Approximating the Medial Axis from the Voronoi Diagram with
a Convergence Guarantee

Tama K. Dey Wulue Zhao

Department of CIS, Ohio State University, Columbus, OH 43210, USA
email:{tamal dey,zhaow} @cis.ohio-state.edu

Abstract

The medial axis of a surface in 3D is the closure of all points
that have two or more closest points on the surface. It is an
essential geometric structure in a number of applications
involving 3D geometric shapes. Since exact computation
of the medial axis is difficult in general, efforts continue
to improve their approximations. Voronoi diagrams turn
out to be useful for this approximation. Although it is
known that Voronoi vertices for a sample of points from
a curve in 2D approximate its medial axis, similar result
does not hold in 3D. Recently, it has been discovered that
only a subset of Voronoi vertices converge to the medial
axis as sample density approaches infinity. However, most
applications need a non-discrete approximation as opposed
to a discrete one. To date no known algorithm can compute
this approximation straight from the Voronoi diagram with a
guarantee of convergence. We present such an algorithm and
its convergence analysis in this paper. One salient feature
of the algorithm is that it is scale and density independent.
Experimental results corroborate our theoretical claims.

Keywords: Medial axis, Geometric Modeling, samples, Voronoi
diagram, Delaunay triangulation.

1 Introduction

The medial axis of a shape is defined when the shape is em-
bedded in an Euclidean space and is endowed with a distance
function. Informally, it is the set of all points that have more
than one closest point on the shape. The medial axis provides
a compact representation of the shapes which has been used
in a number of applications including image processing [22],
computer vision [9, 23], solid modeling [19, 20, 28], mesh
generation [25, 26], motion planning [18] and many others
[21, 29]. The shapes in this paper are surfaces embedded in
three dimensions.

Application demands have prompted research in the com-
putational as well as the mathematical aspects of the me-
dial axis in recent years. As a mathematical structure they
are instable since a small change in shape can cause a rela-
tively large change in its medial axis [17, 30]. They are hard

to compute exactly due to numerical instability associated
with their computations. Few algorithms, and only for spe-
cial classes of shapes, have been designed till date to com-
pute the exact medial axis [12, 20]. Consequently, efforts
have been made to approximate the medial axis. For poly-
hedral input Etzion and Rappoport [16] suggest an approx-
imation method based on octree subdivisions of space. An-
other scheme considered by many uses a set of sample points
on the shape and then approximates the medial axis with the
\oronoi diagram of these points [4, 5, 6, 11, 25, 29].

We follow the Voronoi diagram approach. It is particularly
suitable for point cloud data, which are increasingly being
used for geometric modeling over a wide range of applica-
tions. It is known that the Voronoi vertices approximate the
medial axis of a curve in 2D. In fact, Schmitt [24] and Brandt
[10] show that if the sample density approaches infinity, the
\Voronoi vertices in this case converge to the medial axis. Un-
fortunately, the same is not true in three dimensions. Amenta,
Bern and Eppstein [2] observe that some Voronoi vertices,
the centers of the flat tetrahedra called “slivers’, can come
close to the surface no matter how dense a sample is. In order
to alleviate this problem in the context of surface reconstruc-
tion, Amenta and Bern [1] identify some Voronoi vertices
called ‘poles’ that remain far from the surface. These poles
are the farthest Voronoi vertices from the sample points in
their Voronoi cells. Boissonnat and Cazals [7] and Amenta,
Choi and Kolluri [4] show that the poles indeed lie close to
the medial axis and converge to it as the sample density ap-
proaches infinity.

The convergence result of poles to the medial axis is a
significant progress in the medial axis approximation in 3D.
However, many applications require and often prefer a non-
discrete approximation rather than a discrete one. In 2D,
Brandt and Algazi [11] achieve this by retaining a subset of
Voronoi edges incident to the Voronoi vertices. In 3D, since
poles lie close to the medial axis, Amenta, Choi and Kolluri
[4] design an algorithm that connects them with a cell com-
plex. They consider the Delaunay balls centering the poles
and then compute the medial axis of the boundary of the
union of these balls by the weighted Delaunay triangulation
of the poles with the radii of the Delaunay balls as weights.
This is the first algorithm that produces a continuous approx-
imation of the medial axis with theoretical guarantees in 3D.



However, this method requires a second Voronoi diagram to
compute the medial axis and, more importantly, produces
noisy medial axis in some cases. Heuristics have been pro-
posed to clean up these noisy medial axes, but these heuris-
tics are not scale independent.

In this paper we propose to approximate the medial axis
directly from the Voronoi diagram. Approximating the me-
dial axis straight from the Voronoi diagram in 3D has been
proposed in the past. In a nice work, Attali and Lachaud [5]
(also see [6]) show how to prune the Voronoi diagram with
an angle and length criterion to approximate the medial axis.
Although the strategy achieves good results in many cases,
the pruning is scale dependent and more seriously depends
on the sampling density. Consequently, one needs to fine tune
the pruning parameters individually for each data set and it
is not clear if these strategies are apt for a data set where the
density varies in different parts of the shape.

