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A pair of pants is a genus zero orientable surface with three boundary components. A pants decompo- 

sition of a surface is a finite collection of unordered pairwise disjoint simple closed curves embedded 

in the surface that decompose the surface into pants. In this paper, we present two Morse theory based 

algorithms for pants decomposition of a surface mesh. Both algorithms operates on a choice of an appro- 

priate Morse function on the surface. The first algorithm uses this Morse function to identify handles that 

are glued systematically to obtain a pants decomposition. The second algorithm uses the Reeb graph of 

the Morse function to obtain a pants decomposition. Both algorithms work for surfaces with or without 

boundaries. Our preliminary implementation of the two algorithms shows that both algorithms run in 

much less time than an existing state-of-the-art method, and the Reeb graph based algorithm achieves 

the best time efficiency. Finally, we demonstrate the robustness of our algorithms against noise. 
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1. Introduction 

Segmenting a surface mesh into simple pieces for further pro-

cessing is a fundamental problem in many mesh processing ap-

plications such as texture mapping [28] , collision detection [31] ,

skeletonization [6] and three-dimensional shape retrieval [57] . In

surface matching, authors in [29] showed the use of a particu-

lar type of mesh segmentation called a pant decomposition , see

Fig. 1 . It derives its name from its constituent piece termed a pair

of pants , which, up to topology, is a genus zero orientable surface

with 3 boundary components. Besides surface matching, pants de-

composition has found applications in surface classification and in-

dexing [23] , and consistent mesh parametrization [27] . This type of

segmentation can be viewed as a common base domain segmenta-

tion [27] , where one partitions the mesh into parts with a com-

mon property such as having the same topology. Li et al. [29] pre-

sented a pant decomposition algorithm based on the computations

of certain basis cycles in the first homology group of the input

surface. Other pants decomposition related algorithms proposed in

the graphics literature can be found in [56] where the authors enu-

merates different classes of pants decompositions. However, these

methods rely on computing certain curves on the surface called

Handle and Tunnel loops [10,11] . Computing such curves is expen-
∗ Corresponding author. 
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ive and more importantly requires the surface to be embedded

n R 

3 and not have any boundary. Morse theory allows our algo-

ithms to get rid of these two constraints. Moreover, pants decom-

osition relies on finding a collection curves on the surface with

ertain topological properties. Finding these curves and manipu-

ating them is a difficult problem. Morse theory allows us to avoid

efining these curves explicitly by realizing them implicitly as level

urves of a Morse function. 

Many segmentation algorithms have been proposed in the

raphics literature includes [2,7,29,30,32,43,45,54] . One reason for

he variety of segmentation algorithms suggested in the litera-

ure is that there is no one universal good algorithm that suits

ll applications. The techniques used in the algorithms are related

o other areas in computer graphics such as image segmentation

40,48] and machine learning [9,25] . For good surveys on various

egmentation algorithms see [3,43] . 

In this work, we propose two algorithms based on Morse the-

ry for computing a pant decomposition of an input surface mesh.

orse theory connects the geometry and topology of manifolds via

he critical values/points of a specific class of real-valued functions

alled Morse functions. Intuitively, given such a function f on a

anifold M , Morse theory studies the topological changes of the

evel sets of f . These level sets change in topology only at the crit-

cal values. Consequently, the space in between two consecutive

ritical levels becomes a product space of a fiber with an interval.

his fact is used to decompose a surface into pants and cylinders,

nd the latter parts are glued inductively into pants. The second al-
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Fig. 1. A pants decomposition of a high genus surface by our algorithm. 
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Fig. 2. Minimum, maximum, and saddle. 
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orithm exploits a reduced structure called Reeb graph [39] derived

rom a function f on the surface. The Reeb graph of f is a quotient

pace derived from M and f . For a Morse function, all vertices in

he Reeb graph have valence 3 except the extrema. We exploit this

roperty to compute a pair of pant for every degree-3 vertex of

he Reeb graph and treat the extrema specially. 

Morse theory, in its original form, assumes smooth settings

34] . For operating on surface meshes, we need a piecewise linear

PL) version of the theory. We make this transition using the PL

orse theory proposed by [4] . We show how one can compute a

unction on a surface mesh satisfying the specific property that our

lgorithms require. Furthermore, we extend our basic algorithms to

he case when the surface has boundaries, or when the function f

llows degenerate critical points such as monkey saddles. 

Our experiments show that both of our algorithms run much

aster in practice than the algorithm of Li et al. while the Reeb-

raph based algorithm performs the best. Furthermore, our tests

how that both of the algorithms presented here are robust to

oise. 

