
Building a Hardware Prototype for
 Thread Level Speculation Using Programmable Logic

Radu Teodorescu and Radu Teodorescu and Josep TorrellasJosep Torrellas
http:http://iacoma//iacoma..cscs..uiucuiuc..edu/edu/

 Goals Goals

 Debugging SystemDebugging System

 Design Process Design Process

▪ Design and implement a hardware prototype of a
TLS processor, using FPGA (Field Programmable
Gate Arrays) technology

▪ Use the system to support a comprehensive
debugging infrastructure
• Lightweight, on-the-fly debugging of production runs
• TLS supports rollback and replay of buggy sections of

the program

▪ Experiment with real workloads, including OS
kernel

 Hardware Support Hardware Support

▪ Speculative state is kept in the cache
• Speculative lines are not sent to memory
• If cache full or I/O, begin new speculative window

▪ Speculative mode entry
• Checkpoint register file and program counter
• Mark new dirty lines as speculative and do not displace

▪ Speculative mode exit
• Merge speculative and non-speculative state

▪ Rollback
• Invalidate speculative cache lines
• Restore register file and program counter
• Re-execute from checkpoint

 FPGA Technology FPGA Technology

 Simulation Simulation

 Processor System Processor System

 Deployment Deployment

 Results Results

 Future Directions Future Directions

• Normal – minimal checking
• Suspicious – intensive

checking
• Speculative – TLS is

enabled, can undo execution
• Erroneous – re-execution,

bug characterization, repair

Requires hardware
support

 Development Board Development Board

▪ Field Programmable Gate Arrays
• Fast, complex, reprogrammable devices

▪ Ideal platform for rapid prototyping
• Large number of gates
• Implements complex logic functions
• Can be reprogrammed quickly

▪ Xilinx Virtex-II XC2V3000
• 3 million gates
• 3,584 logic blocks

▪ Implementation of a cache controller that supports
speculative versions and commit/rollback
sequences

▪ Support for special instructions that enable/disable
the speculative execution mode

▪ Implementation of a rollback sequence in
hardware that restores the cache to its pre-
speculative state

▪ Extensive testing of the implementation on RTL
simulations

▪ Complete synthesis with timing analysis

▪ FPGA deployment and testing with C programs

▪ Used for deployment of FPGA designs

▪ Based on Virtex II XC2V3000 FPGA

▪ 64 Mbytes SDRAM

▪ 50 MHz operating frequency

▪ 32 bit PCI interface

▪ Ethernet 10/100 Mbit transceiver

▪ Programmable ROMs

▪ SPARC V8 processor

▪ Simple 32 bit instructions

▪ 32 register window

▪ Coprocessor support

▪ Single issue, 5-stage pipeline

▪ Up to 4-way set associative, configurable caches

▪ Memory controller

▪ PCI, Ethernet interfaces

▪ Open source VHDL code, from Gaisler Research

Design Entry

Synthesis

Deployment

Hardware Description

Language

Synthesis Tools

Development Board

HDL Simulation

Timing and Constraints

Analysis

Real-time Debugging

▪ Configurable logic blocks
• Function generators

- 16 bit RAM

- 16 bit shift register
- 4 input lookup table

• Storage elements
• Multiplexers

▪ Large array of
programmable elements
• CLB – configurable logic

blocks
• IOB – input/output blocks
• SelectRAM – configurable

memory cells
• Programmable interconnect

logic

▪ Applications run in four possible execution states:

▪ Phase 1: Uniprocessor with TLS support

▪ Phase 2: SMT implementation
• 2 cores – share L1 cache

▪ Phase 3: Chip multiprocessor
• 2-4 cores, cache coherence
• Second level of cache

LUT

SR16

RAM16

LUT

SR16

RAM16

M

U

X

Register

Register

Simulation Infrastructure

SDRAM
Image

PROM
Image

Application
Code

SPARC C/C++ Compiler

Boot Code

SRAM

Model

Memory
Models

VHDL Compiler

Test Bench

Processor
RTL

Description

PROM
Model

Processor RTL
Implementation

Test
Bench

PCI Interface

J
T
A

G

Development Board

Xilinx Virtex-II
FPGA

Config.

PROM

Boot
PROM

SDRAM

Communication Tool

Application
Binary

Boot
Sequence

FPGA
Programming

Tool

Processor
Image