Our algorithm also uses two criteria to select the Voronoi
facets from the Voronoi diagram. But, unlike [5, 6], these two
criteria are scale and density independent and the algorithm
has a convergence guarantee. We filter Delaunay edges from
the Delaunay triangulation of the sample points and then out-
put their dual Voronoi facets as an approximate medial axis.
The approximation depends upon a sampling density param-
eter ¢ that tends to zero as the sampling density on the sur-
face S approaches infinity. A subset of the medial axis satis-
fying certain condition that depends on ¢ is approximated by
a point in the output. As e approaches zero with increasing
density, this subset coincides with the complete medial axis
meaning that all points in the medial axis are approached by
a point in the output. The thresholds used for two criteria to
filter the Delaunay edges remain fixed over data sets of dif-
ferent densities. Thus, there is no need for fine tuning the
parameter values. Our experiments with different data sets
also support our theoretical claims.

The rest of the paper is organized as follows. Section 2
contains preliminaries and definitions that we use later. Sec-
tion 3 details the two conditions that we use to filter the De-
launay edges and describes the algorithm. In section 4 we
prove the guarantees of convergence. Section 5 contains the
experimental results and we conclude in section 6.

2 Preliminaries and Definitions

Let P be a point sample from a smooth compact surface S C
R® without boundary. A ball is called medial if it meets S
only tangentially in at least two points. The medial axis of
S is defined as the closure of the set of centers of all medial
balls. Each point on S has two medial balls, one touching it
from outside and the other touching it from inside. It follows
that the line going through a point p € S and the centers
of its medial balls is normal to S at p. See Figure 1 for an
illustration in 2D.

Obviously, the medial axis of S can be approximated from
a sample P only if it is dense enough to carry information

Figure 1: A curve (dashed), some medial balls (dotted) and
the medial axis (solid) in 2D.

about the features of S. Following Amenta and Bern [1] we
define the local feature size f() as a functionf : S — R where
f(x) is the distance of x € S to the medial axis. Intuitively, f ()
measures how complicated S is locally. It is known that the
function f () is 1-Lipschitz continuous, i.e., f(p) < f(q)+||p—
q|| for any two points p, q in S [1]. A sample is an e-sample
if each point x € S has a sample point within f (x) distance.
Generally, in practice, a sample is dense if £ < 0. 25 though
in most cases theoretical guarantees require much smaller
values.

The Voronoi diagram and its dual, the Delaunay triangu-
lation, play a key role in capturing information about shapes.
This observation has led to a number of algorithms for the
related problem of surface reconstruction which exploit the
structures of these diagrams [1, 3, 7, 14, 15]. The Voronoi
diagram Vp for a point set P € R® is a cell complex con-
sisting of Voronoi cells {V,}pep and their facets, edges and
vertices, where Vp = {x € R*|||p — x|| < ||lq — x||, Vq € P}.
The dual complex, Dp, called the Delaunay triangulation of
P, consists of Delaunay tetrahedra and their incident trian-
gles, edges and vertices. A Delaunay tetrahedron is dual to
a Voronoi vertex, a Delaunay triangle is dual to a \oronoi
edge, a Delaunay edge is dual to a Voronoi facet and a De-
launay vertex is dual to a Voronoi cell. We say e = Dual g
if e and g are dual to each other in the two diagrams. It
is an important result proved by Amenta and Bern [1] that
the Voronaoi cells are elongated along the normal direction to
the surface at the sample points if the sample is sufficiently
dense. The definition of poles plays an important role in ap-
proximating these normals.

Definition 1 The pole p* of a sample point p is the farthest
Voronoi vertex in the Voronoi cell Vp. If V, is unbounded,
p* is taken at infinity. The vector v, = p* — p is called the
pole vector for p and its direction is taken as the average of
all directions of infinite edges in case Vp is unbounded, see
Figure 2.

It is proved that the pole vector v, approximates the nor-
mal np, to the surface S at p up to orientation [1].

Definition 2 The tangent polygon for a sample point is de-
fined as the polygon in which the plane through p with v, as
normal intersects V. See Figure 2(a) for an illustration.



(b)

Figure 2: A Voronoi cell V,. The corresponding pole, pole
vector, tangent polygon (a), and the umbrella (b).

Since vy, approximates n,, the tangent polygon approxi-
mates the tangent plane at p restricted within V,. We define
a dual structure to the tangent polygon from the Delaunay
triangulation Dp.

Definition 3 The umbrella U, for a sample point p is defined
as the topological disc made by the Delaunay triangles inci-
dent to p that are dual to the Voronoi edges intersected by
the tangent polygon. See Figure 2(b).

The umbrella U, approximates the surface locally at p.
The triangles in the umbrella lie very close to the restricted
Delaunay triangles that are dual to the Voronoi edges in V,
intersecting the surface.

Notations. In what follows we use the following nota-
tions. The notation Zu, v denotes the the acute angle between
the lines supporting two vectors u and v. The tangent vector
going from a point p to q is denoted with t,q. The normal to
a triangle pgr is npge and its circumradius is Rpgr.