. Morse theory and handle decomposition for surfaces 

Let M be a compact smooth surface, and let I = [ a, b] ⊆ R ,

here a < b , be a closed interval. Let f : M −→ I be a smooth func-

ion defined on M . A point x ∈ M is called a critical point of f if the

ifferential df x is zero. A value c in R is called a critical value of

 if f −1 (c) contains a critical point of f . A point in M is called a

egular point if it is not a critical point. Similarly, a value c ∈ R is

alled regular if it is not critical. The inverse function theorem im-

lies that for every regular value c in R the level set f −1 (c) is a

-manifold, i.e., f −1 (c) is a disjoint union of simple closed curves.

 critical point is called non-degenerate if the matrix of the second

artial derivatives of f , called the Hessian matrix , is non-singular. 

The definition of a Morse function is motivated mainly by the

ollowing Lemma. 

emma 1. (Morse Lemma) Let M be a smooth surface, f : M −→ I be

 smooth function and p be a non-degenerate critical point of f. We

an choose a chart ( φ, U ) around p such that f ◦ φ−1 takes exactly

ne of the following three forms: 

1. f ◦ φ−1 (X, Y ) = X 2 + Y 2 + c. 

2. f ◦ φ−1 (X, Y ) = −X 2 − Y 2 + c. 

3. f ◦ φ−1 (X, Y ) = X 2 − Y 2 + c. 

The index of a critical point x of f , denoted by index f ( x ), is de-

ned to be the number of negative eigenvalues of its Hessian ma-

rix. Since the Hessian of a scalar function on smooth surface is

 2 × 2 symmetric matrix, then the index takes the values 0,1 or

. One can see that on a non-degenerate critical point of index 0

he function f takes a minimum value, on a non-degenerate critical
oint of index 1, the graph of the function looks like a saddle and

n a non-degenerate critical point of index 2 the function f takes a

aximum value. See Fig. 2 

If all the critical points of f are non-degenerate and all criti-

al points have distinct values, then f is called a Morse function . If

he surface M has boundary, then we also require two other con-

itions: (1) f −1 (∂ I) = ∂M and (2) the critical points of f lie in the

nterior of M . 

.1. Handle decomposition of a surface 

Our first algorithm uses the attachment of cylinders called han-

les at the critical points. We need a few definitions first. 

Let M be a smooth surface and let f : M −→ R be a Morse func-

ion defined on M . Define the set 

 f,t = { x ∈ M : f (x ) ≤ t} . 
et a, b, a < b , be two reals. Define 

 f, [ a,b] = { x ∈ M : a ≤ f (x ) ≤ b} . 
hen it is clear from the context, we will drop f from the notation

nd use simply M t and M [ a, b ] to refer to the previous two sets.

orse theory studies the topological changes of M t as t varies. The

ollowing is well-known [33] . 

heorem 1. Let f : M −→ R be a smooth function on a smooth sur-

ace M. For two reals a, b, a < b, if f has no critical values in the

nterval [ a, b ], then the surfaces M a and M b are diffeomorphic. 

The previous theorem says that the topology of the surface M t 

oes not change as t passes through regular values. In the follow-

ng we use D 

1 to denote the interval [0, 1]. The end points of D 

1 

re given by ∂D 

1 = { 0 , 1 } . Given a Morse function f on M, the fol-

owing theorem gives a precise description for the change that oc-

urs in the topology of M t as t passes through a critical value. 

heorem 2. Let f : M −→ R be Morse function. Let p be a critical

oint of index i and f (p) = t be its corresponding critical value. Let ε
e chosen small enough so that f has no critical values in the interval

 t − ε, t + ε] . 

1. If index f (p) = 0 , then M t+ ε is diffeomorphic to the disjoint union

of M t−ε and a 2-dimensional disk D 

2 . 

2. If index f (p) = 1 , then M t+ ε can be obtained from M t−ε by attach-

ing a 1-handle. This means that M t+ ε can be obtained by gluing

a rectangular strip D 

1 × D 

1 to the boundary of M t−ε along D 

1 ×
∂D 

1 . 

3. If index f (p) = 2 , then M t+ ε can be obtained by capping off the

surface M t−ε with a disk D 

2 . This means that M t+ ε is obtained by

gluing a disk D 

2 along its boundary ∂D 

2 to one of the boundary

components of M t−ε . 

.2. Morse theory for triangulated surfaces 

Morse theory was extended to triangulated surfaces (2-

anifolds) by Banchoff et al. [4] . Recently, Morse theory has found

pplications in global surface parameterization [16] , finding a fun-

amental domain of a surface [35] , surface quadrangulation [13] ,
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Fig. 3. (a) Minimum, (b) Maximum, (c) Regular vertex, (d) Saddle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. An example of a Reeb graph. 

Fig. 5. A pair of pants. 

Fig. 6. Two non-isotopic pants decompositions of a genus 2 surface. 
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topological matching [22] , implicit surfaces [46] , surface segmen-

tation [53] , spline construction [49] and many other applications. 

