Computational Topology in Reconstruction, Mesh Generation, and Data Analysis

Tamal K. Dey

Department of Computer Science and Engineering
The Ohio State University
Outline

- Topological concepts:
Outline

- Topological concepts:
 - Topological spaces
Outline

- Topological concepts:
 - Topological spaces
 - Maps

Dey (2014) Computational Topology
CCCG 14 2 / 55
Outline

- Topological concepts:
 - Topological spaces
 - Maps
 - Complexes
Outline

- Topological concepts:
 - Topological spaces
 - Maps
 - Complexes
 - Homology groups

Applications:
- Manifold reconstruction
- Delaunay mesh generation
- Topological data analysis
Outline

- Topological concepts:
 - Topological spaces
 - Maps
 - Complexes
 - Homology groups

- Applications:
Outline

- Topological concepts:
 - Topological spaces
 - Maps
 - Complexes
 - Homology groups

- Applications:
 - Manifold reconstruction
Outline

- Topological concepts:
 - Topological spaces
 - Maps
 - Complexes
 - Homology groups

- Applications:
 - Manifold reconstruction
 - Delaunay mesh generation
Outline

- Topological concepts:
 - Topological spaces
 - Maps
 - Complexes
 - Homology groups

- Applications:
 - Manifold reconstruction
 - Delaunay mesh generation
 - Topological data analysis

Dey (2014) Computational Topology
A point set with open subsets closed under union and finite intersections
Topology Background

Topological spaces

- A point set with **open** subsets closed under **union** and finite intersections

- d-ball $B^d \{ x \in \mathbb{R}^d \mid \|x\| \leq 1 \}$

- d-sphere $S^d \{ x \in \mathbb{R}^d \mid \|x\| = 1 \}$

- k-manifold: neighborhoods ‘homeomorphic’ to open k-ball
 - 2-sphere, torus, double torus are 2-manifolds

Dey (2014) Computational Topology
Maps

- **Homeomorphism** $h : T_1 \rightarrow T_2$ where h is continuous, bijective and has continuous inverse

- **Isotopy**: continuous deformation that maintains homeomorphism

- **Homotopy equivalence**: map linked to continuous deformation only
Simplicial complex

Abstract

- $V(K)$: vertex set, k-simplex: $(k + 1)$-subset $\sigma \subseteq V(K)$

Complex

$K = \{ \sigma \mid \sigma' \subseteq \sigma \implies \sigma' \in K \}$
Simplicial complex

- **Abstract**
 - $V(K)$: vertex set, k-simplex: $(k + 1)$-subset $\sigma \subseteq V(K)$
 - **Complex**
 - $K = \{ \sigma \mid \sigma' \subseteq \sigma \implies \sigma' \in K \}$

- **Geometric**
 - k-simplex: $k + 1$-point convex hull
 - **Complex K**:
 1. $t \in K$ if t is a face of $t' \in K$
 2. $t_1, t_2 \in K \implies t_1 \cap t_2$ is a face of both

Dey (2014)
Simplicial complex

- **Abstract**
 - $V(K)$: vertex set, k-simplex: $(k + 1)$-subset $\sigma \subseteq V(K)$

- **Complex**
 - $K = \{\sigma || \sigma' \subseteq \sigma \implies \sigma' \in K\}$

- **Geometric**
 - k-simplex: $k + 1$-point convex hull
 - Complex K:
 1. $t \in K$ if t is a face of $t' \in K$
 2. $t_1, t_2 \in K \implies t_1 \cap t_2$ is a face of both

- **Triangulation**: K is a triangulation of a topological space T if $T \approx |K|$
Surface Reconstruction

Point Cloud

Surface Reconstruction

Dey (2014) Computational Topology
Sampling

- Sample $P \subset \Sigma \subset \mathbb{R}^3$
Local Feature Size

\[Lfs(x) \] is the distance to medial axis
ε-sample (Amenta-Bern-Eppstein 98)

Each x has a sample within $\varepsilon Lfs(x)$ distance.
Crust and Cocone Guarantees

Theorem (Crust: Amenta-Bern 1999)

Any point $x \in \Sigma$ is within $O(\varepsilon)Lfs(x)$ distance from a point in the output. Conversely, any point of the output surface has a point $x \in \Sigma$ within $O(\varepsilon)Lfs(x)$ distance for $\varepsilon < 0.06$.
Crust and Cocone Guarantees

Theorem (Crust: Amenta-Bern 1999)

Any point $x \in \Sigma$ is within $O(\varepsilon) L_{fs}(x)$ distance from a point in the output. Conversely, any point of the output surface has a point $x \in \Sigma$ within $O(\varepsilon) L_{fs}(x)$ distance for $\varepsilon < 0.06$.