3 Algorithm

Our aim is to approximate the medial axis with a subset
of Voronoi facets and their closures. The closure CIF of a
\oronoi facet F is the set of all incident Voronoi edges and
vertices of F and F itself. We choose these Voronoi facets as
the dual of a set of selected Delaunay edges. This means we
need some conditions to filter these Delaunay edges from
Dp. Let us examine a medial ball B closely to determine
which Delaunay edges we should select. Consider Figure 3.
The segment pg makes an angle 8 with the tangent plane at
p and q where the medial ball touches the surface S. If B
touches S in more than two points, let p and q be such that
the angle 6 is maximal. We associate each medial axis point
m, and also the points where B meets S, with such an angle
8, which we call their medial angle. The medial axis is ap-
proximated by Voronoi facets dual to the Delaunay edges.

Figure 3: A medial axis point m, its medial angle § and the
corresponding medial ball.

These edges are either long edges making large angle with
the surface - thus selected by the so-called Angle condition.
When the Delaunay edges tend to become parallel to the tan-
gent planes at their endpoints, the Angle condition fails and
we resort to a Ratio condition; more precisely the edges used
there are those whose length is significantly larger than the
circumradii of the umbrella triangles.

3.1 Angle condition

Approximation of the medial angle 8 for a medial axis point
requires an approximation to the tangent plane at that point.
It follows from Lemma 3 that the triangles in the umbrellas
necessarily lie flat to S.

Therefore, we take umbrella triangles in U, for approxi-
mating the tangent plane at a sample point p and determine
all Delaunay edges pq that make relatively large angle with
this tangent plane. The angle between an edge pg and a tri-
angle ptu is measured by the acute angle Znpy, tyg. Our goal
is to capture all edges pq that make more than a threshold
angle g with triangles in Up, or equivalently make an angle
less than 5 — 6 with their normals, see Figure 4. We say a
Delaunay edge pq satisfies Angle condition [6] if

™
max ZNpy, tog < = — 6.
ptueUp P> Tpq 2

The roles of p and q are interchangable, i.e., if the um-
brella triangles in Uq are used in the condition, we say qp
satisfies the Angle condition [#]. Consistent with this nota-
tion the edge pq is considered twice in the algorithm, once
as pg and another time as gp.

Only Angle condition cannot approximate the medial axis
in a density independent manner. If we fix 8 for all models,
some of the medial axis points with medial angle below 6
are not approximated. In that case we cannot hope for con-
vergence in the limit when density approaches infinity.

Figure 5 illustrates the results with ‘only Angle condition’.
We varied the value of 6 in order to get a good approximation
to the medial axis. As expected, larger value of 6 produces
less facets in the output resulting in undesirable “holes’, see
the rightmost picture of 3HOL E data in Figure 5. On the other
hand, smaller values of @ generate too many facets result-
ing in undesirable “spikes’, see the leftmost picture for the
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Figure 5: Results with ‘only Angle condition’.

Figure 4: The angle of interest for the Angle condition [6].
The Voronoi edge shown with the dotted line is normal to the
shaded triangle.

3HOLE data in Figure 5. For each model shown in Figure 5
we attempted to determine a value of # for which we can
obtain an approximation as good as possible. The second
row of Figure 5 shows the output of this experiment. The
major drawback of the ‘only Angle condition’ approach is
that the value of 8 for which we obtain good approximation
differs from sample to sample. It turns out that the required
value of 4 gets larger with decreasing sample density. Con-
sequently, we could not find any consistent value for which
the approach works for all models we experimented with.

3.2 Ratio condition

Consider the medial ball B as shown in Figure 3. From sim-
ple geometry of spheres, we get

llp—qll = 2using

where u = ||m — p|| is the radius of B. Therefore, if § > ¢,
where ¢ is the sampling density, we have ||p—q|| > 2usine.
Also, the radius of the umbrella triangles are only of the or-
der of ue as we show later. This means that the length of pq
will be much larger than the radii of the umbrella triangles.
Taking the cue from the above observation, we compare
the length of the Delaunay edges with the circumradii of the
umbrella triangles. By this we can approximate all medial
axis points with medial angles only few times larger than e.
Of course, we will not be able to approximate the medial axis
points with medial angle less than £ with this method, but as
€ approaches zero, we get the required convergence. We say
an edge pq satisfies the Ratio condition [p] if (see Figure 6)

Hp—qH>p

min
Rptu

ptueUp

Here, too, the roles of p and g are interchangable.
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Figure 7: Results with ‘only Ratio condition’.

Figure 6: Radius of interest for the Ratio condition [p].

Figure 7 illustrates the effect of ‘only Ratio condition’. As
expected, larger value of p produces less noisy medial axis,
but with ‘holes’ as shown in the rightmost picture for the
FooT data in Figure 7. On the other hand, smaller p pro-
duces undesirable spurious ‘spikes’ as exhibited by the left-
most picture of the FOOT in Figure 7.