Let M be a triangulated surface, and let f : M −→ I be a piece-

wise linear (PL) continuous function on M . The link Lk ( v ) of a ver-

tex v is defined as the set of all vertices w that v shares an edge

[ v, w ] with. The upper link of v is defined as 

Lk + (v ) = { u ∈ Lk (v ) : f (u ) > f (v ) } , 
and the lower link is defined by 

Lk −(v ) = { u ∈ Lk (v ) : f (u ) < f (v ) } , 
and mixed link 

Lk ±(v ) = { (u 1 , u 2 ) : f (u 1 ) < f (v ) < f (u 2 ) } . 
Using the link definitions we can classify the interior vertices of

M . The boundary vertices are treated separately as we will require

f to have identical values on them. An interior vertex v is regular if

| Lk ±(v ) | = 2 , is a maximum with index 2 if | Lk + (v ) | = 0 , is a min-

imum with index 0 if | Lk −(v ) | = 0 , and is a saddle with index 1

and multiplicity m ≥ 1 if | Lk ±(v ) | = 2 + 2 m (See Fig. 3 ). A vertex is

a simple critical point if it is either minimum, or maximum, or a

saddle with multiplicity 1. A PL function on a closed triangulated

surface M is PL Morse if all its vertices are either PL regular or sim-

ple PL critical and have distinct function values. If the mesh M has

a non-empty boundary then we also require (1) f −1 (∂ I) = ∂M, and

(2) the critical vertices of f lie in the interior of M . 

2.3. Reeb graph 

Let M be a surface possibly with boundary ∂M , and let f :

M −→ [0 , 1] be continuous. Define the equivalence relation ∼ on

M by x ∼ y if and only if f (x ) = f (y ) = c ∈ [0 , 1] and x and y be-

long to the same connected component of the level set f −1 (c) .

The set R ( f ) = X/ ∼ with the standard quotient topology is called

Reeb graph of f . When f is smooth and Morse, or PL Morse, every

vertex of the R ( f ) arises from a critical point of f or a boundary

component. Every maximum or minimum of f gives rise to a de-

gree 1-node of R ( f ). Since f is Morse, every boundary component

also gives rise to a degree 1-node and every saddle of f gives rise

to degree 3-node. If M is an embedded surface without boundary

then M can be recovered up to a homeomorphism from R ( f ) as

the boundary of an oriented 3-dimensional regular neighborhood

of the graph R ( f ) [20] . This fact is the essence of the Reeb graph-

based pant decomposition Algorithm 5 . See Fig. 4 for an example

of a Reeb graph. 

Remark 1. One reason that we require the Morse function to as-

sume constant values on boundaries is that it makes it consistent

with the definition of the Reeb graph we give here. Note that each

boundary component maps exactly to one point on the Reeb graph.

The definition of Reeb graph goes back to Reeb [39] . It was first

introduced to computer graphics in [42] . Reeb graph has found ap-

plications in shape understanding [1] , quadrangulation [21] , sur-

face understanding [5] , segmentation [52] , parametrization [38,55] ,

animation [24] and many other applications. Reeb graphs algo-

rithms can be found in many papers such as [8,14,37,44] . The most

efficient algorithms in terms of time complexity are due to [18,36] .
. Pants decomposition 

Let M be a compact, orientable, and connected surface. We say

hat M is of type ( g, b ) if M is of genus g and has a b boundary

omponents. A pair of pants is a surface of type (0, 3) (See Fig. 5 ).

A pants decomposition of M is a finite collection of unordered

airwise disjoint simple closed curves { c 1 , . . . c n } embedded in M

ith the property that the closure of each connected component

f M − (c 1 ∪ . . . ∪ c n ) is a pair of pants. Two pants decompositions

f M are equivalent if they are isotopic. More precisely, we two

ants decompositions { α1 , . . . αn } and { β1 , . . . βn } of a surface M

re equivalent if there exists a homotopy 

 : S 1 × [0 , 1] −→ M 

hat takes the curves { α1 , . . . αn } to the curves { β1 , . . . βn } such that

or every t ∈ [0, 1] the map H ( S 1 × { t }) is a homemorphism onto

he image. Here S 1 denotes the unit circle. See Fig. 6 for an exam-

le of two non-isotopic pants decompositions of a genus-2 surface.

Let M be a compact orientable surface and connected surface

f type ( g, b ). The Euler characteristic of M, denoted by χ ( M )

s defined as χ(M) = 2 − 2 g − b. Every connected, compact and

rientable surface M with χ ( M ) < 0, genus g and b boundary

omponents admits a pants decomposition with 3 g − 3 + b simple

losed curves and the number of complementary components is

 g − 2 + b = | χ(M) | . 

. Handle-based pants decomposition 

In this section we use handles given by a Morse function to

esign an algorithm for decomposing a surface M with χ ( M ) < 0



M. Hajij et al. / Graphical Models 88 (2016) 12–21 15 

Fig. 7. Two possible ways to glue a disk to the surface of type (0, 2). 
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Fig. 8. M f,t 3 + ε is homeomorphic to a type (0, 3) or to a type (1, 1). 