Theorem (Cocone: Amenta-Choi-Dey-Leekha 2000)

The output surface computed by COCONET from an ε-sample is homeomorphic to the sampled surface for $\varepsilon < 0.06$.
Restricted Voronoi/Delaunay

Definition

Restricted Voronoi: $\text{Vor } P|_{\Sigma}$: Intersection of $\text{Vor } (P)$ with the surface/manifold Σ.
Restricted Voronoi/Delaunay

Definition

Restricted Delaunay: $\text{Del } P|_{\Sigma}$: dual of $\text{Vor } P|_{\Sigma}$
Closed Ball property (Edelsbrunner, Shah 94)

If restricted Voronoi cell is a closed ball in each dimension, then Del $P|_{\Sigma}$ is homeomorphic to Σ.
Closed Ball property (Edelsbrunner, Shah 94)

If restricted Voronoi cell is a closed ball in each dimension, then \(\text{Del } P|_{\Sigma} \) is homeomorphic to \(\Sigma \).
Topography

Closed Ball property (Edelsbrunner, Shah 94)

If restricted Voronoi cell is a closed ball in each dimension, then Del $P|_{\Sigma}$ is homeomorphic to Σ.

Theorem

*For a sufficiently small ε if P is an ε-sample of Σ, then (P, Σ) satisfies the closed ball property, and hence Del $P|_{\Sigma} \approx \Sigma$.***
Closed Ball property (Edelsbrunner, Shah 94)

*If restricted Voronoi cell is a closed ball in each dimension, then Del $P|_\Sigma$ is homeomorphic to Σ.***
Closed Ball property (Edelsbrunner, Shah 94)

*If restricted Voronoi cell is a closed ball in each dimension, then $\text{Del } P|_\Sigma$ is homeomorphic to Σ.***
Boundaries

- Ambiguity in reconstruction
- Non-homeomorphic Restricted Delaunay [DLRW09]
- Non-orientability
Boundaries

- Ambiguity in reconstruction
- Non-homeomorphic Restricted Delaunay [DLRW09]
- Non-orientability

Theorem (D.-Li-Ramos-Wenger 2009)

*Given a sufficiently dense sample of a smooth compact surface Σ with boundary one can compute a Delaunay mesh isotopic to Σ.***
Open: Reconstructing nonsmooth surfaces

- Guarantee of homeomorphism is open
High Dimensional PCD

- Curse of dimensionality (intrinsic vs. extrinsic)
High Dimensional PCD

- Curse of **dimensionality** (intrinsic vs. extrinsic)
- Reconstruction of submanifolds brings **ambiguity**
High Dimensional PCD

- Curse of dimensionality (intrinsic vs. extrinsic)
- Reconstruction of submanifolds brings ambiguity
High Dimensional PCD

- Curse of dimensionality (intrinsic vs. extrinsic)
- Reconstruction of submanifolds brings ambiguity
High Dimensional PCD

- Curse of dimensionality (intrinsic vs. extrinsic)
- Reconstruction of submanifolds brings ambiguity
 - Use (ε, δ)-sampling

Dey (2014) Computational Topology
High Dimensional PCD

- Curse of dimensionality (intrinsic vs. extrinsic)
- Reconstruction of submanifolds brings ambiguity
 - Use \((\varepsilon, \delta)\)-sampling
- Restricted Delaunay does not capture topology
 - Slivers are arbitrarily oriented [CDR05] \(\Rightarrow\) \(\text{Del } P|_{\Sigma} \not\approx \Sigma\) no matter how dense \(P\) is.
High Dimensional PCD

- Curse of *dimensionality* (intrinsic vs. extrinsic)
- Reconstruction of submanifolds brings *ambiguity*
 - Use (ε, δ)-sampling
- Restricted Delaunay *does not* capture topology
 - Slivers are arbitrarily oriented [CDR05] \(\Rightarrow \) Del \(P|_{\Sigma} \not\cong \Sigma \) no matter how dense \(P \) is.
- Delaunay triangulation becomes *harder*
Reconstruction

Theorem (Cheng-Dey-Ramos 2005)

Given an \((\varepsilon, \delta)\)-sample \(P\) of a smooth manifold \(\Sigma \subset \mathbb{R}^d\) for appropriate \(\varepsilon, \delta > 0\), there is a weight assignment of \(P\) so that \(\text{Del} \hat{P}|_{\Sigma} \approx \Sigma\) which can be computed efficiently.
Reconstruction

Theorem (Cheng-Dey-Ramos 2005)

Given an \((\varepsilon, \delta)\)-sample \(P\) of a smooth manifold \(\Sigma \subset \mathbb{R}^d\) for appropriate \(\varepsilon, \delta > 0\), there is a weight assignment of \(P\) so that \(\text{Del} \hat{P} |_\Sigma \approx \Sigma\) which can be computed efficiently.

Theorem (Chazal-Lieutier 2006)

Given an \(\varepsilon\)-noisy sample \(P\) of manifold \(\Sigma \subset \mathbb{R}^d\), there exists \(r_p \leq \rho(\Sigma)\) for each \(p \in P\) so that the union of balls \(B(p, r_p)\) is homotopy equivalent to \(\Sigma\).
Reconstructing Compacts
Reconstructing Compacts

- Lfs vanishes, introduce μ-reach and define (ε, μ)-samples.
Reconstructing Compacts

- Lfs vanishes, introduce μ-reach and define (ε, μ)-samples.

