Notation. Let \(\mathbb{R}_{\geq 0} \) denote the set of non-negative real numbers.

Let \(M = (X, \rho) \) be a metric space. That is, \(X \) is a set, and \(\rho : X \times X \to \mathbb{R}_{\geq 0} \), satisfies the following conditions:

- For any \(x, y \in X \), we have \(\rho(x, y) = 0 \) if and only if \(x = y \).
- For any \(x, y \in X \), we have \(\rho(x, y) = \rho(y, x) \).
- For any \(x, y, z \in X \), we have \(\rho(x, y) \leq \rho(x, z) + \rho(z, y) \).

For any \(r \geq 0 \), an \(r \)-partition of \(M \) is a partition of \(X \), such that every cluster has diameter at most \(r \). That is, for any cluster \(C \) in the partition, and for any \(x, y \in C \), we have \(\rho(x, y) \leq r \).

Let \(\beta > 0 \). A \((\beta, r)\)-Lipschitz partition of \((X, \rho)\) is a distribution \(D \) over \(r \)-partitions of \(M \), such that for any \(x, y \in X \):

\[
\Pr_{P \sim D}[P(x) \neq P(y)] \leq \beta \cdot \frac{\rho(x, y)}{r}
\]

Problem 1: Random embeddings without Steiner nodes. Let \(M = (X, \rho) \) be a metric space, with \(|X| = n\). Assume that for all \(x, y \in X \), we have

\[1 \leq \rho(x, y) \leq \Delta, \]

for some \(\Delta \geq 1 \).

We have seen in class a proof that \(M \) admits a random embedding into a distribution over trees, with distortion \(O(\log n \cdot \log \Delta) \). That is, there exists a distribution \(D \) over pairs \((f_i, M_i)\), where every \(M_i = (X_i, \rho_i) \) is the shortest path metric of some tree \(T_i = (V_i, E_i) \), and \(f_i : X \to X_i \), such that the following conditions are satisfied:

- The distances never decrease. That is, for any \(x, y \in X \),

\[
\Pr_{(f_i, M_i) \sim D}[\rho_i(f_i(x), f_i(y)) \geq \rho(x, y)] = 1.
\]

- In expectation, all distances do not increase by too much. That is, for any \(x, y \in X \),

\[
\mathbb{E}_{(f_i, M_i) \sim D}[\rho_i(f_i(x), f_i(y))] \leq O(\log n) \cdot \rho(f(x), f(y)).
\]

In the construction we discussed in class, for every tree \(T_i \), there are vertices in \(V_i \), that do not correspond to points in \(X_i \). Such vertices are often referred to as Steiner in the literature. We will now see that Steiner vertices are not necessary.

Formally, you are asked to show that any metric \((M, \rho)\) admits a random embedding as the above, but such that for any metric \(M_i \), we have \(X_i = V_i \). That is, the constructed trees do not have any Steiner vertices.

Recall that in the construction from class, any Steiner vertex of some tree \(T_i \) cannot be a leaf, since we always map the points of the metric onto (i.e. bijectively) the set of leaves of \(T_i \).
node \(w \) in the tree, we define its height to be the minimum number of edges in a path from \(w \) to a descendant leaf node. Recall that every Steiner node of height \(h > 0 \) corresponds to some cluster of some randomly chosen \(2^h \)-partition.

Suppose that we do the following: We assign an arbitrary priority to every point in \(M \). I.e., we pick an arbitrary bijection \(p : X \rightarrow \{1, \ldots, n\} \). Then, for every Steiner node \(v \), corresponding to some cluster \(C \), we simply replace the vertex \(C \) in \(V_i \) by the point \(x \in C \) with maximum priority, i.e. such that \(p(x) \) is maximized.

(a) Show that the resulting embedding is a valid random embedding into a distribution over trees.

(b) Show that the distortion remains \(O(\log n \cdot \log \Delta) \).

Problem 2: From random trees to spanners. In this problem we will see that one can use a random embedding into a distribution over trees, to construct a sparse spanner.

Let \(M = (X, \rho) \) be a metric space, with \(|X| = n \). Assume that \(M \) admits a random embedding into a distribution \(D \) over trees, with distortion \(O(\log n) \), and without Steiner nodes, as in Problem 1.