In this case also we could not find a value of p for which
all samples produce good result. When the sample is less
dense, a smaller p is needed to obtain an approximation as
good as possible. ‘Only Ratio condition’ approach has one
more disadvantage. If the sample density is not uniform over
the entire surface, one value of p cannot capture the medial
axis for the entire shape. This is why no value of p gave a
good result for the FooT and 3HOLE data though we could
find an appropriate p for ROCKER and KNOT data which are

mostly uniform.

Although, in theory, for sufficiently dense sample, the ra-
tio condition alone is adequate to filter all necessary Delau-
nay edges, often this density requirement is not satisfied in
practice. Our experiments suggest that both angle and ratio
conditions are necessary in parctice to keep the thresholds
fixed over varying sample density. Experimentally we ob-
serve that § = 6o = § and p = po = 8 are appropriate for all
reasonably dense data sets. With these two values we enu-
merate the steps of our algorithm MEDIAL to approximate
the medial axis.

MEDIAL(P)
1 Compute Vp and Dp;
2F=0;
3foreachpe P
4 Compute Up,
5 for each Delaunay edge pq € Up
6 if pg satisfies Angle Condition [6]
or Ratio condition [pg]

7 F := FUDual pg
8 endif
9 endfor

10 endfor

11 output CI F



Remark: As we mentioned earlier, the pole vectors ap-
proximate the normals to S at the sample points. Therefore,
it is plausible to use them in the angle condition instead of
the normals to the umbrella triangles. Similarly, the width of
the tangent polygon can replace the circumradii of the um-
brella triangles in the ratio condition. However, our experi-
ments suggest that these alternatives do not produce as good
result as the stated angle and ratio conditions do. We believe
that these alternatives do not eliminate Delaunay edges lying
close to the surface very well in practice.

4 Guarantees

In this section we prove that a significant subset of the output
of MEDIAL converges to the actual medial axis when ¢ ap-
proaches zero. For a sample point p we define yp, dp, 7p and
Bp as follows. Motivation of their definitions becomes clear
when we use them later. Let

pup = radius of the larger medial ball at p
R
6p = max &
pareUp  fip
- Hp
= ()
o p f(p)
_ M (2 L )
= arcsin +arcsin [ — sin(2 arcsin
B =2, (Jgsmearsing )
L2
1—6mnp

Our analysis uses the two medial balls touching the sur-
face at p. Their radii are not necessarily equal to the local
feature size f (p) which warrants the introduction of pp. Both
dp and 7p measure the local density of the sample around p
which may be much smaller than the global density mea-
sured by e. We will see later that Jp, = O(e)%. This in
turn implies that 7, is O(g). The term B, measures the an-
gle Znp, npgr between the normal at p and the normal to any
of its incident umbrella triangle. The O(g) bound on 7, also
puts an O(e) bound on S,.

4.1 Umbrellatriangles

The Ratio and Angle conditions in MEDIAL are based on the
assumption that the umbrella triangles lie flat to the surface.
We prove this fact now. Similar result has been proved by
Amenta, Choi, Dey and Leekha [3]. But, we will need a dif-
ferent form of the result here. For completeness and due to
the differences, we include the proofs where necessary.

Recall that Rpge denotes the circumradius of a triangle pgr
and npg denotes its normal. Let p be the vertex subtending
the largest angle in pgr.

Lemmal If ?(pS) < 0.1, the angle Znyg, Np is no more than

a+ sin_l(% sin 2a), where o < arcsin Roa

fo)

PROOF. Consider the medial balls B; and B, sandwiching S
at p with the centers on the medial axis. Let D be the ball
with the circumcircle of pqr as a diametric circle; refer to
Figure 8. Denote the circles of intersection of D with B; and
B, as C; and C; respectively.

The line of normal to S at p passes through m, the center of
B;. This normal makes an angle less than « with the normals
to the plane of C4, where

a < arcsin — P
lIm —pl|
. R
< arcsin =X
f(p)

This angle bound also applies to the plane of C,, which im-
plies that the planes of C; and C, make a wedge, say W, with
an acute dihedral angle no more than 2a.

Figure 8: Normal to a triangle and the normal to S at the
vertex with the largest face angle.

The two vertices g, r of pgr cannot lie inside B; or B,.
This implies that pgr lies completely in the wedge W. Since
the face angle at p is at least %, the triangle pgr has to lie
somewhat flat within the wedge W if o is small enough. With

the condition that % < 0.1, vissmall and it is proved in [3]

that o' = arcsin(3"2%) where o' is the acute angle between

sinw/3
the planes of C; and pgr. The angle Znpgr, N is at most a+a’
proving the theorem.

The next lemma is proved by Amenta and Bern [1] which
says that surface normals do not differ much if the points are
close with respect to local feature sizes.

Lemma 2 Let p and g be two points in S so that ||p — q|| <
f(p). Then Znp, ng < %= if 7 < 3.

We use the previous two lemmas to derive a bound be-
tween the normals to the surface and to the umbrella triangles
respectively.

Lemma3 Let pgr be any triangle in U, We have
LNpgr, Np < Bp.

PROOF.
Notice that if p is a vertex subtending the maximum angle
in pgr, then we can apply Lemma 1 with Rpgr < dppp to get

. . 2 . .
ZNp, Npgr < arcsingy + arcsin (— sin(2 arcsin np)> < Bp.