Theorem (Chazal-Cohen-S.-Lieutier 2006)

*Given an (ε, μ)-sample P of a compact $K \subset \mathbb{R}^d$ for appropriate $\varepsilon, \mu > 0$, there is an α so that union of balls $B(p, \alpha)$ is homotopy equivalent to K^η for arbitrarily small η.***
Surface and volume mesh
Surface and volume mesh
Delaunay refinement

- Pioneered by Chew89, Ruppert92, Shewchuk98
Delaunay refinement

- Pioneered by Chew89, Ruppert92, Shewchuk98
- To mesh some domain D

Initialize points $P \subset D$, compute DelP

If some condition is not satisfied, insert a point $p \in D$ into P and repeat

Return Del$P | D$

Burden is to show termination (by packing argument)

Dey (2014)

Computational Topology

CCC 14
Delaunay refinement

- Pioneered by Chew89, Ruppert92, Shewchuk98
- To mesh some domain D
 1. Initialize points $P \subset D$, compute $\text{Del } P$

Burden is to show termination (by packing argument)
Delaunay refinement

- Pioneered by Chew89, Ruppert92, Shewchuk98
- To mesh some domain D
 1. Initialize points $P \subset D$, compute $\text{Del} P$
 2. If some condition is not satisfied, insert a point $p \in D$ into P and repeat
Delaunay refinement

- Pioneered by Chew89, Ruppert92, Shewchuk98
- To mesh some domain D
 1. **Initialize** points $P \subset D$, compute $\text{Del } P$
 2. If some **condition** is not satisfied, **insert** a point $p \in D$ into P and repeat
 3. Return $\text{Del } P|_D$
Delaunay refinement

- Pioneered by Chew89, Ruppert92, Shewchuk98
- To mesh some domain \(D \)
 1. Initialize points \(P \subset D \), compute \(\text{Del} \ P \)
 2. If some condition is not satisfied, insert a point \(p \in D \) into \(P \) and repeat
 3. Return \(\text{Del} \ P|_D \)
- Burden is to show termination (by packing argument)
Sampling Theorem

Theorem (Amenta-Bern 98, Cheng-D.-Edelsbrunner-Sullivan 01)

If $P \subset \Sigma$ is a discrete ε-sample of a smooth surface Σ, then for $\varepsilon < 0.09$, $\text{Del } P|_{\Sigma}$ satisfies:

- It is homeomorphic to Σ
- Each triangle has normal aligning within $O(\varepsilon)$ angle to the surface normals
- Hausdorff distance between Σ and $\text{Del } P|_{\Sigma}$ is $O(\varepsilon^2)$
Sampling Theorem

Theorem (Amenta-Bern 98, Cheng-D.-Edelsbrunner-Sullivan 01)

If \(P \subset \Sigma \) is a discrete \(\varepsilon \)-sample of a smooth surface \(\Sigma \), then for \(\varepsilon < 0.09 \), \(\text{Del } P|_{\Sigma} \) satisfies:

- It is homeomorphic to \(\Sigma \)
Sampling Theorem

Theorem (Amenta-Bern 98, Cheng-D.-Edelsbrunner-Sullivan 01)

If $P \subset \Sigma$ is a discrete ε-sample of a smooth surface Σ, then for $\varepsilon < 0.09$, $\text{Del } P|_\Sigma$ satisfies:

- It is homeomorphic to Σ
- Each triangle has normal aligning within $O(\varepsilon)$ angle to the surface normals
Sampling Theorem

Theorem (Amenta-Bern 98, Cheng-D.-Edelsbrunner-Sullivan 01)

If \(P \subset \Sigma \) *is a discrete* \(\varepsilon \)-*sample of a smooth surface* \(\Sigma \), *then for* \(\varepsilon < 0.09 \), \(\text{Del} \ P|_{\Sigma} \) *satisfies:

- *It is homeomorphic to* \(\Sigma \)
- *Each triangle has normal aligning within* \(O(\varepsilon) \) *angle to the surface normals*
- *Hausdorff distance between* \(\Sigma \) *and* \(\text{Del} \ P|_{\Sigma} \) *is* \(O(\varepsilon^2) \) *of LFS.*
Sampling Theorem Modified

Theorem (Boissonnat-Oudot 05)

If $P \in \Sigma$ is such that each Voronoi edge-surface intersection x lies within $\varepsilon \text{Lfs}(x)$ from a sample, then for $\varepsilon < 0.09$, $\text{Del } P|_{\Sigma}$ satisfies:

- It is homeomorphic to Σ
- Each triangle has normal aligning within $O(\varepsilon)$ angle to the surface normals
- Hausdorff distance between Σ and $\text{Del } P|_{\Sigma}$ is $O(\varepsilon^2)$ of LFS.
Basic Delaunay Refinement