Show that for any metric space \(M = (X, \rho) \), there exists a graph \(G = (X, E) \) (i.e. with vertex set \(X \)), with \(|E| \leq O(n \cdot \log n) \), and such that for any \(x, y \in X \), we have

\[
\rho(x, y) \leq d_G(x, y) \leq O(\log n) \cdot \rho(x, y).
\]

You may construct such a graph \(G \) as follows: Sample \(c \cdot \log n \) pairs \((f_i, M_i)\) from \(D \), independently, for some constant \(c > 0 \) to be determined later. Each such \(M_i \) is the shortest path metric of some tree \(T_i = (X, E_i) \), i.e. with vertex set \(X \). Add all the edges of all these tree to the graph \(G \). That is, set

\[
E = \bigcup_{i=1}^{c \cdot \log n} E_i.
\]

Argue that for any pair of points \(x, y \in X \), for any \(i \in \{1, \ldots, c \cdot \log n\} \), when we sample \(T_i \), the distance between \(x \) and \(y \) in \(T_i \) is at most \(O(\log n) \) times the distance in \(M \), with probability at least \(1/2 \). This follows by averaging over all choices for \(T_i \).

Next, argue that if we sample \(k \) trees, then the distance between \(x \) and \(y \) is preserved up to a \(O(\log n) \) factor in \(G \), with probability at least \(1 - 2^{-k} \).

Conclude that if we sample \(k = c \cdot \log n \) trees, then the all distances are preserved in \(G \) up to a factor of \(O(\log n) \), with positive probability, for sufficiently large constant \(c > 0 \). This implies in particular, that the desired graph \(G \) exists.

Problem 3: From random partitions to distance oracles. Let us consider the problem of quickly determining the distance between two given points in a metric space. Let \(M = (X, \rho) \) be a metric space, with \(|X| = n \), and assume that for any \(x, y \in X \), we have

\[
1 \leq \rho(x, y) \leq \Delta,
\]

for some \(\Delta \geq 1 \).

We can easily determine the distance between two given points \(x, y \in X \) in \(O(1) \) time, simply by storing \(M \) as an \(n \times n \) table of pairwise distances. However, this requires space \(\Omega(n^2) \).
On the other hand, we can construct a spanner graph G as in Problem 2. Storing G requires space $O(n \cdot \log^{O(1)} n \cdot \log^{O(1)} \Delta)$. Using G, we can determine the distance between any two given points up to a multiplicative factor of $O(\log n)$. This however requires computing the shortest path in G between x and y, which can take time $\Omega(n \cdot \log^{O(1)} n)$.

A distance oracle is a data structure that simultaneously achieves small space, and fast query time. We will now see how to construct a distance oracle using random partitions.

For any $i \in \{0, \ldots, \log \Delta\}$, let D_i be a $(2^i, \beta)$-Lipschitz partition of M, for some $\beta = O(\log n)$. Let $k = c \cdot \log n$, for some constant $c > 0$ to be determined later. Suppose that you sample a collection of 2^i-partitions $P_{i,1}, \ldots, P_{i,k}$ from D_i, independently.

For any $i \in \{0, \ldots, \Delta\}$, and for any $j \in \{1, \ldots, k\}$, you build a hash table $H_{i,j}$, where every point $x \in X$ is hashed to a “bucket” corresponding to $P_{i,j}(x)$, i.e. to the cluster of $P_{i,j}$ containing x. Argue that storing all these hash tables can be done in space $O(n \cdot \log^{O(1)} n \cdot \log^{O(1)} \Delta)$. Next, show that given two points $x, y \in X$, you can determine the distance $\rho(x, y)$, up to a multiplicative factor of $O(\log n)$, in time $O(\log^{O(1)} n \cdot \log^{O(1)} \Delta)$, and with high probability.

Problem 4: From random partitions to nearest neighbor search. Let $M = (X, \rho)$ be a metric space, with $|X| = n$, and assume that for any $x, y \in X$, we have

$$1 \leq \rho(x, y) \leq \Delta,$$

for some $\Delta \geq 1$.

Build a data structure that requires space $O(n \cdot \log^{O(1)} n \cdot \log^{O(1)} \Delta)$, and such that given a query point $x \in X$, it returns a point $y \in X$, such that

$$\rho(x, y) \leq O(\log n) \cdot \min_{z \in X : z \neq x} \{\rho(x, z)\},$$

with high probability, in time $O(\log^{O(1)} n \cdot \log^{O(1)} \Delta)$.