V3



If p is not the vertex subtending the maximum angle, without
loss of generality assume g be such one. Since pg cannot
be larger than the diameter of the circumcircle of par, ||p —
all < 20pup = 25f (p). We have f(p) < =5 (q) by the

Lipschitz property of f(). It follows [|p — q| < 1 2’7" f(p)

Apply Lemma 2 with 7 = 2’7" - to get

2np
1—6np

ZNnp, Ng <

Applying Lemma 1 for g and then using the fact f(q) > (1 —
2np)f (p) we get that Znpgr, Ng is N0 more than

arcsin +arcsin | — sin(2arcsin ).
— 2np V3 1-2n
Since Znpg,Np < ZNpgr, Ng + £Ng, Np, the bound as
claimed follows. Hl

The proof of the next lemma follows from a result in [1].

Lemma4 Let pgr be any umbrella triangle in Up. The cir-
H 1
cumradius Rpgr < (1%5) (s’n(w/2—3arcs'ns/(l—s))) f(p).

PROOF. The radius Rpg cannot be more than the distance
between p and the farthest point on the tangent polygon
of p from it. Any point w in the tangent polygon satisfies
ZVp, tow = 5 Where vy is the pole vector. Therefore, we can
use the reverse implication of the following statement proved
in [1]. If w € V, is a point so that ||w — p|| > 7f(p), then

+ arcsin

ZVp, tow < arcsin 7-(18— ) 1L—a

Also, the pole vector v, satisfies Zvp, np <2 arcsin = . The
reverse implication as referred above gives that Rpq g ||w -

pll < (1 s) (sin(7r/2—3arlcsjns/(l—s))) f(p).

It follows from the above lemma that

5= max 2 < o) @)
pareUp  Up Mp

This implies that both 7, and 3, are O(e) only.

Corollary 1 &, = O(e) (p), Np =
for small e.

O(e), and By < 6mp = O(e)

4.2 Analysis

The convergence analysis proceeds in part by showing that
each point in a specific subset of the output is within a small
distance from a medial axis point. As e — 0 this distance
vanishes. Conversely, we also argue that each medial axis
point has a nearby point in the subset, the distance between
which also vanishes ase — 0.

Some of the points on the sampled surface S have infinitely
large medial balls. This poses some difficulty in our analysis.

To prevent this we enclose S and hence its sample within a
sufficiently large bounding sphere. This ensures that p, has
an upper bound for each point p on S. Of course, the bound-
ing sphere changes the medial axis outside S, but we can keep
these changes as far away from S as we wish by choosing a
sufficiently large bounding sphere. In particular, the medial
axis inside S does not change at all with this modification. In
the analysis to follow, we assume that the input point set P
samples S as well as the bounding sphere. With the bound-
ing sphere assumption, we have A < % < 1 for any point
p € Swhere A > 0is a constant dependenton S. It is impor-
tant that, although A depends on S, it remains independent
of its sampling.

In the analysis we prove convergence for the subset of the
medial axis of S that remains unchanged with the bounding
sphere assumption. Let M denote this subset of the medial
axis which consists of the centers of the medial balls that
touch S but not the bounding sphere. We also need to make
some adjustments in MEDIAL to accommaodate this change.
Given the sample points of S, MEDIAL has to first add the
sample points of the bounding sphere and then filter only
from those Delaunay edges that connect sample points of S.
We assume this modfication to MEDIAL while carrying out
the analysis. However, we do not implement these modifica-
tions since we observe that the algorithm without this addi-
tional sample points work well in practice.

For the e-sample P, we will define £, a subcomplex of
the output complex computed by MEDIAL and show that the
underlying space L. of L. convergesto M in the limite — 0.
Let m and m’ be the centers of the two medial balls at p and
1, ' their radii respectively. It is a simple observation that m
and m’ are contained in Vp [1]. Suppose w € V,, be a point in
the output so that ty, - tym > 0. This means w and m lies on
the same side of the tangent plane at p. We will show that, if
[lw—p|| < u, the distance between w and its closest point on
pm is small. This fact is used to show that, if w belongs to a
Voronoi facet of V, which makes large angle with the line of
pm, then w must be near to m.

Before we proceed to prove the above fact, we need an-
other geometric property of the umbrella triangles and their
circumcircles. For an umbrella triangle pqgr, consider the
cone on its plane with p as apex and opening angle Zqpr.
Let Lyq denote the intersection of this cone with the circum-
circle of pgr, see Figure 9. We define the flower of p, Fl,
as

Flp = Upgreu, Lpar-

Lemma5 V, does not contain any point of the boundary of
Flp inside.

PrROOF. Consider any point x on the boundary of Fl, as
shown in Figure 9. Let x belong to the boundary of the cir-
cumcircle of pgr. It is a simple geometric fact of circles that
x is closer to either g or r than to p. It means x cannot be
inside Vp. H]



Figure 9: Lpq of an umbrella triangle pgr (left), and the
flower of p.