Fig. 9. Cutting a surface of genus 4 along the values c i . 
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nto a collection of surfaces of type (0, 3). Our algorithm works for

rbitrary surface M with χ ( M ) < 0 and with or without a bound-

ry. However, in order to guarantee the correctness of our algo-

ithm we must choose a function with certain properties. Ideally,

his function should be PL Morse with these properties when M is

 surface mesh. We cannot always guarantee that the function is

L Morse, but we can compute one that satisfies all required prop-

rties except the simplicity of the saddles. We first describe the

lgorithm assuming a PL Morse function and later mention how to

andle the exceptions of degenerate saddles. 

.1. Orientable surfaces with χ ( ·) < 0 and no boundary 

In this section, we give an algorithm to compute a pants de-

omposition of a triangulated surface with genus g ≥ 2 without

oundary. Let M be a compact connected orientable surface with

enus g ≥ 2 without boundary and let f be a PL Morse function

n M . Suppose that t 1 , t 2 , . . . , t n are the critical values for f ordered

n an ascending order. Let p 1 , p 2 , . . . , p n be the corresponding crit-

cal points of f . Choose a real number ε > 0 small enough so that

or each 1 ≤ i ≤ n there are no critical values for f on the inter-

al [ t i − ε, t i + ε] except t i . Finally we assume that function f has

xactly one minimum and exactly one maximum. It is clear from

he choice of the function f that one of the points p 1 and p n is the

lobal maximum and one of them is the global minimum. Since

ultiplying any Morse function on a surface by −1 changes its crit-

cal points of index 0 to critical points of index 2 and vice versa,

e can always choose our Morse function f so that p 1 is the global

inimum and p n is the global maximum. It should be noted that

uch a function can be constructed in practice and we will talk

bout the construction of such functions later. We need the fol-

owing lemma for the correctness of our algorithm. 

emma 2. Let M be a compact connected orientable surface with a

orse function f chosen as specified above then M t 3 + ε is homeomor-

hic to a surface of type (1, 1) or a surface of type (0, 3) . 

roof. The choice of the scalar function f implies immediately

hat for each 2 ≤ i ≤ n − 1 we have index f (p i ) = 1 . Moreover,

y construction we have index f (p 1 ) = 0 and index f (p n ) = 2 . By

heorem 2 we conclude that M t 1 + ε is diffeomorphic to a disk and

 t 2 + ε is diffeomorphic to surface of type (0, 2). 

Moreover, by Theorem 2 , when f passes through t 3 the surface

 t 3 + ε is obtained from M t 2 + ε by gluing a rectangular strip D 

1 × D 

1 

o the boundary of M t 2 + ε along D 

1 × ∂D 

1 . Up to a homeomophism,

here are two possible ways of gluing the rectangular strip D 

1 ×
 

1 to the boundary of M t 2 + ε along D 

1 × ∂D 

1 . See Fig. 7 . We ei-

her glue this rectangular strip to the same boundary component

f M t + ε to obtain a surface of type (0, 3) or we glue each side of

2 
he strip on one of the boundary components to obtain a surface

f type (1, 1). See Fig. 8 . 

�

emark 2. Using similar argument one can prove that the surface

 t n −2 −ε is either of type (0, 3) or a surface of type (1, 1). 

Lemma 2 holds in the case when the function f is PL Morse

n a triangulated surface. However, the case when the PL scalar

unction has saddle points with multiplicity larger than or equal

o 2 needs special treatment and Lemma 2 is no longer valid. We

eal with such cases in Section 4.3 . 

Lemma 2 and Remark 2 will be used to obtain the first and the

ast pants in our pants decomposition. The algorithm is as follows:

1. Compute the critical points of f and put them in an ascend-

ing order. Let p 1 , p 2 , . . . , p n be the sequence of ordered critical

points of f and let t 1 , t 2 , . . . , t n be their corresponding critical

values. Note that n = 2 g + 2 by our choice of the scalar func-

tion f . 

2. For each 3 ≤ i < n − 3 let c i = 

t i + t i +1 
2 . After reindexing, we define

the set C = { c i | 1 ≤ i ≤ 2 g − 3 } . In other words, the set C is a set

of ordered regular values for f such that there is exactly one

critical value for the function f in the intervals [ c i , c i +1 ] for 1 ≤
i ≤ 2 g − 3 . See Fig. 9 for an example. 

3. Cut the surface M along the level sets f −1 (c) for all c ∈ C . Note

again that the values c ∈ C are all regular values. 

4. By Lemma 2 the surface M c 1 is either of type (1, 1) or of type

(0, 3). If M c 1 is of type (1, 1), then we trace a loop from the

saddle point p 2 to the minimum point p 1 and cut the surface

along that loop. We explain later a method of tracing this loop.
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Fig. 10. Tracing a loop from the first saddle point p 2 to the minimum p 1 . 