1. Initialize points $P \subset \Sigma$, compute $\text{Del } P$
2. If some \textbf{condition} is not satisfied, insert a point $c \in \Sigma$ into P and repeat
3. Return $\text{Del } P|_{\Sigma}$
Surface Delaunay Refinement

1. Initialize points $P \subset \Sigma$, compute $\text{Del} \ P$

2. If some Voronoi edge intersects Σ at x with $d(x, P) > \varepsilon LFS(x)$, insert x in P and repeat

3. Return $\text{Del} \ P |_{\Sigma}$
How to compute $L_f(s(x))$?

Can be approximated by computing approximate medial axis—needs a dense sample.
Difficulty

- How to compute $L_f(s(x))$?
- Can be approximated by computing approximate medial axis—needs a dense sample.
A Solution

- Replace $d(x, P) < \varepsilon Lfs(x)$ with $d(x, P) < \lambda$, an user parameter.
A Solution

- Replace $d(x, P) < \varepsilon Lfs(x)$ with $d(x, P) < \lambda$, an user parameter.
- Topology guarantee is lost.
A Solution

- Replace $d(x, P) < \varepsilon \text{Lfs}(x)$ with $d(x, P) < \lambda$, an user parameter
- Topology guarantee is lost
- Require topological disks around vertices
A Solution

- Replace $d(x, P) < \varepsilon \text{Lfs}(x)$ with $d(x, P) < \lambda$, an user parameter
- Topology guarantee is lost
- Require topological disks around vertices
- Guarantees manifolds
A Solution

- Replace $d(x, P) < \varepsilon \operatorname{Lfs}(x)$ with $d(x, P) < \lambda$, an user parameter
- Topology guarantee is lost
- Require topological disks around vertices
- Guarantees manifolds
A Solution

1. Initialize points $P \subset \Sigma$, compute $\text{Del} \, P$

2. If some Voronoi edge intersects Σ at x with $d(x, P) > \varepsilon \text{LFS}(x)$, insert x in P and repeat

3. Return $\text{Del} \, P|_{\Sigma}$
A Solution

1. Initialize points $P \subset \Sigma$, compute $\text{Del} \ P$

2. If some Voronoi edge intersects Σ at x with $d(x, P) > \lambda \text{LFS}(x)$, insert x in P and repeat

3. Return $\text{Del} \ P|_{\Sigma}$
A Solution

1. Initialize points $P \subset \Sigma$, compute $\text{Del} \ P$

2. If some Voronoi edge intersects Σ at x with $d(x, P) > \lambda \text{LFS}(x)$, insert x in P and repeat

3. If restricted triangles around a vertex p do not form a topological disk, insert furthest x where a dual Voronoi edge of a triangle around p intersects Σ

4. Return $\text{Del} \ P|_{\Sigma}$
A Meshing Theorem

Theorem

Previous algorithm produces output mesh with the following guarantees:

1. Output mesh is always a 2-manifold.
2. If λ is sufficiently small, the output mesh satisfies topological and geometric guarantees:
 - It is related to Σ by an isotopy.
 - Each triangle has normal aligning within $O(\lambda)$ angle to the surface normals.
 - Hausdorff distance between Σ and $\text{Del}P|\Sigma$ is $O(\lambda^2)$ of LFS.
A Meshing Theorem

Theorem

Previous algorithm produces output mesh with the following guarantees:

1. *Output mesh is always a 2-manifold*
2. *If λ is sufficiently small, the output mesh satisfies topological and geometric guarantees:*

 - It is related to Σ by an isotopy.
 - Each triangle has normal aligning within $O(\lambda)$ angle to the surface normals.
 - Hausdorff distance between Σ and $\text{Del} P | \Sigma$ is $O(\lambda^2)$ of LFS.

Dey (2014) Computational Topology
A Meshing Theorem

Theorem

Previous algorithm produces output mesh with the following guarantees:

1. Output mesh is always a 2-manifold
2. If λ is sufficiently small, the output mesh satisfies topological and geometric guarantees:
 1. It is related to Σ by an isotopy
A Meshing Theorem

Theorem

Previous algorithm produces output mesh with the following guarantees:

1. **Output mesh is always a 2-manifold**
2. If λ is sufficiently small, the output mesh satisfies topological and geometric guarantees:
 1. It is related to Σ by an *isotopy*
 2. Each triangle has normal aligning within $O(\lambda)$ angle to the surface normals
A Meshing Theorem

Theorem

Previous algorithm produces output mesh with the following guarantees:

1. Output mesh is always a 2-manifold
2. If λ is sufficiently small, the output mesh satisfies topological and geometric guarantees:
 1. It is related to Σ by an isotopy
 2. Each triangle has normal aligning within $O(\lambda)$ angle to the surface normals
 3. Hausdorff distance between Σ and $\text{Del } P|_{\Sigma}$ is $O(\lambda^2)$ of LFS.

