M)
« Nam S. Kim (Wisconsin)

« Hamid Ghasemi (Wisconsin)

Workshop on Near-Threshold Computing ---- June 14, 2014