Fig. 11. Illustration of the handle-based pants decomposition algorithm: (a) Cutting 

the surface along c 1 , c 2 , c 3 , c 4 and c 5 . Note that M initial is a pants in this example. (b) 

Attaching cylinders that appear on the second level to M initial and keeping the pant 

component. (c) Attaching cylinders at each level to the previous level and keeping 

the pant component. (d) The surface M − f,c 2 g−3 
= M − f,c 4 is a surface of type (1, 1) so 

we trace a loop from the saddle to the minimum of − f and cut the surface along 

this loop. 
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face with a single boundary components: ( a ) Cutting the surface along c 1 , c 2 . c 3 
and c 4 . ( b ) Attaching cylinders at each level to the previous level and keeping the 
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See Fig. 10 . Otherwise, if the surface is of type (0, 3) we do not

need to do anything. In either cases, we denote the resulting

surface of type (0, 3) by M initial . 

5. Consider the manifold with boundary M [ c 1 ,c 2 ] 
. This surface is a

finite disjoint union of one surface of type (0, 3) and multiple

surfaces of type (0, 2). Attach every surface of type (0, 2) to

M initial . Note that this gluing does not change the homeomor-

phism type of M initial . See Fig. 11 (b). 

6. For each 1 < i < 2 g − 3 consider the manifold with boundary

M [ c i ,c i +1 ] 
. This surface is again a finite disjoint union of one sur-

face of type (0, 3) and multiple surfaces of type (0, 2). Attach

every surface of type (0, 2) to M [ c i −1 ,c i ] 
. See Fig. 11 (c). 

7. The remaining part M − f,c 2 g−3 
is either of type (1, 1) or of type

(0, 3). If the surface M − f,c 2 g−3 
is of type (1, 1) then trace a loop

from the saddle point p n −1 to the point p n and cut the surface

M − f,c 2 g−3 
along this loop to obtain a pant. Otherwise, if the sur-

face is of type (0, 3) we do not need to do anything. 

Note that the algorithm constructs a collection of pants induc-

tively. We start by having the first pair of pants in step 4 and then

we go to the next level which is a finite disjoint union of a sin-

gle pant and some topological cylinders. We attach the cylinders

to the previous pant and then we go to the next level and repeat

the same process. 

We should clarify here what we mean by tracing a loop from

the saddle to the minimum point we mentioned in step (4). Let

p 2 the simple saddle point and p 1 be the unique minimum point

for the PL scalar function f on M specified in our algorithm above.

The point p is a simple saddle, hence the set Lk −(p ) can be de-
2 2 
omposed into two disjoint connected components A and B . Pick

he vertex v A in A such that f ( v A ) ≤ f ( v ) for all v ∈ A . The ver-

ex v B is chosen similarly. A descending path from a regular ver-

ex v 0 , denoted by dpath ( v 0 ), is defined to be a finite sequence

f vertices { v 0 , . . . , v k } on M such that < v i , v i +1 > is an edge on

 for 0 ≤ i ≤ k − 1 , f (v i ) < f (v i −1 ) , and v k is a minimum. A loop

onnecting p 2 and p 1 can be computed as the concatenation of

path ( v A ), < p 2 , v A > , < p 2 , v B > , and dpath ( V B ). The loop in step

7) is computed analogously by considering an ascending path. 

.2. Orientable surfaces with χ ( ·) < 0 and non-empty boundary 

In this section we present an algorithm to decompose a sur-

ace M with χ ( M ) < 0 with boundary components. The algorithm

ollows almost similarly as before. The main difference is that we

eed to take care of the choice of the Morse function. We have two

ases, (1) The surface M has exactly one boundary component (2)

he surface M has more than one boundary component. 

Let M be a compact connected orientable surface with χ ( M ) <

 and one boundary component �. We pick a point p max on the

urface and construct a Morse function f : M −→ [0 , 1] that satis-

es the following conditions: 

1. f −1 (�) = 0 and f ( x ) > 0 for all x in M \ �. 

2. The point f −1 (1) = x max is a global maximum. 

3. The function f does not have any critical point of index 0 or 2

except for p max . 

The pants decomposition algorithm for a surface M with χ ( M )

 0 and one boundary component � algorithm goes now as fol-

ows: 

1. Compute the critical points of f and put them in an ascend-

ing order. Let p 1 , p 2 , . . . , p n be the ordered critical points of

f and let t 1 , t 2 , . . . , t n be the corresponding critical values. By

our choice of the Morse function, we have index (p i ) = 1 for all

1 ≤ i ≤ n − 1 and index (p max ) = 2 . 

2. For each 1 ≤ i < n − 3 let c i = 

t i + t i +1 
2 . Define the set C = { c i | 1 ≤

i ≤ 2 g − 3 } . In other words, the set C is a set of ordered regular

values for f such that there is exactly one critical value in the

interval [ c i , c i +1 ] . See Fig. 12 for an example. 

3. Cut the surface M along the level sets f −1 (c) for all c ∈ C . 

4. Consider the manifold M initial := M [ −ε,c 1 ] 
. By our choice of the

Morse function M initial is a of type (0, 3). 