Dey (2014) Computational Topology
Data Analysis by Persistent Homology

- Persistent homology [Edelsbrunner-Letscher-Zomorodian 00], [Zomorodian-Carlsson 02]

Dey (2014) Computational Topology
Let \mathcal{K} be a finite simplicial complex.
Let \mathcal{K} be a finite simplicial complex.
Let \mathcal{K} be a finite simplicial complex.

Definition

A p-chain in \mathcal{K} is a formal sum of p-simplices: $c = \sum_i a_i \sigma_i$; sum is the addition in a ring, \mathbb{Z}, \mathbb{Z}_2, \mathbb{R} etc.
Topological Data Analysis

Chain

- Let \mathcal{K} be a finite simplicial complex

$$1\text{-chain } ab + bc + cd \ (a_i \in \mathbb{Z}_2)$$

Definition

A *p*-chain in \mathcal{K} is a formal sum of p-simplices: $c = \sum_i a_i \sigma_i$; sum is the addition in a ring, $\mathbb{Z}, \mathbb{Z}_2, \mathbb{R}$ etc.
Boundary

Definition

A \(p \)-boundary \(\partial_{p+1}c \) of a \((p + 1)\)-chain \(c \) is defined as the sum of boundaries of its simplices.
Boundary

Definition

A \textit{p-boundary} \(\partial_{p+1}c \) of a \((p+1)\)-chain \(c \) is defined as the sum of boundaries of its simplices.
Boundary

Definition

A \(p \)-boundary \(\partial_{p+1} \mathbf{c} \) of a \((p + 1) \)-chain \(\mathbf{c} \) is defined as the sum of boundaries of its simplices.

2-chain \(bcd + bde \) (under \(\mathbb{Z}_2 \))
Boundary

Definition

A \textit{p-boundary} $\partial_{p+1}c$ of a $(p + 1)$-chain c is defined as the sum of boundaries of its simplices.

1-boundary $bc + cd + db + bd + de + eb = \partial_2(bcd + bde)$ (under \mathbb{Z}_2)
Cycles

Definition

A \textit{p-cycle} is a \textit{p-chain} that has an empty boundary
Cycles

Definition

A \textit{p-cycle} is a \textit{p-chain} that has an empty boundary

![Simplicial complex](image)
Cycles

Definition

A \(p \)-cycle is a \(p \)-chain that has an empty boundary.

\[ab + bc + cd + de + ea \quad \text{(under } \mathbb{Z}_2) \]
Cycles

Definition

A \textit{p-cycle} is a \textit{p-chain} that has an empty boundary

1-cycle \(ab + bc + cd + de + ea \) (under \(\mathbb{Z}_2 \))

- Each \(p \)-boundary is a \(p \)-cycle: \(\partial_p \circ \partial_{p+1} = 0 \)
Groups

Definition

The p-chain group $C_p(K)$ of K is formed by p-chains under addition.
Groups

Definition

The \textit{p-chain group} $\mathbb{C}_p(\mathcal{K})$ of \mathcal{K} is formed by p-chains under addition.

The boundary operator ∂_p induces a homomorphism

$$\partial_p : \mathbb{C}_p(\mathcal{K}) \to \mathbb{C}_{p-1}(\mathcal{K})$$
Groups

Definition
The p-chain group $C_p(K)$ of K is formed by p-chains under addition

The boundary operator ∂_p induces a homomorphism

$$\partial_p : C_p(K) \to C_{p-1}(K)$$

Definition
The p-cycle group $Z_p(K)$ of K is the kernel $\ker \partial_p$
Groups

Definition
The \(p \)-chain group \(C_p(K) \) of \(K \) is formed by \(p \)-chains under addition.

The boundary operator \(\partial_p \) induces a homomorphism

\[
\partial_p : C_p(K) \rightarrow C_{p-1}(K)
\]

Definition
The \(p \)-cycle group \(Z_p(K) \) of \(K \) is the kernel \(\ker \partial_p \).

Definition
The \(p \)-boundary group \(B_p(K) \) of \(K \) is the image \(\text{im} \partial_{p+1} \).
Homology

Definition

The \(p \)-dimensional homology group is defined as

\[
H_p(\mathcal{K}) = Z_p(\mathcal{K}) / B_p(\mathcal{K})
\]
Homology

Definition
The \(p \)-dimensional homology group is defined as
\[
H_p(\mathcal{K}) = Z_p(\mathcal{K}) / B_p(\mathcal{K})
\]

Definition
Two \(p \)-chains \(c \) and \(c' \) are homologous if
\[
c = c' + \partial_{p+1} d
\]
for some chain \(d \).
Homology

Definition
The p-dimensional homology group is defined as
\[H_p(K) = \frac{Z_p(K)}{B_p(K)} \]

Definition
Two p-chains c and c' are **homologous** if $c = c' + \partial_{p+1}d$ for some chain d