The flower of p lies very flat to the surface and cannot inter-
sect the segment mm’ at any point other than p. This means
that the above lemma implies that Fl, intersects V, com-
pletely and separates m and m’ on its two sides within V.
In particular, any segment connecting a point w € V, with
m, where w and m lies on the opposite sides of Fl,, must
intersect Fl,.

In the next two lemmas let w° denote the closest point to
w € V), on the line of mm’. Also see Figure 10.

m
W w

m

Figure 10: Hlustration for Lemma 6.

Lemma 6 If w° lies in the segment mm’, ||w —
2 tan(arcsin 2np) pp.

wel| <

PROOF. Let m’ be the center of the medial ball at p so that
w and m’ lie on opposite sides of the flower at p within V.
Consider the segment wm’. Let y be the foot of the perpen-
dicular dropped from from p to wm’. Since wm' intersects Fl,,
and any point in Fl, is within 26y, distance, we must have
ly — pl| < 26ppp. Therefore,

20ppp
f(p)

lly — pl|
[|m” — pl]

Zpm'y < arcsin < arcsin

= arcsin 2np.

It follows that
[lw—we|| < [jm—m'||tan Zpm'y < 2, tan(arcsin 2np).

Lemma?7 Let F = Dualpqg be a Voronoi facet where pq
satisfies the angle condition [6] with 8 > 25, + 8,. Any
point w in F with ||w — p|| < u is within a distance of
Wl_ﬁp)(Z tan(arcsin 2np))p from m where m and p are the
center and radius of the medial ball at p with tpm - tow > 0.

PROOF. Consider the ball B with radius p around p. The
point w necessarily lies inside B since ||w — p|| < u. There-
fore, we lies in the segment pm. We can apply Lemma 6 to
assert ||w — w°|| < 2 tan(arcsin 21p) .

X
m F m \F

X

Figure 11: lllustration for Lemma 7. The picture in the left is
not a possible configuration due to the constraint on «.

Let the plane of F intersect the line of pm at x at an an-
gle a. We have o« > 6 — 3, since the normal to F makes
more than € angle with the normal of an umbrella triangle
(by the Angle condition [6]) which in turn makes an angle
less than g3, with the surface normal at p (Lemma 3). With
the requirement that & > 27, + Sy, we have a > 2n,.

Also, the plane of F cannot intersect the segment mm’.
This is because the medial balls at p are empty of any other
sample point and thus both m and m’ belong to V. In par-
ticular, the segment mm’ must be inside the Voronoi cell V.
The segment wm’ necessarily lies inside V, and intersects the
flower of p, say at y. This means |y — p|| < 20pup. If X lies
below m’ as shown in the left picture of Figure 11, we have

a < Zpxw < Zpm'y < tan ly=pll < 2np.

[[m" —p]|
This contradicts the assertion that o > 27,. So, X cannot
lie below m’. Instead, it lies above m as shown in the right
picture in Figure 11. From the triangle ww°x we have

[lw—we°|| _ 2tan(arcsin2zmp)
sina = sin@—fp) 7

To complete the proof of convergence we need the fol-
lowing lemma which says that for a long Delaunay edge pq
there must exists a pointw € Dual pg which cannot be too far
from a medial axis point. This lemma is extracted from a re-
sult (Proposition 18) of Boissonnat and Cazals [8]. Although
we use slightly different version with different constants and
exponents, the proof remains same.

llw —m[| < flw —x|| <

Lemma 8 Let pq be a Delaunay edge with ||p — q|| > nu,
where p is the radius of a medial ball at p with the center m
andn > /4. If the medial angle of p is larger than %/3, then
all points w € Dual pq with tym - tpy > O satisfy ||w — m|| =
0(e%*)p for sufficiently small & > 0.



Now we define a subcomplex £. from the complex com-
puted by MEDIAL. The definition is motivated by the condi-
tions of Lemma 7 and Lemma 8.

Definition 4 We define £, C Vp as L. = {CIF|F € Vp}
where pg = Dual F is selected by MEDIAL either by (i) Angle
condition, or (ii) Ratio condition with ||p — q|| > e/*, and
the medial angle of p is larger than %/2. Here  is the radius
of the medial ball at p with the center m so that tpm - tpq > 0.
Let L. denote the underlying space of L..

Consider a sequence of L. with decreasing . Theorem
1 and 2 establish that the limit of this sequence converges
to M where M is the subset of the medial axis defined by
medial balls that touch only S but not the bounding sphere.
This shows that a subset of the output of MEDIAL converges
to the medial axis though the difference between this subset
and the output is small; specifically when e = 0, this subset
coincides with the output.

Theorem 1 lim._,oL. C M.

PROOF. Let F € L. be a facet computed by MEDIAL().
First, consider the case when pg = Dual F is selected by the
Angle condition. Let w € F be any point and p and m are as
defined in Lemma 7. If w is more than y away from p, we
can apply Lemma 8 to conclude ||w — m|| = O(e¥*)u if p
has a medial angle Q(e'/3). Otherwise, Lemma 7 applies to
assert that |lw—m|| < %ﬂ%’“’ = O(g)pp- In both cases
as e approaches zero, w reaches m in the limite — 0.