The rest of the pants decomposition algorithm for a surface is

imilar to steps (5), (6) and (7) of the algorithm in Section 4.1 . 

Now we discuss the final case. Suppose that M has boundary

omponents �1 , . . . , �k where k ≥ 2. Here we also need to con-

truct a Morse function that serves our purpose. We need a Morse

unction f : M −→ [0 , 1] that satisfies the following: 

1. We choose one of the boundary component, say �1 , and we

construct f such that f −1 (0) = � and f ( x ) > 0 for all x ∈ M \ � .
1 1 
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Fig. 13. Illustration of the handle-based pants decomposition algorithm on a sur- 

face wit multiple boundary components: ( a ) Cutting the surface along c 1 , c 2 . c 3 , c 4 , 

c 5 and c 6 . ( b ) Attaching cylinders at each level to the previous level and keeping 

the pants components. 

Fig. 14. Pants decomposition using our Handle-based algorithm. 
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Fig. 15. The Reeb graph obtained by restricting the PL scalar function on the man- 

ifold M t 2 + ε . The red point is the unique minimum of f on M , the green point is the 

degenerate saddle point, and the blue points represent the boundary circles of the 

surface M t 2 + ε . (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 16. The two possible cases of the Reeb graph obtained by restricting the scalar 

function on the surface M t 3 + ε . 
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2. f −1 (1) = ∪ 

k 
i =2 

�i . 

3. The function f does not have any critical point of index 0 or 2. 

As we did earlier, let p 1 , p 2 , . . . , p n be the ordered critical points

f f and let t 1 , t 2 , . . . , t n be the corresponding critical values of f .

efine the values c i = 

t i + t i +1 
2 for all 1 ≤ t i ≤ n − 1 . By our choice

f the Morse function, the manifold M [ c i ,c i +1 ] 
is homeomorphic to

 finite disjoint union of one surface of type (0, 3) and multiple

urfaces of type (0, 2). In particular M [ −ε,c 1 ] 
is a pants. The pants

ecomposition algorithm now is similar to the previous algorithm

xcept that we do not trace any loop in this case since all con-

ected components after cutting along the regular values of C are

ants or cylinders. See Fig. 13 for an example. 

Fig. 14 shows multiple examples of pants decomposition of sur-

aces using this algorithm. 

.3. Dealing with degenerate cases 

In this section we deal with the case when the index of a crit-

cal point p i is 1 and has multiplicity m ≥ 2. We formulate our

rguments in terms of Reeb graph for clarity. 

1. If the point p 1 is a degenerate saddle point then the Reeb graph

obtained from the quotient space of M t + ε appears as in Fig. 15 .

2 
In this case the surface M t 2 + ε is of type (0, b ) where b > 3 and

we can decompose this surface into pants as described earlier. 

2. The point p 2 is a simple saddle and the point p 3 is a degener-

ate one. In this case the Reeb graph obtained from the surface

M t 3 + ε has two possibilities and they both appear in Fig. 16 . 

In the case when the Reeb graph appears as in left hand side of

Fig. 16 then M t 3 + ε is homeomorphic to a surface of type (0, b )

where b ≥ 4. This surface can be decomposed into pants as we

described earlier. The case when the Reeb graph appears as in

the right hand side of Fig. 16 then the M t 3 + ε is surface of type

(1, b ) where b > 2. We can cut this surface along the simple

saddle using descending path by tracing a loop from the sim-

ple saddle point the unique minimum using descending path as

we described earlier into a sphere with b + 2 boundary com-

ponents. The latter can be also decomposed into pants as ex-

plained in earlier sections. Note that this case is an extension

of the simple case we considered in Lemma 2 . 

3. The case when p i is a degenerate saddle where 2 < i < n − 2 . In

this case f −1 (t i − ε, t i − ε) , for a sufficiently ε, is a finite dis-

joint union of multiple surfaces of type (0, 2) and one surface

of type (0, b ) where b ≥ 4. When we have this, we attach the

cylinders just as before to previous pants and we apply Morse

function-based algorithm again on the single remaining sphere

with b boundary components to decompose it into pants. 

emark 3. We left out two cases, namely the cases when p n −1 is

egenerate and the case when p n −1 is simple saddle and p n −2 is

 degenerate one. These two cases can be dealt with as cases (1)

nd (2) above. 
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Fig. 17. The steps of the Reeb graph-based pants decomposition algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. Pants decomposition using our Reeb graph-based algorithm. 
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5. Reeb graph-based pants decomposition 

In this section we give pants decomposition algorithm using

the Reeb graph of a Morse function. This algorithm is implicit in

the work of [19] . We extend this algorithm to handle degener-

ate cases that show up in practice. The Reeb graph decomposition

algorithm has many advantages over the previous algorithm. The

main advantage of this algorithm lies in the fact that it does not

put any restriction on the choice of the Morse function. This al-

lows us to choose a scalar function with better geometric prop-

erties. The second advantage is that choosing a cutting circle on

a surface is much more flexible when using the structure of the

Reeb graph than choosing the inverse image of a regular value of

a Morse function. 