(a) trivial (null-homologous) cycle; (b), (c) nontrivial homologous cycles
Let $P \subset \mathbb{R}^d$ be a point set.
Complexes

- Let $P \subset \mathbb{R}^d$ be a point set
- $B(p, r)$ denotes an open d-ball centered at p with radius r
Complexes

- Let $P \subset \mathbb{R}^d$ be a point set
- $B(p, r)$ denotes an open d-ball centered at p with radius r

Definition

The \textit{Čech complex} $C^r(P)$ is a simplicial complex where a simplex $\sigma \in C^r(P)$ iff $\text{Vert}(\sigma) \subseteq P$ and $\bigcap_{p \in \text{Vert}(\sigma)} B(p, r/2) \neq \emptyset$
Complexes

- Let $P \subset \mathbb{R}^d$ be a point set
- $B(p, r)$ denotes an open d-ball centered at p with radius r

Definition

The *Čech complex* $\mathcal{C}^r(P)$ is a simplicial complex where a simplex $\sigma \in \mathcal{C}^r(P)$ iff $\text{Vert}(\sigma) \subseteq P$ and $\bigcap_{p \in \text{Vert}(\sigma)} B(p, r/2) \neq 0$

Definition

The *Rips complex* $\mathcal{R}^r(P)$ is a simplicial complex where a simplex $\sigma \in \mathcal{R}^r(P)$ iff $\text{Vert}(\sigma)$ are within pairwise Euclidean distance of r
Complexes

Let $P \subset \mathbb{R}^d$ be a point set

$B(p, r)$ denotes an open d-ball centered at p with radius r

Definition

The Čech complex $\mathcal{C}^r(P)$ is a simplicial complex where a simplex $\sigma \in \mathcal{C}^r(P)$ iff $\text{Vert}(\sigma) \subseteq P$ and $\bigcap_{p \in \text{Vert}(\sigma)} B(p, r/2) \neq 0$

Definition

The Rips complex $\mathcal{R}^r(P)$ is a simplicial complex where a simplex $\sigma \in \mathcal{R}^r(P)$ iff $\text{Vert}(\sigma)$ are within pairwise Euclidean distance of r

Proposition

For any finite set $P \subset \mathbb{R}^d$ and any $r \geq 0$, $\mathcal{C}^r(P) \subseteq \mathcal{R}^r(P) \subseteq \mathcal{C}^{2r}(P)$
Point set P
Balls $B(p, r/2)$ for $p \in P$
Čech complex $C^r(P)$
Rips complex $\mathcal{R}^r(P)$
Topological persistence

- $r(x) = d(x, P)$: distance to point cloud P
- **Sublevel sets** $r^{-1}[0, a]$ are union of balls
- Evolution of the sublevel sets with increasing a—left hole persists longer
- Persistent homology quantizes this idea

![Diagram](image_url)
Persistent Homology

- \(f : \mathbb{T} \rightarrow \mathbb{R}; \ T_a = f^{-1}(-\infty, a] \), the sublevel set
- \(T_a \subseteq T_b \) for \(a \leq b \) provides inclusion map \(\iota : T_a \rightarrow T_b \)
- Induced map \(\iota_* : H_p(T_a) \rightarrow H_p(T_b) \) giving the sequence

\[
0 \rightarrow H_p(T_{a_1}) \rightarrow H_p(T_{a_2}) \rightarrow \cdots \rightarrow H_p(T_{a_n}) \rightarrow H_p(\mathbb{T})
\]

- Persistent homology classes: Image of \(f_{ij} : H_p(T_{a_i}) \rightarrow H_p(T_{a_j}) \)
Continuous to Discrete

- Replace \mathbb{T} with a simplicial complex $K := K(\mathbb{T})$
Continuous to Discrete

- Replace \mathbb{T} with a simplicial complex $K := K(\mathbb{T})$
- Union of balls with its nerve Čech complex
Continuous to Discrete

- Replace \mathbb{T} with a simplicial complex $K := K(\mathbb{T})$
- Union of balls with its nerve Čech complex
Continuous to Discrete

- Replace \mathbb{T} with a simplicial complex $K := K(\mathbb{T})$
- Union of balls with its nerve Čech complex

(a) (b)
(c) (d)
Continuous to Discrete

- Replace \mathbb{T} with a simplicial complex $K := K(\mathbb{T})$
- Union of balls with its nerve Čech complex
- Evolution of sublevel sets becomes Filtration:

$$\emptyset = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n = K$$
$$0 \to H_p(K_1) \to \cdots \to H_p(K_n) = H_p(K).$$
Continuous to Discrete