Next, consider the case when pg = Dual F is selected by
MEDIAL by the Ratio condition. Since F € L., all condi-
tions to apply Lemma 8 are satisfied. So, we have ||w —m|| =
O(e%*)p. This implies that w reaches m in the limit e — 0.

Next we wish to establish the converse of the previous the-
orem, i.e., the points on the medial axis have a nearby point
in the output, L. in particular. It turns out that only a subset
of M satisfies this guarantee which converges to entire M as
€ approaches zero.

Definition 5 The sampled surface S is said to be well be-
haved in the neighborhood of a point p € S with respect to
€ > 0 if the following condition holds: any ball that meets S
tangentially at p can be tangent to another point g € S only
if [|p — q|| > 2¢/*p, where g is the radius of the medial ball
at p with the center m so that tpm - t,g > 0.

Roughly speaking, the above definition says that S cannot
oscillate around a well behaved point arbitrarily. Let S, C S
be the set of all points where S is well behaved with respect
to . By definition all points in S, have a medial angle more
than arcsine/4 > ¢1/3 for sufficiently small e. Next lemma
claims that all sample points where S is well behaved must
have a long Delaunay edge.

Lemma9 Let p € S. be a sample point. For each medial
ball at p with the center m and radius p, there is a Delaunay
edge pq with tom - thg > 0 s0 that ||p — q|| > e¥/*u where ¢
is sufficiently small.

PROOF. Let B be a medial ball touching S at p with radius
and center m. Grow B keeping it tangent to S at p. Initially,
the ball is empty of any other point of S. But, as the growth
continues it starts meeting S and eventually meets a sample
point g. Certainly, we have tpm - t,g > 0. Let g belong to a
component of BNS that originated at x € S during the growth
process. This means B met S tangentially at x. Since S is well
behaved at p, we must have [|p—x|| > 2¢/4u. Also, applying
the e-sampling condition and some sphere geometry we can
show that, for sufficiently small ¢, ||q — x|| < 2ef(x). Now
assume ||p —q|| < 24 because otherwise there is nothing
to prove. Using Lipschitz condition on f() and the condition

lla — || < 2f(x), it is easy to establish that f(x) < ;L.

Similarly, using the condition ||p —q|| < 2e¥4u < ZETWf(p),

we get f(q) < 0 75 < Therefore,

)
1—2:74/A"

lp—all > flp—xl—Ila—x|

2ep
> 2y - — =
= BT A
> My
for sufficiently small . Hl

We also need the following result proved by Amenta,
Choi, Kolluri [4] which says that poles are not very far from
the medial axis points inside a Voronoi cell.

Lemma 10 Let m be a medial axis point with nearest sample
point p and the medial angle at m is larger than £/3. Then
there is a pole of p which is only O(¢%3)y distance away
from m where  is the radius of the respective medial ball.

Let M. C M be the set of medial axis points whose nearest
point(s) in Sand P lie in S... Since all points in S. have medial
angles more than /3, so are the points in M. We show that
M. has a nearby pointin L..

Lemma 11 Letm € M.. There exists a pointw € L. so that
[lw — m|| = O(e¥#)up where p is the nearest sample point to
m.

PROOF. Let ¢ be the center of the medial ball touching S
at p. Since this ball does not contain any point of S inside,
we must have c inside the Voronoi cell V. Also, m € V,
since p is the nearest sample point to m. First, both m and
¢ have medial angles more than £1/2 by the property of M,.
Applying Lemma 10 we get that that m and ¢ cannot be far
apart, ||[m—c|| = O(¢%/3)u, since both have a pole of p within
O(e%/3)p, distance.

By definition, p € S.. Thus, according to Lemma 9 there
exists a Delaunay edge pq with ||p — q|| > £%/4u where y is



the radius of the medial ball with the center m. The dual of
this edge must belong to £. by the Ratio condition. Lemma
8 implies that there is a point w € F = Dual pq so that ||w —
c|| = O(e¥*)up. This means

[Iw —mi| < flw —cf| + [|m = c[| = OE¥*)sp.

Hl
@
S
=0

Figure 12: Convergence of L. and M.
Theorem2 M C lim._,oL..
PROOF. By definition of M, we have M = lim._,o M..
Lemma 11 implies lim._,o M. C lim._0L..

Theorem 1 and 2 together establish that, in the limit ¢ —
0, L. convergesto the medial axis M. A schematic diagram of
the convergence of various structures is illustrated in Figure
12.

Remark: Note that it is essential to assume that no five
sample points lie on the boundary of an empty sphere so that
dual facets of all edges with an empty circumscribing sphere
exist in the Voronoi diagram. This excludes, for example,
sample points on a sphere.

Also, a careful examination of the proofs of Theorem 1
and Theorem 2 suggests that the only Ratio condition is suf-
ficient to filter Delaunay edges. However, as we have indi-
cated earlier, we need both conditions to deal with data sets
appearing in practice. This is the reason why we designed
MEDIAL with two conditions and prove their contributions
towards convergence.