Let M be a compact orientable (triangulated) surface, possibly

with boundary, such that χ ( M ) < 0. Let f be an arbitrary (PL)

Morse function of M . The Reeb graph-based pants decomposition

algorithm of the surface M and the Morse function f goes as fol-

lows: 

1. Compute the Reeb graph R ( f ) of ( M, f ). 

2. There are two types of 1-valence nodes on the graph R ( f ), the

1-valence nodes that are a result of collapsing the boundary

components of M and the 1-valence nodes that are coming

from critical points of f of index 0 and 2. We consider the graph

R ( f ) obtained by taking the deformation retract of the graph

R ( f ) that leaves the edges coming from the boundary compo-

nent without retraction. This step can be done by iteratively

deleting the edges one of whose nodes has valence 1 until there

are no more such edges except the ones which have 1-valence

nodes originating from boundary components. See Fig. 17 step

(3) for an example of such retraction. 

3. We remove all the nodes on the graph R ( f ) of valency 2 and

we combine the two edges that meet at such a node into one

edge. We also denote the graph obtained from this step by

R ( f ) . Note that this graph is trivalent by construction. 

4. We select an interior point on every edge of the graph R ( f )

provided that neither one of the two nodes defining that edge

has valency 1. Note that the selection of the these points on

the graph R ( f ) corresponds to partitioning the graph R ( f ) into

a collection of small graphs each one of them is a vertex con-

nected by small three arcs. See step (5) in Fig. 17 . Each one of
these small graphs corresponds to a pair of pants on the surface

M . 

5. Each choice of an interior point induces a choice of a simple

closed curve on the original surface M . The collection of all

curves obtained in this way defines a pants decomposition of

the surface M . 

Fig. 18 shows an application of this algorithm on some surfaces.

.1. Dealing with degenerate cases 

In the case when some critical points of index 1 have multiplic-

ty m ≥ 2, we proceed as described in steps 1 through 5. However,

he final result of the decomposition will no longer be a collec-

ion of pants but rather it will contain some surfaces of type (0,

 ) where b ≥ 4. For each single surface of these surfaces we ap-

ly one of the pants decomposition algorithms again in order to

ecompose it into a collection of pants. 

. Choosing an appropriate scalar function 

We need to construct a function that suits the algorithms that

e have presented. For the algorithm given in Section 4.1 we need

 scalar function that has one global minimum and one global

aximum. This can be done by solving a Laplace equation on a

esh with Dirichlet boundary condition. A scalar f function that

atisfies the Laplace equation 	 f = 0 is called harmonic . We are

eeking here is a scalar function f which satisfies the Laplace equa-

ion 	 f = 0 subject to the Dirichlet boundary conditions f (v i ) = c i 
or all v i ∈ V C . Here V C ⊂ V is a set of constrained vertices and c i
re known scalar values providing the boundary conditions. This

ystem has a unique solution provided | V C | ≥ 2. Furthermore, the

olution for such a system has an important property that it has no
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Table 1 

Run-time in seconds; “Fail” means that the software crashes on the input mesh. The 

running time is in seconds. 

Model Vertices Topology Alg. 1 time Alg. 2 time. Alg. [29] time 

Eight 3070 G = 2 0 .588 0 .322 11 .74 

David 26138 G = 3 24 .637 5 .593 64 .43 

4-Torus 10401 G = 4 4 .1495 1 .815 4 .52 

Vase 10014 G = 2 2 .793 1 .224 4 .12 

Greek 43177 G = 4 90 .426 10 .567 275 .2 

Topology 6616 G = 13 7 .098 2 .827 Fail 

Knotty 5382 G = 2 1 .244 0 .606 Fail 
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Table 2 

The scalar fields used on each model in our experimentation for the Reeb graph- 

based algorithm. 

Model Our choice of the scalar field Other appropriate scalar fields 

Eight Laplacian Eigenfunctions Harmonic functions 

David Poisson fields Harmonic functions 

4-Torus Multi-source heat kernel maps Isometry invariant fields 

Vase Harmonic functions Poisson fields 

Greek Harmonic functions Poisson fields 

Topology Isometry invariant fields Poisson fields 

Knotty Poisson fields Harmonic functions 
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d  
ocal extrema other than the constrained vertices. This property of

armonic functions is usually called the maximum principle [41] .

esigning such a function is possible in practice. Recall that on tri-

ngulated mesh M the standard discretization for the Laplacian op-

rator at a vertex v i is given by: 

f (v i ) = 

∑ 

[ v i , v j ] ∈ M 

w i j ( f (v j ) − f (v i )) , 

here w ij is a scalar weight assigned to the edge [ v i , v j ] such that
 

[ v i , v j ] ∈ M 

w , j = 1 . Choosing the weights w ij such that w ij > 0 for

ll edges [ v i , v j ] guarantees the solution of the Laplace equation

as no local extrema other than at constrained vertices V C [15] .