- Replace \mathbb{T} with a simplicial complex $K := K(\mathbb{T})$
- Union of balls with its nerve Čech complex
- Evolution of sublevel sets becomes Filtration:

$$\emptyset = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n = K$$

$$0 \to H_p(K_1) \to \cdots \to H_p(K_n) = H_p(K).$$

- Birth and Death of homology classes
Bar Codes

- birth-death and bar codes
Persistence Diagram

- a bar $[a, b]$ is represented as a point in the plane
Persistence Diagram

- a bar $[a, b]$ is represented as a point in the plane
- incorporate the diagonal in the diagram $\text{Dgm}_\rho(f)$
a bar $[a, b]$ is represented as a point in the plane

incorporate the diagonal in the diagram $Dgm_\rho(f)$
Persistence Diagram

- a bar $[a, b]$ is represented as a point in the plane
- incorporate the diagonal in the diagram $Dgm_\rho(f)$
Stability of Persistence Diagram

- Bottleneck distance (\(C \) all bijections)

\[
d_B(\text{Dgm}_p(f), \text{Dgm}_p(g)) := \inf_{c \in C} \sup_{x \in \text{Dgm}_p(f)} \| x - c(x) \|
\]

Theorem (Cohen-Steiner, Edelsbrunner, Harer 06)

\[
d_B(\text{Dgm}_p(f), \text{Dgm}_p(g)) \leq \| f - g \|_{\infty}
\]
Back to Point Data

- d_T be the distance function from the space T.
Back to Point Data

- d_T be the distance function from the space \mathbb{T}.
- d_P be the distance function from sample P
Back to Point Data

- d_T be the distance function from the space \mathbb{T}.
- d_P be the distance function from sample P
Back to Point Data

- d_T be the distance function from the space \mathbb{T}.
- d_P be the distance function from sample P.
- $\|d_T - d_P\|_\infty \leq d(\mathbb{T}, P) = \varepsilon$
d_T be the distance function from the space \mathbb{T}.

d_P be the distance function from sample P.

$\|d_T - d_P\|_\infty \leq d(\mathbb{T}, P) = \varepsilon$

$d_B(\text{Dgm}_p(d_T), \text{Dgm}(d_P)) \leq \varepsilon$
Back to Point Data

- d_T be the distance function from the space \mathbb{T}.
- d_P be the distance function from sample P.
- $\|d_T - d_P\|_\infty \leq d(\mathbb{T}, P) = \varepsilon$
- $d_B(Dgm_p(d_T), Dgm(d_P)) \leq \varepsilon$
Issues: Choice of Complexes

- Čech complexes are difficult to compute
Issues: Choice of Complexes

- Čech complexes are difficult to compute
- Most literature considers Rips complexes, but they are Huge
Issues: Choice of Complexes

- Čech complexes are difficult to compute
- Most literature considers Rips complexes, but they are Huge
- Sparsified Rips complex [Sheehy 12]
Issues: Choice of Complexes

- Čech complexes are difficult to compute
- Most literature considers Rips complexes, but they are Huge
- Sparsified Rips complex [Sheehy 12]
- Graph Induced Complex (GIC) [D.-Fang-Wang 13]
Issues: Choice of Complexes

- Čech complexes are difficult to compute
- Most literature considers Rips complexes, but they are **Huge**
- Sparsified Rips complex [Sheehy 12]
- Graph Induced Complex (GIC) [D.-Fang-Wang 13]
Issues: Choice of Complexes

- Čech complexes are difficult to compute
- Most literature considers Rips complexes, but they are huge
- Sparsified Rips complex [Sheehy 12]
- Graph Induced Complex (GIC) [D.-Fang-Wang 13]
Issues: Choice of Complexes

- Čech complexes are difficult to compute
- Most literature considers Rips complexes, but they are Huge
- Sparsified Rips complex [Sheehy 12]
- Graph Induced Complex (GIC) [D.-Fang-Wang 13]
Issues: Filtration Maps

- Zigzag inclusions [Carlsson-de Silva-Morozov 09]

\[K_1 \subseteq K_2 \subseteq K_3 \subseteq \ldots \subseteq K_n \]
Issues: Filtration Maps

- Zigzag inclusions [Carlsson-de Silva-Morozov 09]

\[K_1 \subseteq K_2 \supseteq K_3 \supseteq \ldots \subseteq K_n \]
Issues: Filtration Maps

- Zigzag inclusions [Carlsson-de Silva-Morozov 09]

\[K_1 \subseteq K_2 \supseteq K_3 \supseteq \ldots \subseteq K_n \]

- Simplicial maps instead of inclusions [D.-Fan-Wang 14]

\[K \xrightarrow{f_1} K_1 \xrightarrow{f_2} K_2 \cdots \xrightarrow{f_n} K_n = K' \]
Issues: Filtration Maps

- Zigzag inclusions [Carlsson-de Silva-Morozov 09]

\[K_1 \subseteq K_2 \supseteq K_3 \supseteq \ldots \subseteq K_n \]

- Simplicial maps instead of inclusions [D.-Fan-Wang 14]

\[K \xrightarrow{f_1} K_1 \xrightarrow{f_2} K_2 \cdots \xrightarrow{f_n} K_n = K' \]

- Efficient algorithm for Zigzag simplicial maps?
Further Issues/Problems

- What about stability when domains aren’t same.
Further Issues/Problems

- What about stability when domains aren’t the same.
- Interleaving [Chazal-Oudot 08], [CCGGO08]
Further Issues/Problems