5 Experimental results

We implemented MEDIAL in C + + using the CGAL library
[32] for the Voronoi diagram and the Delaunay triangulation.
Figure 13 shows our result on some example data sets. In
this picture we show only the ‘inner’ medial axis that is ‘en-
closed’ by the surface. We computed the ‘inner’ medial axis
as follows. A piecewise linear surface interpolating the sam-
ple points is computed with our TIGHT COCONE software

[31]. This surface is a subcomplex of the Delaunay triangu-
lation and is guaranteed to be watertight. We output those
\oronoi facets computed by MEDIAL that are dual to the
Delaunay edges enclosed by the computed surface of TIGHT
COCONE.

The approximation of the medial axis is better where the
data is dense. Near high curvature regions, or non-smooth re-
gions where undersampling happens, the approximation con-
tains artifacts. For example, in the CLUB and ROCKER data,
the medial axis is well approximated in most part where the
density is high. But, near the handle of the CLuUB and top of
the ROCKER, the sampling density suffers due to high curva-
ture and small features. As a result the approximation is poor
in these regions.

# points | Delaunay Filter
object time(sec.) | time(sec.)
3HOLE 4000 2.37 0.82
KNOT 10001 8.36 2.66
ENGINE 11361 37.0 1.82
MANNEQUIN 12773 7.79 2.28
FANDISK 16475 134 3.0
CLuB 16865 18.81 3.06
Foot 20021 13.24 3.71
HAND 25626 51.14 5.11
SCREWDRIVER | 27152 51.87 5.36
DINOSAUR 28098 23.28 5.8
HEART 37912 32.49 6.58
ROCKER 40177 74.54 8.25
FEMALE 121723 292.85 24.95

Table 1: Time data.

SCREWDRIVER data is mostly very dense and almost
uniform except near some small curvature regions. On the
other hand, 3HOLE is relatively a sparse data set. In both
cases, MEDIAL approximated the medial axis quite well.
This shows that MEDIAL is tolerant to different levels of data
densities.

The sample in ENGINE lie on several connected compo-
nents. In this case we computed the entire medial axis since
‘inner’ and “outer” distinction in this case does not have any
meaning.

In general, the medial axis of a surface may contain ele-
ments of different dimensions. In MEDIAL we approximate
all these elements with two dimensional Voronoi facets. The
data set KNOT shows this interesting phenomenon. The one
dimensional medial axis in this case has been approximated
with very thin Voronoi facets.

The HEART data is extracted as an iso-surface from the in-
tensity field of a volumetric image. The data contains some
noise introduced by the iso-surface extraction procedure.
MEDIAL could tolerate most of this noise as the output in
Figure 13 suggests.

Four more examples HAND, MANNEQUIN, DINOSAUR
and FEMALE show how MEDIAL computes clean medial
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Figure 13: Medial axis with MEDIAL shown dark shaded.
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Figure 14: Computed medial axis of FANDISK and FOOT.

axes for complicated shapes.

In Figure 14, we show the two views of the medial axis
for a CAD object FANDISK. The medial axis is well approx-
imated except at the boundaries where it is ‘jagged’. The
poor approximation at these places is caused by the sharp
edges of the surface where it is nonsmooth and therefore the
inherent problem of undersampling occurs, see [13]. In the
Foot data we zoom some places of the toes and the heel.
The zoomed region in the toe has undersampling and the
medial axis near the boundary has some roughness. How-
ever, the heel is well sampled, and the corresponding medial
axis boundary is smoother. The FOOT data has abrupt den-
sity changes in some parts. As a result ‘only Ratio condition’
did not produce good result for any ratio. MEDIAL produced
a good approximation to the medial axis. It shows that MEe-
DIAL is impervious to nonuniformity in data.

5.1 Timing

We used the filtered floating point arithmetic provided by
CGAL [32] for robust geometric computations. Experiments
were conducted on a PC with 933 MHz CPU and 512MB
memory. The code was compiled with CGAL2.3 library and
g++ compiler with 01 level of optimization. The time for the
Delaunay triangulation and filtration are listed in Table 1.

6 Conclusions

In this paper we present an algorithm that approximates the
medial axis from the Voronoi diagram of a set of sample
points. Unlike previous approaches, this algorithm is scale
and density independent. Experimental studies suggest that
the algorithm computes clean medial axes without any fine
tuning of the parameters.

Although this is the first algorithm that shows that medial
axis can be computed as a subcomplex of the Voronoi dia-
gram with guaranteed convergence, we could not prove that
the output medial axis maintains the topology of the original
one. From our experiment results, we observe that all signifi-
cant branchings of the medial axis are approximated by ME-
DIAL. If the data set is dense, we obtain quite clean medial
axis without much of sampling artifacts. Although proving a
homeomorphism between the output of MEDIAL and the true
medial axis will be difficult, if not impossible, we expect that
it would be possible to show the homotopy equivalence be-
tween the two. We plan to investigate this aspect in future
research.

In many applications it is useful to have a simplification of
the medial axis. Obviously, larger parameter values simplify
the medial axis. Is there a way to determine the values au-
tomatically that bring up the hierarchy of the stable parts of
the medial axis? More investigations are necessary to answer



this question.
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