hese conditions are satisfied by the mean value weights : 

 i j = 

tan (θi j / 2) + tan (φi j / 2) 

|| v j − v i || , 

here the angles θ ij and φij are the angles on either sides of the

dge [ v i , v j ] at the vertex v i . Mean value weights are used to ap-

roximate harmonic map and they have the advantage that they

re always non-negative which prevents any introduction of ex-

rema on non-constrained vertices in the solution of the Laplace

quation specified above. On the other hand, the cotangent weights

ay become negative in presence of oblique triangles and this can

roduce local extrema on non-constrained vertices. In this context

ee also [51] for various discretizations of the Laplace-Beltrami op-

rator and their properties. In our Morse function-based algorithm

or pants decomposition we needed a scalar function that has pre-

isely one global minimum and one global maximum. Hence, the

onstrained vertices V C is chosen to have exactly two vertices V C =
 v min , v max } such that f (v min ) < f (v max ) . This choice will guaran-

ee that the solution f has a single minimum at v min and a single

aximum at v max . Hence, every other critical point for f must be

 saddle point which is a requirement for Algorithm 4.1 . Similarly,

 harmonic scalar function can be used to obtain the pants de-

omposition Algorithm 4.2 for a surface with multiple boundary

omponents. 

Even though our second algorithm works on a generic Morse

unction, we choose a function that captures the geometry and the

ymmetry aspects of the mesh. This was not possible in the pre-

ious algorithm due to the restriction of the input function. Our

hoice for scalar functions were made based on the object itself.

or organic objects like the human body we choose the Poisson

eld [12] . On the other hand, for objects with some symmetry, we

ound that isometry invariant scalar functions [ 26,47,50 ] and multi-

ource heat kernel maps [17] give the best results. 

. Experiments 

.1. Run-time comparison 

We ran our experiments on a 3.70 GHz AMD(R) A6-6300 with

0.0 Gb memory. We implement all the algorithms presented

n Table 1 using C++ on a Windows platform. The algorithms
ere tested on different models and compared their run-time

ith a publicly available software running the algorithm of [29] .

able 1 shows that time comparison between these algorithms.

he running times that are provided in the table includes the time

eeded for computing the scalar functions needed as an input for

n out algorithms and exclude the time needed to compute the ho-

ology generators needed for the algorithm of [29] . We did not

nclude the pants decomposition algorithm presented in [56] since

t is not different fundamentally from the one in [29] . The main

urpose of the framework in [29] is to enumerate different pants

ecomposition classes starting from an initial pants decomposition

hich is computed using the method given in [29] . The algorithms

hat we presented here perform much better than the algorithm in

29] . In particular, the Reeb graph algorithm gives us the best time

fficiency. 

We mentioned in 6 that our choice of the scalar function relies

n the geometry that we deal with. In Table 2 we list our choices

or the scalar functions that we used in our experimentation in

he Reeb graph-based pants decomposition algorithm. We also list

n the same table other scalar functions that we found potentially

seful and could be used on the same model to produce similar re-

ults. In our Handle-based pants decomposition algorithm all scalar

elds are Harmonic fields by our remark in Section 6 . 

Fig. 19 shows examples of the scalar functions used in the input

or our algorithms. The Figure also shows the critical points of the

calar functions. 

.2. Imperfect input 

Just to test how robust are our algorithms against noise, we

an our algorithms on surfaces corrupted with deliberate noise.

e applied random displacements to the coordinates of the in-

ut mesh and tested the results. We applied noise amplitude up

o 15% of the bounding box length for the input mesh. Both algo-

ithms maintained correct and meaningful outputs. See Fig. 20 for

ome examples. 

. Conclusion 

Morse theory is a powerful mathematical tool that uses local

ifferential properties of a manifold to infer its global topological
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Fig. 19. Two of the scalar functions used in the input for our algorithms. One the 

David model on the left a Poisson field is produced and on a multi-source heat 

kernel scalar field on the 4-Torus model on the right. 

Fig. 20. Pants decomposition for a noisy surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

properties. Using a PL version of the theory, we have given two al-

gorithms to decompose a surface mesh into pants. The algorithms

we proposed here remove the constrains required by earlier algo-

rithms and the run time much faster than the existing state-of-the-

art method. 

The choice of a Morse function has an impact on the output

of the pants decomposition algorithms that we propose here. We

have proposed some scheme to compute functions suitable for

our pants decomposition algorithms. These scalar functions satis-

fies certain desirable geometric properties. By the term desirable we

mean one or more of the following properties 

1. The isolines of the scalar function are shape-aware in the sense

that they follow one of the principal directions of the surface. 

2. The critical points of the scalar function coincide with feature

or the symmetry points on the surface. 

3. If the surface has some sort of symmetry then the scalar field

also inherits the symmetry of the surface. 

4. Minimal user input. 

However, are there alternative schemes which give better pants

with some desirable geometric properties? We intend to address

this issue in future. 
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