- What about stability when domains aren’t same.
 - Interleaving [Chazal-Oudot 08], [CCGGO08]
- Scalar field data analysis [CGOS 09]
Further Issues/Problems

- What about stability when domains aren’t same.
 - Interleaving [Chazal-Oudot 08], [CCGGO08]
- Scalar field data analysis [CGOS 09]
- Computing topological structures
Further Issues/Problems

- What about stability when domains aren’t same.
 - Interleaving [Chazal-Oudot 08], [CCGGO08]
- Scalar field data analysis [CGOS 09]
- Computing topological structures
 - Reeb graphs [C-MEHNP 03, D.-Wang 11]
Further Issues/Problems

- What about stability when domains aren’t same.
 - Interleaving [Chazal-Oudot 08], [CCGGO08]
- Scalar field data analysis [CGOS 09]
- Computing topological structures
 - Reeb graphs [C-MEHNP 03, D.-Wang 11]
 - Homology cycles
Further Issues/Problems

- What about stability when domains aren’t same.
 - Interleaving [Chazal-Oudot 08], [CCGGO08]
- Scalar field data analysis [CGOS 09]
- Computing topological structures
 - Reeb graphs [C-MEHNP 03, D.-Wang 11]
 - Homology cycles
Optimal Homology Basis Problem

- Compute an optimal set of cycles forming a basis
Optimal Homology Basis Problem

- Compute an optimal set of cycles forming a basis
Further Problems

Optimal Homology Basis Problem

-Compute an optimal set of cycles forming a basis
Optimal Homology Basis Problem

- Compute an optimal set of cycles forming a basis

- First solution for surfaces: Erickson-Whittlesey [SODA05]
Further Problems

Optimal Homology Basis Problem

- Compute an optimal set of cycles forming a basis

- First solution for surfaces: Erickson-Whittlesey [SODA05]
- General problem NP-hard: Chen-Freedman [SODA10]
Optimal Homology Basis Problem

- Compute an optimal set of cycles forming a basis

First solution for surfaces: Erickson-Whittlesey [SODA05]
General problem NP-hard: Chen-Freedman [SODA10]
H$_1$ basis for simplicial complexes: D.-Sun-Wang [SoCG10]
Optimal Localization

- Compute an optimal cycle in a given class.
Optimal Localization

- Compute an optimal cycle in a given class.
Optimal Localization

- Compute an optimal cycle in a given class.
Optimal Localization

- Compute an optimal cycle in a given class.
Optimal Localization

- Compute an optimal cycle in a given class.

- Surfaces: Colin de Verdière-Lazarus [DCG05], Colin de Verdière-Erickson [SODA06], Chambers-Erickson-Nayyeri [SoCG09]
Optimal Localization

- Compute an optimal cycle in a given class.

- Surfaces: Colin de Verdière-Lazarus [DCG05], Colin de Verdière-Erickson [SODA06], Chambers-Erickson-Nayyeri [SoCG09]

- General problem NP-hard: Chen-Freedman [SODA10]
Optimal Localization

- Compute an optimal cycle in a given class.

- Surfaces: Colin de Verdière-Lazarus [DCG05], Colin de Verdière-Erickson [SODA06], Chambers-Erickson-Nayyeri [SoCG09]
- General problem NP-hard: Chen-Freedman [SODA10]
- Special cases: Dey-Hirani-Krishnamoorthy [STOC10]
Conclusions

- Reconstructions:
Conclusions

- Reconstructions:
 - non-smooth surfaces remain open
Conclusions

Reconstructions:
- non-smooth surfaces remain open
- high dimensions still not satisfactory
Conclusions

- Reconstructions:
 - non-smooth surfaces remain open
 - high dimensions still not satisfactory
- Mesh Generation:
Conclusions

- Reconstructions:
 - non-smooth surfaces remain open
 - high dimensions still not satisfactory

- Mesh Generation:
 - piecewise smooth surfaces, complexes
Conclusions

- Reconstructions:
 - non-smooth surfaces remain open
 - high dimensions still not satisfactory

- Mesh Generation:
 - piecewise smooth surfaces, complexes
Conclusions

- Reconstructions:
 - non-smooth surfaces remain open
 - high dimensions still not satisfactory
- Mesh Generation:
 - piecewise smooth surfaces, complexes
- Data Analysis:
Conclusions

- Reconstructions:
 - non-smooth surfaces remain open
 - high dimensions still not satisfactory

- Mesh Generation:
 - piecewise smooth surfaces, complexes

- Data Analysis:
 - functions on spaces
Conclusions

- **Reconstructions**:
 - non-smooth surfaces remain open
 - high dimensions still not satisfactory
- **Mesh Generation**:
 - piecewise smooth surfaces, complexes
- **Data Analysis**:
 - functions on spaces
 - connecting to data mining, machine learning.
Thank You